The described embodiments relate generally to an input device, for example, a keyboard for a computing device. More specifically, the embodiments described herein are directed to a keyboard that enables a user to provide mechanical input and touch input to a computing device associated with the keyboard.
Some portable computing devices, such as laptop computers, include a standard QWERTY keyboard for providing text input. These portable computing devices may also include a trackpad, a mouse and/or a touch sensitive display that enables the user to provide touch input to the computing device.
Although a variety of input devices may be provided, a user is typically required to move his hands from one input device to another in order to provide each type of input. For example, if a user is typing on the keyboard and wishes to select a particular icon on the display or move a cursor, the user is required to move his hands from the keyboard to a mouse, a trackpad or the display. Once the user has completed the desired action with the touch input device and wishes to return to typing, the user again places his hands on the keyboard.
Described herein is a multifunction input device that utilizes both mechanical input and touch input when providing input to a computing device. In some embodiments, the multifunction input device is a keyboard. The keyboard may include a keycap, a frame at least partially surrounding the keycap, and a capacitive sensing layer. The capacitive sensing layer defines a void space in which an electrical contact is positioned. The capacitive sensing layer also includes one or more sense electrodes and at least one drive electrode arranged around a periphery of the void space.
The present disclosure also describes a stackup for an input device. The stackup includes an input surface at least partially surrounded by a frame, a substrate, an electrical contact positioned underneath the input surface, and a capacitive sensing layer associated with the substrate. The capacitive sensing layer includes first and second sense electrodes electrically coupled to one another and a drive electrode positioned between the first and second sense electrodes. In some embodiments, a portion of at least one of the first sense electrode or the second sense electrode extends beneath the input surface but does not overlap the electrical contact.
Also described is a method for determining a type of input received on a touch-sensitive keyboard. This method includes detecting a first change in capacitance in response to received input at a first location on the touch-sensitive keyboard and detecting a second change in capacitance in response to input received at a second location on the touch-sensitive keyboard. The first location is different from the second location. The method continues by normalizing the first change in capacitance with respect to the second change in capacitance.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred configuration. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
The embodiments described herein are directed to a multifunction input device that utilizes both mechanical input and touch input when providing input to a computing device. In some embodiments, the multifunction input device is a keyboard. The keyboard may be integrated with the computing device or it may be removably coupled to the computing device.
For example, the computing device may be a laptop computer having an integrated keyboard. In another example, the computing device may be a tablet computer and the multifunction input device may be a keyboard that can be attached to and detached from the tablet computer. The multifunction input device may be any other electronic device, and can couple to any input device having multiple keys, buttons, or the like.
The multifunction input device may utilize or otherwise enable a user to provide mechanical input and touch input to the computing device. For example, the multifunction input device may have a number of keys or buttons that may be actuated by a user. In addition, the multifunction input device may enable a user to provide touch input to the keys or buttons in order to move a cursor, select a displayed icon, perform a gesture, and so on. The multifunction input device can also provide inputs across multiple keys, using multiple key surfaces for single input.
The multifunction input device may have a capacitive sensing layer disposed underneath each of the buttons or keys. As such, the entire surface of the input device (or designated portions of the surface of the input device) may function as a trackpad or other touch-sensitive input device. Thus, when a user wishes to move a cursor, select an icon or perform an action associated with a gesture, the user can provide the input directly on the surface of the keys or buttons of the input device, without removing his fingers or hands from the surface of the input device or pressing the keys/buttons.
As briefly discussed above, the multifunction input device includes a capacitive sensing layer positioned underneath the buttons or keys. The capacitive sensing layer includes various drive and sense electrodes arranged in a particular pattern.
In one embodiment, the capacitive sensing layer includes at least two sense electrodes electrically coupled to one another (e.g., in pairs). One or more drive electrodes are positioned between the pairs of sense electrodes. The sense electrodes and the drive electrodes may have various dimensions and be arranged in various ways and patterns.
For example, the sense electrodes may be arranged in rows while the drive electrodes are arranged in columns. In another arrangement, the sense electrodes may be arranged in columns while the drive electrodes are arranged in rows. In yet another embodiment, portions of the drive electrodes may be interdigitated or otherwise interleaved with portions of the sense electrodes to form an interdigitated pattern. In another example, the sense electrodes may be arranged in a first plane and the drive electrodes may be arranged on a second, different plane. In some embodiments, the dimensions of the drive and sense electrodes may vary. For example, the dimensions of the drive electrodes and/or the sense electrodes may have a first set of dimensions at a first area on the substrate and may have a second set of dimensions at a second area on the substrate.
As the multifunction input device described herein has dual functionality, it may be calibrated so that a detected change in capacitance is normalized or equalized across the entire surface of the multifunction input device including any void spaces or dead spots associated with the key. For example, the multifunction input device may consist of a number of keys or buttons that are each surrounded by a frame. The capacitive sensing layer is provided underneath the frame and the keys. When an input mechanism, such as a user's finger, travels over the keys and the frame of the multifunction input device, the input mechanism causes a change in capacitance that is detectable by the capacitive sensing layer.
