The present invention is directed to control elements, in particular control elements which offer wide-ranging functionalities for electronic devices, e.g. musical instruments.
Control elements which allow for several functions, can be found in diverse fields of technology, e.g. computers, automobiles, musical instruments and many more.
Typically, such control elements have large rotary knobs with movable additional functions, but often suffer from weaknesses in their stability, due to their complicated construction. The higher the degree of freedom (meaning mechanically independent displacement directions), the more wobbly or instable these rotary knobs become, with respect to their tilting directions or, respectively, displacement directions around their rotation axis. The main reason for this is that rotary knobs are usually fixed onto a center axis which is additionally moveable axially downwardly, if pressure switch functions are included. If the control elements have further mechanical degrees of freedom (displacements upward/downward/left/right) apart from the pressure switch function, then this is usually done with the help of a movable inclinable axis which allows for additional tilting functions in the respective directions (joy stick). All elements that allow for displacements, such as the tilting and downwardly moveable centre axis, on which the rotary knob or, respectively, the knob surface are mounted and which permits the additional mechanical degrees of freedom (right/left/upward/downward displacement) as well as the tilt function, result in this kind of rotary knob being wobbly or, respectively, instable, particularly in its resting or, respectively, center position—something which is not desired. Moreover, a pressure switch function, e.g. the simple downward push, is often only usable with restrictions, as such a rotary knob with a pressure switch function only provides for sensible haptic features (click feel, click torque) in the center of the big knob surface (directly above the rotation axis), while in the off-center area of a big knob a downward push is difficult to impossible, as the downward movable rotation axis can get locked in its shaft (socket) due to the push, if the application of force does not occur axially to the rotation axis. With respect to such control elements, there are, thus, two types of problems, namely a certain instability on the one hand and a bad or, respectively, inexact controllability on the other, when it comes to the accuracy of the input implementation. In addition, these control elements often have a significantly shorter durability due to the instability mentioned above.
DE 10 2004 035 078 A1 discloses a switch which can pivot from its neutral position, as well as a cap which can slide which, in turn, is made possible by a pivot element. This switch does not have a rotary element, such as, for instance, a potentiometer or an encoder. For this reason, the cap cannot be rotated. This limited functionality is therefore not sufficient for some applications.
DE 10 2008 061 577 B4 discloses a multifunctional control device which can be rotated, tilted downward and pivoted to both sides with a pivot element. Moreover, this device has a snap element for the rotation axis. Yet, this multifunctional control device does not have any linearly movable elements. This limited functionality is therefore also not sufficient for some applications.
EP 1 619 706 B1 discloses a controller device with a rotary-push-button switch and a linear-displacement device which is developed as a gliding device. The main emphasis is put on offering different functions based on the position of a rotary knob in a defined displacement field which is why sensors are provided to sense the X-Y-position of the rotary-push-button in its displacement field. However, the gliding device does not provide for an exact bearing and therefore comes with a certain instability, on the one hand, and a bad or, respectively, inexact controllability on the other.
EP 2 447 971 B1 discloses a displacement unit which resembles the one described above in its inexact bearing; specifically the bearing has not been realized by a guiding along an axis. The device therefore also comes with a certain instability, on the one hand, and a bad or, respectively, inexact controllability on the other.
Hence, there continues to be a need for a control element which overcomes the disadvantages described above.
Thus, it is an object of the present invention to provide a control element, in particular for electronic musical instruments which offers diverse functionalities, is easy to operate and offers a more exact implementation of inputs, as well as a longer durability.
