Endoscope delivery tube assembly proximal end 62 is sealably engaged with distal collar assembly 220 residing and sealably connected to control end tubular member 80 which runs the full length of multifunctional instrument introducer control end 37.
Residing on control end tubular member 80 are the following additional assemblies and elements, each which have a hollow central core to allow control end tubular member 80 to pass through the feature, and/or for the feature to slide upon tube 80 without impediment:
distal collar assembly 220; self closing tissue fastener firing collar assembly 320; rotary vacuum assembly 500; a radial array shown in the preferred embodiment of four suture “t” stay needle assemblies 700; proximal suture collar assembly 400; and lastly endoscope seal 450, residing at the extreme proximal end of multifunctional instrument introducer 39. The functions of these assemblies will be discussed in more detail below.
Shell element 40 (bottom) is sealably sliding on tubular connecting element 50 which is sealably engaged with interlocking multi-lumen tubular distal transition element 102 at endoscope delivery tube assembly distal end 61. Interlocking multi-lumen tubular proximal transition element 103 at endoscope delivery tube assembly proximal end 62 is sealably engaged by distal collar assembly 220 residing and sealably connected to control end tubular member 80 which engages multi-lumen tubular proximal transition element 103 at its distal end and runs the full length of multifunctional instrument introducer control end 37.
Residing on control end tubular member 80 is the following additional assemblies and elements are shown: self closing tissue fastener firing collar assembly 320, Rotary vacuum assembly 500, a radial array of four suture “t” stay needle assemblies 700, followed by Proximal suture collar assembly 400 and Endoscope seal 450 residing on control end tubular member 80 at the instrument proximal end.
Endoscope delivery tube assembly 60, shown in this view for the purpose of defining a typical minimum length embodiment with full functionality, is comprised of just two interlocking multi-lumen tubular elements 100, an interlocking multi-lumen tubular distal transition element 102 at endoscope delivery tube assembly distal end 61, and an interlocking multi-lumen tubular proximal transition element 103 at endoscope delivery tube assembly proximal end 62 respectively.
It should be clear to one skilled in the art and from the illustrations in
Following the description sequence used in
Interlocking multi-lumen tubular proximal transition element 103 at endoscope delivery tube assembly proximal end 62 is sealably engaged by distal collar assembly 220 residing and sealably connected to control end tubular member 80 which engages multi-lumen tubular proximal transition element 103 at its distal end and runs the full length of multifunctional instrument introducer control end 37. Residing on control end tubular member 80 is the Rotary vacuum assembly 500 and endoscope seal 450. The radial array of four suture “t” stay needle assemblies 700, and the proximal suture collar assembly 400 also residing on control end tubular member 80 is illustrated in an exploded view configuration.
At one end of interlocking multi-lumen tubular element 100 is shown the male interlocking geometry 98 which is defined in the preferred embodiment as consisting of a male interlocking geometry neck having a length 96, and a male interlocking geometry head having a length 97. At the other end of the element is female interlocking geometry 108 which is defined in the preferred embodiment as consisting of a female interlocking geometry neck having length 106, and a female interlocking geometry head having length 107. Such interlocking features as described are intended to securely engage and hold a number of interlocking multi-lumen tubular elements 100 to generate multifunctional instrument introducer 39 with defined performance properties.
In one embodiment of the present invention, interlocking multi-lumen tubular element 100 shown in
In
In
There are distinct advantages in the manufacture of interlocking multi-lumen tubular elements 100 and the assembly of the multifunctional instrument introducer (39) to have the peripheral instrument channels (119 not fully enclosed and trapped within the tubular wall as is customary in the art for manufacturing typical multi-lumen components
First, this geometry by design can be easily modified to ensure that devices in the channels (119) will be able to move regardless of bend angle and instrument size.
The lumen geometry need not be constant along the axial length. It may be advantageous to increase the long axis (115) of the channel at each mating end surface of the interlocking tubular element 100. Such a geometry construct is well known in the art of injection molding of plastics and metallic materials where it is highly desirable to have draft angle on these features described to facilitate ejection from the mold. Such an addition of draft angle tapering from large at each mating end to a smaller dimension in the center, well known in the art would be an enhancement to the preferred embodiment and reduce device sliding friction. Thus both the central lumen and the peripheral channels will preferably be larger in diameter at the ends of cylindrical element 100, and narrowest at approximately the middle of the element.