However, the ability to detect a change in capacitance may vary at different locations on the multifunction input device. For example, components of the key (e.g., keycap, dome, switch etc.) may disrupt, interfere with or otherwise weaken a capacitive coupling between a user's finger or other input device and the capacitive sensing layer. In another example, a void space may be formed in the capacitive sensing layer. However, the frame of the input device does not include those structures. Accordingly, a greater change in capacitance may occur and/or be detected when the input mechanism passes over the frame. Accordingly, some of the embodiments described herein are directed to calibrating the multifunction input device in order to normalize or equalize the change in capacitance that is detected over the surface of the multifunction input device including the void space on the capacitive sensing layer.
In some embodiments, the multifunction input device may include a fabric layer positioned over each of the keys and the frame. The fabric layer may provide a smooth sensation to the user and also soften rough edges of an input surface of a keycap that a user contacts as he moves his hands or fingers across the surface of each of the keys when providing touch input. The fabric layer may include embossed portions that correspond to each key of the input device. The embossed portions may be adhered to each keycap. However, the embossed portions may also extend beyond the surface of the keycap in order to provide a smooth transition between the frame and each key.
The use of the term “embossed” does not imply or require any particular method for forming a corresponding feature or area. Rather, an embossed area, feature, or the like may be formed by any suitable process or mechanism, including heat forming, molding, stamping, crimping, weaving, or the like. Some embossed areas or structures discussed herein have one or more sidewalls connecting the raised region to the lower region; such sidewalls may be generally perpendicular to one of or both the raised and lower regions, although this is not necessary.
These and other embodiments are discussed below with reference to
The computing device 100 may include a display 110. The display 110 may function as both an input device and an output device. For example, the display 110 may output images, graphics, text, and the like to a user. The display 110 may also act as a touch input device that detects and measures a location of touch input on the display 110. The computing device 100 may also include one or more force sensors that detect and/or measure an amount of force exerted on the display 110.
The keyboard of the computing device 100 includes one or more keys or buttons, such as key 120. Each of the one or more keys may correspond to a particular input. The keyboard may also include a frame 130, a key web or other support structure. The frame 130 may define apertures though which the one or more keys are placed. The frame 130 may be made of various materials such as, but not limited to, aluminum, plastic, metal, rubber and the like and may be used to provide structural support for the keyboard and/or the one or more keys. The frame 130 may also separate adjacent keys from one another and/or from a housing of the computing device 100. The keyboard may also include a fabric layer that is placed over each of the one or more keys and/or the frame 130.
In some embodiments, the computing device 100 may also include an input component (not shown). The input component may be a touch input device such as a trackpad. In some implementations, the input component may be omitted from the computing device 100 as the keyboard may function as a touch input device and a keyboard.
For example, and as shown in
In addition, the keys, such as key 120, may act as multi-touch input devices. The multi-touch input device can detect a change in capacitance in more than one area. When a touch is determined, the computing device 100 performs a certain action. For example, and turning to
Rather, the capacitive sensing layer detects the change in capacitance at a given area and provides the detected change to a processing unit of the computing device 100. The processing unit then determines the appropriate action to take based on the detected change in capacitance. For example, the processing unit may determine that the change in capacitance over various keys indicates a scroll operation. In another embodiment, the detected change in capacitance may indicate a gesture, a swipe or other types of input. Although the keys may function as a multi-touch input device, an input component, such as a trackpad, may also have multi-touch input functionality or it may be omitted.
In some embodiments, the capacitive sensing layer may detect the placement of a user's hands and/or fingers on the keyboard. If placement is incorrect (e.g., the fingers are not properly placed on the home row of the keyboard or in another default position) the computing device may notify the user of the incorrect placement. In some embodiments, the notification may be a haptic output that is provided by a haptic actuator associated with computing device 100 or can be a notification or alert that is shown on the display 110.
As will be described in detail below, the key 200 may include or otherwise be associated with a capacitive sensing layer 280 that detects a change in capacitance when a user's finger contacts and/or presses the key 200. The change in capacitance may indicate a location of the touch on the key 200 and/or the amount of force provided on the key 200.
The keycap 210 may be coupled to a restoring mechanism 230 that enables the keycap 210 to move from a first position to a second position within the frame 220 when actuated. The restoring mechanism 230 may be a scissor mechanism, a butterfly mechanism, a hinge mechanism and the like that restores the keycap 210 to its nominal position when the keycap 210 is released or no longer actuated. Although specific restoring mechanisms 230 are disclosed, the capacitive sensing layer 280 may be used or otherwise integrated with any key architecture.
The key 200 may also include a membrane 240 positioned over a dome mechanism 250 and a contact 260. In some embodiments, the membrane 240 is coupled to a contact housing 270 that contains the dome mechanism 250 and the contact 260. In operation, the membrane 240 acts as a seal to prevent contaminants from interfering with the electrical and/or mechanical operation of the dome mechanism 250 and/or the contact 260. In some embodiments, the membrane 240 may be made of rubber, plastic or other such materials.