According to the invention, this has been achieved with a multifunctional control element according to claim 1 which comprises a rotary knob which is rotatably mounted on a radial bearing with a radial bearing mount and which is connected to a rotary sensor for creating signals related to the rotary direction and the rotary speed of the rotary knob; a rotary knob mount which receives the rotary knob, as well as the radial bearing and the radial bearing mount, and which is pivotable around a shaft mounted to a mounting plate, wherein the shaft extends in a direction parallel to the plane of the mounting plate and wherein the plane of the mounting plate extends vertically to the rotation axis of the rotary knob, which permits a pivoted downward displacement of the rotary knob mount with the rotatably mounted rotary knob is mounted thereon with the radial bearing, wherein a switch is provided on the mounting plate for creating signals related to the downward displacement of the rotary knob mount with the rotary knob mounted thereon; and at least one linear bearing provided on the shaft for permitting a sliding displacement of the rotary knob mount and the rotary knob mounted thereon with the radial bearing along the shaft, wherein switches are provided on the mounting plate for creating signals related to the sliding displacement of the rotary knob mount and the rotary knob mounted thereon with the radial bearing.
Other advantageous features of the control element of the present invention are disclosed in the dependent claims.
The present invention is directed to a multi-functional control element, particularly for electronic musical instruments, with a rotary knob which offers additional degrees of freedom with regard to displacement apart from the rotary displacement and, thus, further electrical features or, respectively, functions, most notably
As mentioned above, conventional control elements have, amongst others, the disadvantages of being instable, being controllable only in a limited way or, respectively, in an inexact way and often being less durable. The present invention overcomes these problems by the execution of the above-described displacements by means of the construction according to the present invention.
The multifunctional control element of the present invention is generally comprised of four primary module units, specifically
The elements of module D are located below the rotary knob cap 1 or, respectively, the mounting plate 10.
The detailed construction and functions of preferred embodiments of the control element of the present invention are further described below. Firstly, the additional elements of the respective module components shall be mentioned:
In general, the control element is embedded in a housing plate 20 (
In another embodiment, the rotary knob can additionally be arranged capacitive-touch-sensitive. Moreover, in yet another embodiment, an additional device or sensor, respectively, to measure the force applied during the push can be provided. Finally, in yet another embodiment, an additional snap element can be provided.
Module A
As can be seen in the exploded view in
Module B
Furthermore, as can been seen in the explosive view in
Module C
Furthermore, as can be seen in the explosive view in
Module D
Furthermore, as can be seen in the explosive view in
Touch-Sensitive Add-on
As mentioned above, in an additional embodiment the rotary knob can be designed also in a capacitive-touch-sensitive manner. To this end, rotary cap 1 and contact spring 2 are designed to be electrically conductive. The electrically conductive spring 2 allows for an electric connection between the rotary knob cap 1 and the shaft of rotary sensor 17.
Complementary Pressure Sensing
Moreover, in yet another embodiment an additional device or, respectively, sensor can be provided to measure the force applied with the downward push of the rotary knob, wherein the sensor comprises a sensing element 22, as well as a transfer element 23 (
This can be an inductive, capacitive or magnetic sensor, wherein the sensor measures the distance between the sensing element 22 and the transfer element 23 which is preferably located above the sensing element 22. In addition, the displacement limiting elements 21a, 21b can be elastic and an elastic contact element can be provided at the switch 9 to measure an increase in force due to a compression of these elastic elements which can be caused, for instance, by a further downward push of the rotary knob. To this end, the displacement limiting elements 21a, 21b should be preferably made of a rubber-like material, for instance, silicone which has a spring effect or, respectively, is compressible. As shown in
Complementary Snap Element
In yet another embodiment, wherein encoders are used as rotary pulse encoders which do not have their own snap element, an electrically connectable snap element can be provided via an actuator (solenoid actuator as a latch version), through which a certain amount of steps per rotation becomes tactilely perceptible at the time when the rotary knob is being rotated. This snap element is solely mechanic and can be independent from the actual electric step sequence, i.e. the electric amount of steps per knob rotation. The snap element comprises at least one ball, preferably made of steel, which resiliently engages a snap contour and which is guided in a sleeve. The at least one snap ball resiliently engages a snap contour. The snap contour is provided with a plurality of snap positions formed as recesses and/or protrusions. The at least one guided ball snaps through the active springs guided in sleeves. The snap contour can have the form of a disk or cylinder, wherein the snap recesses and protrusions are provided along the circumference of the inner or outer side. The snap element can be provided on the shaft of the rotary sensor 17 and the mounting plate 18.