Second, the tooling used for generating features 119, 120 and 121 is much more robust and durable where the lumen generating feature is attached to the tooling surfaces creating the interlocking multi-lumen tubular element outer surface 101 along its full axial length, rather than being a lumen generating core with only distal and proximal support. This improves the accuracy of generating the lumens 119 and reduces the cost of the tools Third, in the assembly of the instrument, long instruments or controls to be placed within the peripheral instrument channels 119 can be easily “snapped” laterally into the peripheral instrument channels 119 of the assembled tube 60 from the outside, rather than threaded in. Then tube 60's elements 100 are covered by the outer sheath 190. The primary function of sheath 190 is to serve as a constraint means, which retains the controls and other features in the channels 119. The outer sheath 190 is optionally and preferably made of a shrink-wrap material, which can be put into tight approximation to the outer wall 101 of the tube 60 to retain the wires and the like in the channels. This is much easier to assemble than assembly using controls that are threaded or snaked through the axial length of an enclosed lumen design of similar length. Such features provide significant cost advantages in manufacturing and assembly. In addition to shrink wrap, other materials can be used to provide a constraint means preventing the escape of wires and other devices from the channels 119. Other constraint means include, without limitation, polymeric and metallic mesh, braid, coils and bands, optionally including an airtight layer; self-sticking materials such as an adhesive tape and tubing cast in place. Each of these may be used alone, together, or in conjunction with shrink wrap or other impervous polymeric materials.
Furthermore, with such a design approach, in communicating the peripheral instrument channel 119 with the interlocking multi-lumen tubular element outer surface 101 wall, the actual volume of the peripheral instrument channel 119 can be significantly larger and less constrictive than enclosed lumen designs thus allowing for larger diameter instruments to be utilized in proportion to the interlocking multi-lumen tubular element 100 wall thickness.
The addition of features such as peripheral instrument channel edge relief 121 and non circular or non standard geometric shapes to generate the peripheral instrument channel central volume (120) can also reduce the friction within the peripheral instrument channel (119), further enhancing the slideability and control of the instruments placed within said channel. Selection of lubricious materials for the outer sheath (190) and interlocking multi-lumen tubular element (100) or placing lubricious coatings on the outer sheath inner surface (191) and related surfaces which create the peripheral instrument channels 119 are all capabilities and enhancements that fall within the scope of the present invention.
In
Continuing with
Such a defined fit for the preferred embodiment thus confers to the multifunctional instrument introducer embodiment the ability to be highly torqueable. A high torque (highly torqueable) instrument has by design a minimum amount of rotational lag distal to proximal when the instrument is held by the proximal end and rotated within a body cavity. Such an attribute is also highly desire able in surgical procedures providing a high degree of positional control to the surgeon to correctly locate the various instruments located within the peripheral instrument channels 119 within the surgical field.
In a preferred embodiment, the length of the male interlocking geometry neck length 96 is defined in relation to the length of the female interlocking geometry neck length 106 such that an interlocking multi-lumen tubular element pivot gap 104 is created. Locating the interlocking multi-lumen tubular elements 100 in an axial alignment proximal to distal, the interlocking multi-lumen tubular element pivot gap 104 would now be annular in nature.
Having now defined a distal to proximal axial alignment condition for
As the planar pivot motion occurs at interlocking geometry defined by the pivot axis 105, it is clear that interlocking multi-lumen tubular element pivot gap 104 becomes smaller on one side and larger on the other respectively, until at some point the pivot action will cause tubular walls to come into contact and thus stop any further motion in the direction taken. Such limitations of the planar pivot motion after a given angular translation are a distinct advantage to maintaining and passing instrumentation and control features within the clear unobstructed central volume 36 and through the multiple peripheral instrument channels 119. Additionally, these flexure limits also provide exceptional columnar and torque strength to the assembly, which further aids the surgeon when manipulating the instrument in an axial and or a combined axial and rotational manner.