The contact housing 270 may secure or otherwise anchor the dome mechanism 250 during actuation of the keycap 210. For example, when the keycap 210 is actuated, the dome mechanism 250 is deformed or is otherwise compressed so that it touches or otherwise connects to the contact 260 thereby indicating the key 200 has been actuated. In some embodiments, the dome mechanism 250 may be a metal dome, a rubber dome, a plastic dome or it may be made from various other materials.
The key 200 also includes a capacitive sensing layer 280. The capacitive sensing layer 280 may be integrated or embedded with a printed circuit board 290 or other substrate. As will be described below, the capacitive sensing layer 280 may be comprised of various sense electrodes and drive electrodes arranged in a particular pattern. The sense electrodes and drive electrodes are configured to detect a change in capacitance in a given region or area of the multifunction input device and/or over a particular key 200 when an input mechanism, such as a user's finger, contacts the keycap 210 and the frame 220 as it moves over the surface.
However, the presence of the various components of the key 200 (e.g., the membrane 240, the dome mechanism 250, the keycap 210 and so on) may disrupt or otherwise interfere with the capacitive readings of the capacitive sensing layer 280.
For example, the surface of the keyboard may include discontinuities due to the profile of the keycap 210 and/or the difference in height between the keycap 210 and the frame 220. As such, an input mechanism, such as a user's finger, may be a first distance away from the capacitive sensing layer 280 at a first location (e.g., over the keycap 210) and may be a second distance away from the capacitive sensing layer 280 at a second location (e.g., over the frame 220). In such instances, a touch profile detected by the capacitive sensing layer 280 may be distorted based on the location of the contact. Accordingly, and as will be described below, the detected change in capacitance may be normalized in order to remedy such affects.
The key 200 also includes a capacitive sensing layer 280 and a printed circuit board 290 or other substrate. However, in this embodiment, the capacitive sensing layer 280 may be coupled to both the frame 220 and the printed circuit board 290. For example, a first portion of the capacitive sensing layer 280 may be provided on a bottom surface of the frame 220 and a second portion (e.g., the portion positioned under the keycap 210) may be provided on the printed circuit board 290. In some embodiments, the frame 220 may include a surface that extends underneath the keycap 210. In another embodiment, a portion of the capacitive sensing layer 280 may be provided on a top surface of the frame 220 or may otherwise be integrated within the frame 220 while the second portion of the capacitive sensing layer 280 (or a different capacitive sensing layer 280) is provided under the keycap 210.
In still yet other embodiments, the second portion of the capacitive sensing layer 280 may be omitted. In such embodiments, the portions of the capacitive sensing layer 280 that are near or otherwise border the keycap 210 may detect a change in capacitance (although the detected change in capacitance may be weaker due to the lack of the capacitive sensing layer 280 directly underneath the keycap 210) when a user's finger is near or is otherwise touching the keycap 210.
In some embodiments, the portion of the fabric layer 325 that is coupled to the keycap 310 includes a raised or an embossed portion. The embossed portion may have surface area that is larger than a surface area of the keycap 310. The embossed portion may be defined by or otherwise include a transition ramp 335 that extends beyond an outer edge of the keycap 310.
The transition ramp 335 provides a smooth transition between each key 300 of the keyboard. For example, in typical keyboards, a space is present between each key. As a user slides his finger over the keys, the user's finger contacts rigid edges of each key. Continuous contact of these rigid edges may cause discomfort to the user's finger. However, the transition ramp 335 provides a transition point between the portion of the keyboard with the frame 320 and the edge of the keycap 310 which reduces or eliminates the rigid transitions that may otherwise be present between keys of the keyboard. In some embodiments, a bumper 395 may also be provided on the edge of the keycap 310. The bumper 395 may be made of rubber, plastic or other soft or pliable material that may reduce the rigidity of the sidewall of the keycap 310.
In some embodiments, the fabric layer 325 may be coupled to the frame 320 using an adhesive 330. In other implementations, the adhesive 330 on the frame 320 may be omitted. In the latter implementation, the fabric layer 325 may cover the frame 320 or may be adhered to the frame 320 at select areas (e.g., around a perimeter of the frame 320).
In some instances, the fabric layer 325 may act as a restoring mechanism that returns the keycap 310 to its nominal position once the key 300 has been actuated. As such, a restoring mechanism, for example, a scissor mechanism or a butterfly mechanism may be omitted. In other embodiments the key 300 may include a scissor or butterfly mechanism such as shown above with respect to
The key 300 may also include membrane 340, a dome mechanism 350 and a contact 360. The membrane 340 may be coupled to a contact housing 370. Each of these components may function in a similar manner to the similar components descried above. The key 300 may also include a capacitive sensing layer 380 associated with or otherwise embedded within or on a printed circuit board 390 or other substrate. As described above, the capacitive sensing layer 380 may detect a change in capacitance as a user moves his finger over the surface of the keycap 310, the frame 320 and the fabric layer 325.