Rotary Function
The rotation of the rotatably mounted rotary knob which is connected to the rotary sensor 17 creates signals at the rotary sensor 17 related to the rotary direction and rotary speed of the rotary knob and can be used for diverse functions. With these signals, an interaction with, for instance, device software can be achieved, e.g. an upward or downward navigation (scrolling). Additionally, other functions can be controlled such as, for instance, filter settings, volume control, as well as context dependent functions etc. In principle, every sensible device function can be controlled with the rotary function inside the device software (mapping).
Push Function
The rotary knob mount 6 which holds the rotatably mounted rotary knob and which is pivotable around the shaft 12 mounted on the mounting plate 10 allows for a tilted downward displacement of the rotary knob mount 6 with the rotatably mounted rotary knob through a downward push of the rotary knob. The downward push triggers switch 9, whose signals can be used for diverse functions, for instance, a previously chosen (for instance, by having used the rotary function described above) element on the display can be elected or, respectively, confirmed. Furthermore, it is possible to start or, respectively, stop sequences in their process. In principle, every sensible device function can be controlled with the push function inside the device software (mapping).
Sideward Sliding Function
The sideward sliding of the rotary knob mount 6 with the rotary knob mounted thereon with the radial bearing along the shaft 12 results in triggering the switches 16a, 16b, whose signals can be used for diverse functions, for instance, forward and backward browsing through pages. In principle, every sensible device function can be controlled with the sideward sliding function inside the device software (mapping).
Capacitive Touch Function
If the appropriate methods are used, a capacity change on rotary sensor 17, caused by the touch (e.g., of a finger) of rotary knob cap 1 can be measured due to the optional electrically conductive design of the rotary knob 1 and the contact spring 2 mentioned above, while the signals based thereon can be made available for further processing. Based on these signals, the pre-configured functions for the knob can be shown (for instance, on a display) for instance, at the time the knob surface is being touched. This way, it is possible to know which designated functions pertain to this knob, prior to any interaction with the knob (through rotating, pushing or sliding as described above). In principle, every sensible device function can be controlled with the touch function inside the device software (mapping).
Pressure Sensing Function
When pressure is applied to the rotary knob the applied pressure force is sensed by the pressure sensors 22, 23 and the respective signals can be made available for further processing. These signals can be used for musical purposes, for instance. It is, for instance, possible to play an audio sample prior to selecting an instrument with switch 9. This can happen in the following sequence: 1) instrument selection by scrolling and browsing through the database; 2) pre-listening through applying enhanced pressure on the rotary knob; 3) selection of an instrument by a downward push of the rotary knob with triggering switch 9. In principle, every sensible device function can be controlled with the pressure sensing function inside the device software (mapping). As an optional add-on to this function, the optional elastically designed contact element on shaft 9 and the optional elastically designed displacement limiting elements 21a, 21b are compressed, while the rotary knob is pushed downward and switch 9 is triggered due to an increase in pressure. This allows the pressure sensor 22, 23 to measure an increase in force (after-touch function), additionally. The signals based thereon can also be used for musical purposes, for instance. This way, tones can be modulated or, respectively, changed in relation to the pressure force. In principle, every sensible device function can be controlled with this additional pressure function inside the device software (mapping).
Snap Function
When the rotary knob is rotated, the snap balls are firstly being deflected by the snap contour, opposite to the spring force, up to the center position, prior to snapping back at the next snap recess. It may be provided that the mechanic snap can be decoupled or, respectively, uncoupled from the snap contour through an electrically controlled magnet switch (solenoid), so that there will be no more mechanic snap during the rotation process.
Number | Name | Date | Kind |
---|---|---|---|
6812415 | Priesemuth | Nov 2004 | B1 |
20010004044 | Sotome | Jun 2001 | A1 |
20050040018 | Gotoh | Feb 2005 | A1 |
20080257701 | Wlotzka | Oct 2008 | A1 |
20110308927 | Yang | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
102004035078 | Mar 2005 | DE |
102008061577 | Jun 2010 | DE |
1619706 | Sep 2009 | EP |
2447971 | May 2012 | EP |