1. Field of the Invention
This invention relates to an antenna, more particularly to a multifrequency inverted-F antenna for a portable electronic device.
2. Description of the Related Art
Wireless communication devices, such as cellular phones, notebook computers, electronic appliances, and the like, are normally installed with an antenna that serves as a medium for transmission and reception of electromagnetic signals. The antenna can be built outside or inside the devices. However, the latter (built-in type) are more attractive due to the tendency of folding and breaking associated with the former upon use.
In view of the conventional inverted-F antennas, there is a need for a simpler structure and construction for the antennas that are capable of emitting and receiving multifrequency bands. Moreover, adjustment of the frequency bands through the input and output impedance is not possible for the conventional inverted-F antennas due to the fixed location of the signal feeding element 14 on the radiating element 11.
Therefore, it is an object of the present invention to provide a multifrequency inverted-F antenna that is capable of overcoming the aforementioned drawbacks of the prior art.
According to this invention, there is provided a multifrequency inverted-F antenna that comprises: a conductive radiating element extending in a longitudinal direction and having opposite first and second ends lying in the longitudinal direction; a conductive grounding element spaced apart from the radiating element in a transverse direction relative to the longitudinal direction; a conductive interconnecting element extending between the radiating and grounding elements and including first, second, and third parts, the first part being electrically connected to the radiating element at a feeding point between the first and second ends of the radiating element, the second part being offset from the first part in the longitudinal direction and being electrically connected to the grounding element, the third part electrically interconnecting the first and second parts; and a feeding line electrically connected to the interconnecting element.
In drawings which illustrate embodiments of the invention,
For the sake of brevity, like elements are denoted by the same reference numerals throughout the disclosure.
The first part 51 of the interconnecting element 5 has a radiating end 511 that is electrically connected to the radiating element 3 at the feeding point (P), and a distal end 512 that is opposite to the radiating end 511. The second part 52 of the interconnecting element 5 has a grounding end 521 that is electrically connected to the grounding element 4, and a distal end 522 that is opposite to the grounding end 521. The third part 53 of the interconnecting element 5 has opposite left and right ends 531, 532 electrically and respectively connected to the distal ends 512, 522 of the first and second parts 51, 52.
The first and third parts 51, 53 form a first angle (θ1), and the second and third parts 51, 52 form a second angle (θ2). Each of the first and second angles (θ1, θ2) can be varied. In this preferred embodiment, each of the first and second angles (θ1, θ2) is equal to 90°.
The grounding element 4 is in the form of a plate, and preferably extends in a direction parallel to the radiating element 3. The first and second parts 51, 52 preferably extend in a direction perpendicular to the radiating and grounding elements 3, 4.
Preferably, the feeding line 6 is in the form of a coaxial cable line connected to a radio frequency transceiver (not shown), and includes a core conductor 61 that is electrically connected to the interconnecting element 5. The core conductor 61 of the feeding line 6 is preferably connected to the third part 53, and is more preferably connected to the left end 531 of the third part 53 of the interconnecting element 5 at one side face of the third part 53 that is opposite to the distal end 512 of the first part 51 of the interconnecting element 5. The feeding line 6 further includes a grounding layer 62 that is electrically connected to the grounding element 4.
The feeding point (P) divides the radiating element 3 into left and right sections that have lengths (M1, M2) measured respectively from the left end 31 of the radiating element 3 to the feeding point (P) and from the feeding point (P) to the right end 32 of the radiating element 3. The left and right sections of the radiating element 3 correspond respectively to a high frequency band and a low frequency band.
During transmission of a signal from the transceiver to the radiating element 3, part of the signal may be transmitted to the grounding element 4. However, due to hindrance of the second angle (θ2), most of the signal will be transmitted to the radiating element 3 so as to permit emission of a radiation in the frequency bands. During reception of a signal, the signal passes through the respective section of the radiating element 3 and is first fed to the feeding line 6 through the first part 51 of the interconnecting element 5 prior to transmission to the grounding element 4 which is placed behind the feeding line 6. Although part of the signal may be fed to the grounding element 4, however, due to hindrance of the first and second angles (θ1, θ2), most of the signal will be fed to the feeding line 6 so as to be received by the transceiver.
It is noted that it is not necessary to connect the core conductor 61 of the feeding line 6 to the left end 531 of the third part 53. The core conductor 61 can be connected to the third part 53 at a selected position between the left and right ends 531, 532 of the third part 53 so as to obtain a desired frequency band and impedance matching for the input and output impedance.
Tables 1 and 2 are results of a test on the antenna 2 of
In addition, the antenna 2 can be made from a flexible print circuit (FPC) material so as to further minimize the dimensions of the antenna 2.
By virtue of the construction of the interconnecting element 5, the drawbacks as encountered in the prior art can be eliminated.
With the invention thus explained, it is apparent that various modifications and variations can be made without departing from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
91123215 A | Oct 2002 | TW | national |
This application is a Continuation of application Ser. No. 11/034,164, filed Jan. 11, 2005, which is the Continuation of application Ser. No. 10/394,370, filed Mar. 20, 2003, now U.S. Pat. No. 6,861,986, which claims priority to Taiwan patent Application No. 091123215 filed on Oct. 8, 2002, and which application(s) are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5181044 | Matsumoto et al. | Jan 1993 | A |
5949383 | Hayes et al. | Sep 1999 | A |
6173445 | Robins et al. | Jan 2001 | B1 |
6229485 | Ito et al. | May 2001 | B1 |
6239765 | Johnson et al. | May 2001 | B1 |
6343208 | Zhinong | Jan 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6426725 | Hiroshima et al. | Jul 2002 | B2 |
6600448 | Ikegaya et al. | Jul 2003 | B2 |
6662028 | Hayes et al. | Dec 2003 | B1 |
6717548 | Chen | Apr 2004 | B2 |
6788257 | Fang et al. | Sep 2004 | B2 |
6861986 | Fang et al. | Mar 2005 | B2 |
6864841 | Dai et al. | Mar 2005 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
20040090377 | Dai et al. | May 2004 | A1 |
20040233108 | Bordi | Nov 2004 | A1 |
20050190108 | Lin et al. | Sep 2005 | A1 |
20070120753 | Hung et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
527754 | Dec 1990 | TW |
Number | Date | Country | |
---|---|---|---|
20060250309 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11034164 | Jan 2005 | US |
Child | 11482253 | US | |
Parent | 10394370 | Mar 2003 | US |
Child | 11034164 | US |