The key 300 also includes a capacitive sensing layer 380 and a printed circuit board 390. However, in this embodiment, the capacitive sensing layer 380 is provided underneath the fabric layer 325. In some embodiments, the capacitive sensing layer 380 may be coupled to the frame 320 or otherwise integrated with the frame 320. The capacitive sensing layer 380 may also be provided in the keycap 310. In yet another embodiment the capacitive sensing layer 380 may be coupled to an underside of the fabric layer 325.
Although specific examples have been given, the capacitive sensing layer 380 may be disposed on multiple surfaces within the stackup. For example, a first capacitive sensing layer 380 may be positioned on a first part of the key stackup (e.g., the printed circuit board 390) while a second capacitive sensing layer 380 is positioned on a different part of the key stackup.
The capacitive sensing layer includes at least two sense electrodes 410 and one or more drive electrodes 420. In some embodiments, the sense electrodes 410 are electrically couple in pairs and at least one drive electrode 420 may be positioned between each of the sense electrodes 410. In this particular arrangement, the sense electrodes 410 are arranged in rows and the drive electrodes 420 are arranged in columns. However, in other implementations, the drive electrodes 420 may be arranged in rows while the sense electrodes 410 are arranged in columns.
In some embodiments, the drive electrodes 420 and the sense electrodes 410 are in the same layer or plane of the substrate 400. In another embodiment, the drive electrodes 420 are on a first layer or plane and the sense electrodes 410 are on a second layer or plane. The drive electrodes 420 and the sense electrodes 410 may be coupled together by various trace lines that travel through the different layers.
The substrate 400 may also include one or more void spaces 430 that contain or otherwise include one or more electrical contacts 440. The electrical contacts 440 may be metal contacts that are used for a key make or other electrical connection between the keys of the keyboard and the substrate 400. For example, when a key is actuated, a structure associated with the key may contact the electrical contact 440 to provide an electrical make which indicates to a processor of the computing device that a particular key has been actuated.
However, the capacitive sensing layer, and more specifically, the drive electrodes 420 and the sense electrodes 410, may not extend into the void spaces 430. For example, the drive electrodes 420 and the sense electrodes 410 surround a periphery of the void space 430. As used herein, a void space 430 or a dead spot means an area on the substrate 400 in which a signal dropout occurs or the detected change of capacitance is weak, disrupted, or is otherwise not present. However, as will be explained below, the capacitive readings may be normalized or equalized such that the negative impact of the void spaces 430 may be reduced, minimized or eliminated.
The capacitive sensing layer 500 includes one or more sense electrodes 510 and one or more drive electrodes 520. The sense electrodes 510 and the drive electrodes 520 are arranged around a periphery of a void space or a dead spot in which the one or more electrical contacts 550 and 560 are located. The sense electrodes 510 may be coupled in pairs and one or more drive electrodes may be positioned between each pair of the sense electrodes 510.
The drive electrodes 520 may be separated from the sense electrodes 510 by a gap or a space 530. The width of the space 530 may vary. Although not required, the space 530 may also contain one or more trace lines that provide a signal to a processing unit of the computing device or the keyboard. The trace lines may be provided below the drive electrodes 520 and/or below the sense electrodes 510. They may also be provided on the underside of a printed circuit board or other substrate associated with the capacitive sensing layer 500. Likewise, a space 540 or a gap may be provided between each of the drive electrodes 520. The width of the space 540 may vary and may also contain various trace lines such as described above. This pattern may be repeated throughout the capacitive sensing layer 500.
As discussed above, the capacitive sensing layer 500 may include or otherwise define a void space or other region in which the electrical contacts 550 and 560 are located. The electrical contacts 550 and 560 may provide a signal to a processing unit that a key has been actuated. For example, a dome mechanism, such as dome mechanism 250 or 350, or other component of the key may contact electrical contact 550 and electrical contact 560 and cause a signal to be provided to the processing unit to indicate a key was actuated.
However, and as described above, the electrical contacts 550 and 560 may cause a dead spot to be formed on the capacitive sensing layer 500 and cause a variance in the detected change in capacitance.
In order to reduce the variance, a protrusion 570 may extend into the void space. More specifically and as shown in
The protrusion 570 creates a fringing field in the dead spot, which subsequently increases the sense capabilities of the capacitive sensing layer 500 in that region. For example, the fringing field may extend into the dead spot and be used to detect a change in capacitance. In some embodiments, the protrusion 570, the drive electrodes 520 and the sense electrodes 510 may be included on a single layer. In another embodiment, each of these components may be included on separate layers of the printed circuit board.