Numerous geometrical relationships of interlocking and axial pivoting type geometries known in the art are also described by U.S. Pat. No. 6,960,163 (Ewers et al), U.S. Pat. No. 6,974,411 (Belson), and U.S. Patent Application 20060058582 (Maahs et al.). Such connecting and interfacing geometrical entities are intended in the present invention to link the interlocking multi-lumen tubular elements 100 tightly to each other while still providing a capability of a limited axial pivot through a central portion of that linking interface. Any geometry arrangement which may allow a similar function may also be employed in stand alone or integrated form.
In a preferred embodiment of the present invention, as shown in exploded view
One skilled in the art can appreciate that in a device 60, interlocking joints as shown in
Furthermore, one skilled in the art can also appreciate that instruments comprised of multiple designs and/or axial lengths of interlocking multi-lumen tubular element 100 components can therefore be defined with regions of varying curvature and planar pivot motion flexure which may be singularly planar or multi-planar or any combination thereof. Other such combinations of interlocking multi-lumen tubular element 100 configurations or designs may include but not be limited to the following examples.
The central tube with peripheral instrument channels (119) can taper up or taper down diametrically singly or in any combination or sequence along the instrument axial length, there can be transitional change in geometry from tubular to some other defined closed geometry perimeter even to the point of approximating a multifaceted polygon, square, rectangle triangle elliptical or any combination type of closed perimeter free form shape.
There can be peripheral lumen features that transition an instrument off axis, to guide or aim the instruments residing within, at a general axial deflection angle from the central axis at the instrument distal end Such off an axis delivery may be achieved in the design and position of the lumen feature element where the instrument is required to exit and/or may also be achieved by using a combination of a standard lumen element and a more distal element with a deflecting type of surface which is in alignment with the peripheral lumen itself. Such constructs thus could provide a means for peripheral instruments to exit the lumens at any point along the instrument axial length. The ideal embodiment for instruments residing within the peripheral lumens of this preferred embodiment is defined as embodiments generally with a length to diameter ratio of greater than 100-1 and a diameter of 3 mm or less. Such embodiments are most easily suited for an off axis deployment in this fashion for the function of the instrument described herein. However, many different embodiments and sizes can be axially deflected successfully provided that the net bend radius at the point of deflection is sufficiently large enough such that the instruments material remains in the elastic state through said bending area and does not cause a permanent deformation as a result of passage through the bending geometry and the overall friction of passage through the bending geometry is reasonable with respect to generating an axial force for movement.
A critical design constraint requirement for device function is that the assembled constructs that form the multifunctional instrument introducer deliver the instruments residing within the central and peripheral lumens with free axial sliding capability along the intended design path while allowing for the multifunctional embodiment to flex and bend in a controlled way without generating interference or preventing the control and positioning of said instrument that reside within. The ability to essentially snap fit the outer lumen constructs into the open peripheral instrument channels (119) and then close said channels with the outer sheath (190) after the instruments have been put in place, makes the assembly very easy regardless of the path of the instruments within the device. Controlling the shape and interface of the peripheral element lumens at the bending junction (104) will by design provide the needed clearance to alleviate any binding of instruments residing within during flexure.
The design of interlocking multi-lumen tubular element 100 allows a series of interlocking multi-lumen tubular element 100 components to be easily assembled one to the next in a daisy chain like manner. Such designs and assembly methods are preferred embodiments, and provide a significant advantage in setting the device configuration, the cost and manufacturing ease of the device. These components may be fabricated by numerous processes using materials well known in the art, such as but not limited to injection molding, cast molding, or extrusion for creating polymeric constructs, and metal injection molding or metal casting for generating metallic constructs.
In a preferred embodiment of the present invention, the materials used to generate interlocking multi-lumen tubular elements 100 are preferably made from the engineering thermoplastic materials class with properties of modulus and elasticity similar to but not exclusively from the nylon family of thermoplastics.