As shown in
Turning back to
Although a specific example has been given, the dimensions of the sense electrodes 510 and the drive electrodes 520 may vary. For example and as shown in
However, in this implementation, a row of sense electrodes 610 splits a column of drive electrodes 620 three times. In each of these embodiments, the dimensions of the various drive and sense electrodes may vary.
In this implementation, the electrical contacts 730 and 740 may also be provided on the capacitive sensing layer 700 and function in a similar manner as described above. Although specific examples have been given, the drive electrodes 720 and the sense electrodes 710 may be arranged in a variety of patterns and arrangements.
The capacitive sensing layer 800 may include a number of different drive and sense electrodes that surround a periphery of a void space 895 in which an electrical contact 897 is located. For example, the capacitive sensing layer 800 may have sense electrodes 805, 815, 825 and 835 and drive electrodes 810, 820, 830 and 840 surrounding an electrical contact 897. The sense electrodes 805, 815, 825 and 835 may be coupled in pairs and the drive electrodes 810, 820, 830 and 840 may be located between each pair of sense electrodes. For example, sense electrode 805 may be paired with sense electrode 815 and drive electrode 810 may be located between the pair.
When a charge or voltage is applied to a combination of electrodes (e.g., 810, 820, and 830) or a column of electrodes, a capacitance is produced between sense electrodes 805, 815, 825 and 835 and the drive electrodes 810, 820, and 830. The capacitance is represented by field lines 845, 855, 860, 865, 870, 875 and 880. For example, when a voltage is applied to drive electrode 810, an electric field may be generated bretween the drive electrode 810 and the sense electrodes 805 and 815. When a user's finger, or other input device, moves near the drive electrode 810 and/or the sense electrodes 805 and 815, the capacitance changes. The change in capacitance is detected by a processing unit associated with the capacitive sensing layer such as described above.
For example and turning to
In some implementations, the sense electrode 805 and sense electrode 835 may include protrusions 807 and 837 respectively that extend between different drive electrodes and into the void space 895. In some embodiments, the protrusions 807 and 837 do not overlap the electrical contact 897 included in the void space 895.
The protrusions 807 and 837 cause the electric field to extend into the void space 895 of the capacitive sensing layer 800. As a user's finger or other object approaches the void space 895, the strength of the fringing field may change. As a result, location of the user's finger may be detected such as previously described.
Method 900 begins at operation 910 in which input received on the multifunction input device is normalized using, for example, a calibration process. More specifically, the calibration process normalizes a detected change in capacitance caused by an input mechanism, such as a user's finger, contacting a surface of the multifunction input device. The calibration process may be needed to account for dead spots or void spaces that may be present on the capacitive sensing layer due to key makes that may be present on a printed circuit board and/or due to interference caused by various components of a button stackup of the input device. The calibration process will be discussed in greater detail below with respect to
In operation 920, a first change in capacitance is detected. In some embodiments, the first change in capacitance may be an actuation of button or key of the multifunction input device. For example, if the first change in capacitance exceeds a first threshold, a processing unit of the electronic device may determine that a particular key or button has been actuated. A corresponding output may then be provided 930 on a display of the electronic device. For example, the output may be a character, letter or symbol associated with the key or button that was actuated.
In some embodiments a contact associated with a key or button (e.g., contact 260
In operation 940, a second change in capacitance is detected. The second change in capacitance may be less than the first detected change in capacitance. The second change in capacitance may be the result of the user moving his finger (or some other object) over one or more surfaces (e.g., one or more keys, buttons, and/or the frame) of the multifunction input device.
In some embodiments, the detected change in capacitance may be associated with a particular vector. When the detected parameters of the vector exceed a threshold, the processing unit may determine that a particular touch input gesture has been received and provide output accordingly.
In response to the second change in capacitance, a second type of output is provided 950. The second type of output may be, for example, a scroll command, a swipe command, a cursor movement command, or a selection command (e.g., a command equivalent to a single click or a double click of a typical mouse or other input device). Accordingly, the multifunction input device may be able to distinguish between different types of received input.
However, the calibration method 1000 described below may be used to normalize a change in capacitance that is detected by a capacitive sensing layer associated or otherwise integrated with a multifunction input device such as a keyboard.
Calibration method 1000 begins at operation 1010 in which a change in capacitance for each region of the capacitive sensing layer is effected. In some embodiments, touch input is provided at a first location and at a second location that is different from the first location. For example, an input mechanism, such as a user's finger, a stylus, or other input mechanism, is moved over the entire surface of the multifunction input device. In response to the received input, each drive electrode and sense electrode of the capacitive sensing layer register a detected change in capacitance.
Once this process is complete, flow proceeds to operation 1020 and a difference between the detected change in capacitance and a predetermined value is determined. More specifically, for each drive and sense electrode in the capacitive sensing layer, a maximum value over the period of time that the change is capacitance is detected is recorded. In some embodiments, each electrode may be required to have a maximum value (e.g., the highest detected change in capacitance when compared to neighboring electrodes) at least once.
Flow then proceeds to operation 1030 in which each region of the capacitive sensing layer is normalized. For example, for each electrode in the capacitive sensing layer, a gain is determined such that when the gain is applied, the detected change in capacitance is equivalent to the predetermined value. The determination of the gain is represented by the following equation:
Gaini=X/Max Vi
In the equation above, the predetermined value (represented by “X”) is a digital representation of a capacitive signal determined by the electrodes in the capacitive sensing layer. Max Vi is the maximum value of the given electrode over the given period of time discussed above.
Using calibration method 1000, the detected change is capacitance may be the same or substantially the same regardless of whether the input mechanism is over the frame or over the keycap.
As shown in
The processor 1105 may be implemented as any computing device capable of processing, receiving, or transmitting data or instructions. For example, the processor 1105 can be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of such devices.
The memory 1110 can store electronic data that can be used by the computing device 1100. For example, the memory 1110 can store electrical data or content such as, for example, audio and video files, documents and applications, device settings and user preferences, timing and control signals or data for the various modules, data structures or databases, and so on.
The memory 1110 may be any type of memory such as, for example, random access memory, read-only memory, Flash memory, removable memory, or other types of storage elements, or combinations of such devices.
The computing device 1100 may include various input and output components represented in
The computing device 1100 may also include one or more communication channels 1120. These communication channels 1120 may include one or more wireless interfaces that provide communications between the processor 1105 and an external device or other computing device. In general, the one or more communication channels 1120 may be configured to transmit and receive data and/or signals that may be interpreted by instructions executed on the processor 1105. In some cases, the external device is part of an external communication network that is configured to exchange data with other devices. Generally, the wireless interface may include, without limitation, radio frequency, optical, acoustic, and/or magnetic signals and may be configured to operate over a wireless interface or protocol. Example wireless interfaces include radio frequency cellular interfaces, fiber optic interfaces, acoustic interfaces, Bluetooth interfaces, Near Field Communication interfaces, infrared interfaces, USB interfaces, Wi-Fi interfaces, TCP/IP interfaces, network communications interfaces, or any conventional communication interfaces.
The computing device 1100 may also include one or more sensors 1125. Although a single representation of a sensor 1125 is shown in
One or more acoustic modules or speakers 1130 may also be included in the computing device 1100. The speaker 1130 may be configured to produce an audible sound or an acoustic signal.
As also shown in
The computing device 1100 may also include an internal battery 1145. The internal battery 1145 may be used to store and provide power to the various components and modules of the computing device 1100 including the haptic actuator 1140. The battery 1145 may be configured to be charged using a wireless charging system although a wired charging system may also be used.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a nonprovisional patent application of and claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 62/367,134, filed Jul. 27, 2016 and titled “Multifunction Input Device with an Embedded Capacitive Sensing Layer,” the disclosure of which is hereby incorporated herein by reference in its entirety
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3917917 | Murata | Nov 1975 | A |
3978297 | Lynn et al. | Aug 1976 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4596905 | Fowler | Jun 1986 | A |
4598181 | Selby | Jul 1986 | A |
4670084 | Durand et al. | Jun 1987 | A |
4755645 | Naoki et al. | Jul 1988 | A |
4937408 | Hattori et al. | Jun 1990 | A |
4987275 | Miller et al. | Jan 1991 | A |
5021638 | Nopper et al. | Jun 1991 | A |
5092459 | Uljanic et al. | Mar 1992 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5280146 | Inagaki et al. | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5397867 | Demeo | Mar 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5477430 | LaRose et al. | Dec 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5804780 | Bartha | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5875013 | Takahara | Feb 1999 | A |
5876106 | Kordecki et al. | Mar 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5881866 | Miyajima et al. | Mar 1999 | A |
5898147 | Domzaiski et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5960942 | Thornton | Oct 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6259046 | Iwama et al. | Jul 2001 | B1 |
6377685 | Krishnan | Apr 2002 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6482032 | Szu et al. | Nov 2002 | B1 |
6530283 | Okada et al. | Mar 2003 | B2 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6552287 | Janniere | Apr 2003 | B2 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6560612 | Yamada et al. | May 2003 | B1 |
6572289 | Lo et al. | Jun 2003 | B2 |
6573463 | Ono | Jun 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6706986 | Hsu | Mar 2004 | B2 |
6738050 | Comiskey | May 2004 | B2 |
6750414 | Sullivan | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6860660 | Hochgesang et al. | Mar 2005 | B2 |
6911608 | Levy | Jun 2005 | B2 |
6926418 | Ostergård et al. | Aug 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Lai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7030330 | Suda | Apr 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7126499 | Lin et al. | Oct 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7146701 | Mahoney et al. | Dec 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7151237 | Mahoney et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7161084 | Sandbach | Jan 2007 | B2 |
7166813 | Soma | Jan 2007 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7189932 | Kim | Mar 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7312790 | Sato et al. | Dec 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7385806 | Liao | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7589292 | Jung et al. | Sep 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7639571 | Ishii et al. | Dec 2009 | B2 |
7651231 | Chou et al. | Jan 2010 | B2 |
7679010 | Wingett | Mar 2010 | B2 |
7724415 | Yamaguchi | May 2010 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7893376 | Chen | Feb 2011 | B2 |
7923653 | Ohsumi | Apr 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8077096 | Chiang et al. | Dec 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8098228 | Shimodaira et al. | Jan 2012 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter et al. | May 2012 | B2 |
8184021 | Chou | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8246228 | Ko et al. | Aug 2012 | B2 |
8253048 | Ozias et al. | Aug 2012 | B2 |
8253052 | Chen | Sep 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8317384 | Chung et al. | Nov 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8325141 | Marsden | Dec 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8383972 | Liu | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8404990 | Lutgring et al. | Mar 2013 | B2 |
8451146 | Mahowald et al. | Mar 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8548528 | Kim et al. | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8575632 | Kuramoto et al. | Nov 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847090 | Ozaki | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8943427 | Heo et al. | Jan 2015 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9024214 | Niu et al. | May 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9274654 | Slobodin et al. | Mar 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9348425 | Chi et al. | May 2016 | B2 |
9405369 | Modarres et al. | Aug 2016 | B2 |
9412533 | Hendren et al. | Aug 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9448631 | Winter et al. | Sep 2016 | B2 |
9449772 | Leong et al. | Sep 2016 | B2 |
9471185 | Guard | Oct 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
9502193 | Niu et al. | Nov 2016 | B2 |
9612674 | Degner et al. | Apr 2017 | B2 |
9640347 | Kwan et al. | May 2017 | B2 |
9704665 | Brock et al. | Jul 2017 | B2 |
9704670 | Leong et al. | Jul 2017 | B2 |
9710069 | Leong et al. | Jul 2017 | B2 |
9715978 | Hendren | Jul 2017 | B2 |
9734965 | Martinez et al. | Aug 2017 | B2 |
9761389 | Leong et al. | Sep 2017 | B2 |
9793066 | Brock et al. | Oct 2017 | B1 |
9910211 | Kloeppel et al. | Mar 2018 | B2 |
10001812 | Andre et al. | Jun 2018 | B2 |
10082880 | Yarak, III et al. | Sep 2018 | B1 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20040004559 | Rast | Jan 2004 | A1 |
20040225965 | Garside et al. | Nov 2004 | A1 |
20050035950 | Daniels | Feb 2005 | A1 |
20050253801 | Kobayashi | Nov 2005 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080131184 | Brown et al. | Jun 2008 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20100045705 | Vertegaal et al. | Feb 2010 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110261031 | Muto | Oct 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110284355 | Yang | Nov 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120032972 | Hwang | Feb 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130043115 | Yang et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130093733 | Yoshida | Apr 2013 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130120265 | Horii et al. | May 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20140015777 | Park et al. | Jan 2014 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150016038 | Niu et al. | Jan 2015 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150270073 | Yarak, III et al. | Sep 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150309538 | Zhang | Oct 2015 | A1 |
20150370339 | Ligtenberg et al. | Dec 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160093452 | Zercoe et al. | Mar 2016 | A1 |
20160172129 | Zercoe et al. | Jun 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
20160329166 | Hou et al. | Nov 2016 | A1 |
20160336124 | Leong et al. | Nov 2016 | A1 |
20160336127 | Leong et al. | Nov 2016 | A1 |
20160336128 | Leong et al. | Nov 2016 | A1 |
20160343523 | Hendren et al. | Nov 2016 | A1 |
20160351360 | Knopf et al. | Dec 2016 | A1 |
20160365204 | Cao et al. | Dec 2016 | A1 |
20160378234 | Ligtenberg et al. | Dec 2016 | A1 |
20160379775 | Leong et al. | Dec 2016 | A1 |
20170004939 | Kwan et al. | Jan 2017 | A1 |
20170011869 | Knopf et al. | Jan 2017 | A1 |
20170090104 | Cao et al. | Mar 2017 | A1 |
20170090106 | Cao et al. | Mar 2017 | A1 |
20170301487 | Leong et al. | Oct 2017 | A1 |
20170315624 | Leong et al. | Nov 2017 | A1 |
20170315628 | Yao | Nov 2017 | A1 |
20180029339 | Liu et al. | Feb 2018 | A1 |
20180040441 | Wu et al. | Feb 2018 | A1 |
20180074694 | Lehmann et al. | Mar 2018 | A1 |
20190033923 | Wang et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
2672832 | Jan 2005 | CN |
1624842 | Jun 2005 | CN |
1812030 | Aug 2006 | CN |
1838036 | Sep 2006 | CN |
1855332 | Nov 2006 | CN |
101051569 | Oct 2007 | CN |
200961844 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201054315 | Apr 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
101315841 | Dec 2008 | CN |
201210457 | Mar 2009 | CN |
101438228 | May 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
101868773 | Oct 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
102197452 | Sep 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102280292 | Dec 2011 | CN |
102338348 | Feb 2012 | CN |
102375550 | Mar 2012 | CN |
202205161 | Apr 2012 | CN |
102496509 | Jun 2012 | CN |
10269527 | Aug 2012 | CN |
102622089 | Aug 2012 | CN |
102629526 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102679239 | Sep 2012 | CN |
102683072 | Sep 2012 | CN |
202434387 | Sep 2012 | CN |
202523007 | Nov 2012 | CN |
102832068 | Dec 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
102969183 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
203012648 | Jun 2013 | CN |
203135988 | Aug 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
203414880 | Jan 2014 | CN |
103681056 | Mar 2014 | CN |
103699181 | Apr 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839720 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
203630729 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
103956290 | Jul 2014 | CN |
203733685 | Jul 2014 | CN |
104021968 | Sep 2014 | CN |
204102769 | Jan 2015 | CN |
204117915 | Jan 2015 | CN |
104517769 | Apr 2015 | CN |
204632641 | Sep 2015 | CN |
105097341 | Nov 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
202008001970 | Aug 2008 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2202606 | Jun 2010 | EP |
2426688 | Mar 2012 | EP |
2439760 | Apr 2012 | EP |
2463798 | Jun 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
S60055477 | Mar 1985 | JP |
S61172422 | Oct 1986 | JP |
S62072429 | Apr 1987 | JP |
S63182024 | Nov 1988 | JP |
H0422024 | Apr 1992 | JP |
H0520963 | Jan 1993 | JP |
H0524512 | Aug 1993 | JP |
H05342944 | Dec 1993 | JP |
H09204148 | Aug 1997 | JP |
H10312726 | Nov 1998 | JP |
H11194882 | Jul 1999 | JP |
2000010709 | Jan 2000 | JP |
2000057871 | Feb 2000 | JP |
2000339097 | Dec 2000 | JP |
2001100889 | Apr 2001 | JP |
2003114751 | Sep 2001 | JP |
2002260478 | Sep 2002 | JP |
2002298689 | Oct 2002 | JP |
2003522998 | Jul 2003 | JP |
2005108041 | Apr 2005 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006521664 | Sep 2006 | JP |
2006269439 | Oct 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007115633 | May 2007 | JP |
2007514247 | May 2007 | JP |
2007156983 | Jun 2007 | JP |
2008021428 | Jan 2008 | JP |
2008041431 | Feb 2008 | JP |
2008100129 | May 2008 | JP |
2008191850 | Aug 2008 | JP |
2008533559 | Aug 2008 | JP |
2008293922 | Dec 2008 | JP |
2009099503 | May 2009 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011018484 | Jan 2011 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011165630 | Aug 2011 | JP |
2011524066 | Aug 2011 | JP |
2011187297 | Sep 2011 | JP |
2012022473 | Feb 2012 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
2012098873 | May 2012 | JP |
2012134064 | Jul 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
2016053778 | Apr 2016 | JP |
1019990007394 | Jan 1999 | KR |
1020020001668 | Jan 2002 | KR |
100454203 | Oct 2004 | KR |
1020060083032 | Jul 2006 | KR |
1020080064116 | Jul 2008 | KR |
1020080066164 | Jul 2008 | KR |
2020110006385 | Jun 2011 | KR |
1020120062797 | Jun 2012 | KR |
1020130040131 | Apr 2013 | KR |
20150024201 | Mar 2015 | KR |
201108286 | Mar 2011 | TV |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
201403646 | Jan 2014 | TW |
WO9744946 | Nov 1997 | WO |
WO2005057320 | Jun 2005 | WO |
WO2006022313 | Mar 2006 | WO |
WO2007049253 | May 2007 | WO |
WO2008045833 | Apr 2008 | WO |
WO2009005026 | Jan 2009 | WO |
WO2012011282 | Jan 2012 | WO |
WO2012027978 | Mar 2012 | WO |
WO2013096478 | Jun 2013 | WO |
WO2014175446 | Oct 2014 | WO |
Entry |
---|
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016. |
U.S. Appl. No. 14/472,260, filed Aug. 28, 2014, pending. |
U.S. Appl. No. 14/501,680, filed Sep. 30, 2014, pending. |
U.S. Appl. No. 15/230,724, filed Aug. 8, 2016, pending. |
U.S. Appl. No. 15/342,715, filed Nov. 3, 2016, pending. |
U.S. Appl. No. 15/459,009, filed Mar. 15, 2017, pending. |
U.S. Appl. No. 15/649,840, filed Jul. 14, 2017, pending. |
U.S. Appl. No. 15/687,297, filed Aug. 25, 2017, pending. |
U.S. Appl. No. 15/692,810, filed Aug. 31, 2017, pending. |
U.S. Appl. No. 15/725,125, filed Oct. 4, 2017, pending. |
Number | Date | Country | |
---|---|---|---|
62367134 | Jul 2016 | US |