An interlocking multi-lumen tubular distal transition element 102 resides at endoscope delivery tube assembly distal end 61 and an interlocking multi-lumen tubular proximal transition element 103 resides at endoscope delivery tube assembly proximal end 62. Following the general description sequence used in
Referring to
The self closing tissue fastener 26 is residing within shell element 40 at its distal end 41, with self closing tissue fastener 26 nested and engaged with the self closing tissue fastener profile feature 53 located on the tubular connecting element distal end 51 of tubular connecting element 50. Shell element proximal end 41 is connected to pull wire distal end 71 of pull wire 70 which resides within a peripheral instrument channel 119 of interlocking multi-lumen tubular elements 100 and runs the distal to proximal length of endoscope delivery tube assembly 60, terminating at self closing tissue fastener firing collar assembly 320 residing slideably on control end tubular member 80. Tubular member 80 is also shown in cutaway view to reveal the clear unobstructed central volume 36 which runs from the introducer control end 37 to the introducer distal end 38. In the preferred embodiment there are two identical pull wires 70 placed in a symmetrical axial orientation about the instrument axis at about 180 degrees apart. Such an orientation construct provides a distinct advantage in device performance which will become clear as the embodiment and control scheme is described in more detail below.
Self closing tissue fastener firing collar sub assembly 320 (
One skilled in the art can appreciate that as this flexure occurs at each joint of the interlocking multi-lumen tubular elements 100, the actual lengths of each instrument channel 119 within endoscope delivery tube assembly 60, as related to a measurement from a fixed location on control end tubular member 80, to a fixed location on tubular connecting element 50, can vary depending upon the amount of total curvature of the multifunctional instrument introducer 39.
Conversely, the length as measured along the axial centerline of the clear unobstructed central volume 36 as taken from the exact same location on control end tubular member 80, measured to the exact same location on the tubular connecting element 50 previously defined is by design a constant length regardless of the instrument curvature.
Furthermore, in describing the relative differential length of a pair of instrument channels 119 which are by design located symmetrically positioned about the axial centerline of the clear unobstructed central volume 36, the relative length difference of each instrument channel 119 length is therefore equal and opposite. The amount of this difference is a resultant of the total amount of curvature of the instrument in a plane that is defined by the instrument channels 119 and the axial centerline of the clear unobstructed central volume 36, which all reside by design in a single plane running the axial length of the instrument. Said plane for the purposes of this submission is defined and described as the “neutral bending plane”.
Thus, instrument curvature in the neutral bending plane will result in an equal and opposite difference in lumen length as compared to the axial centerline length. Instrument curvature at 90 degrees to the neutral bending plane will result in no difference in the lumen length as compared to the axial centerline length.
A simple illustration to assist the reader in understanding the concept of off axis peripheral lumen length difference and the need for compensating for this effect when tubular type designs are bent into a curved state, is to take a simple straight length tube of flexible material with two opposing peripheral channels residing in the wall of the tube and bend it into an arc or circle placing the tube on a table top and keeping the peripheral channels parallel to the table top.
The tubular material for this illustration is by design flexible enough that the length of the centerline axis is constant and not changed as it transitions from the straight state to the bent state. The table top the bent tube is resting on represents the neutral bending plane in the previous discussion. The instrument lumens as described in the preferred embodiment of element 100 now reside “in the wall” of the tube in a location parallel to the table top.
In the bent state, the measured the arc length along the outer circumference of the tube (in effect the peripheral lumen length following along the outer arc), is now longer in pathway than the measured arc length along the inner circumference of the tube (the peripheral lumen following along the inner arc).
In the function of the preferred embodiment, this condition is achieved at each element 100 interface as the interlocking multi-lumen tubular element pivot gap 104 increases along the outer circumference and decreases along the inner circumference respectively.
Retuning the tube to an axial straight condition, each peripheral lumen is now the same length and equal to the central lumen axial length. Bending the tube in an arc in the opposite direction thus reverses the relative lengths of the lumens respectively.
One skilled in the art can now appreciate the effect of tube bending on peripheral lumen length. Placing rigid connections attached to each end of the simple tube example such as elements 40 and 80 in the preferred embodiment and attaching a pair of fixed length wires such as element 70 residing within the peripheral instrument channel 119 of the simple tube example to said rigid connection (40) residing at one end, and then projecting said wires (70) a fixed distance from the second end of the simple tube example in the axially straight condition establishes a fixed equal distance of both wires (70) from the second end.
Then, when the tube is now bent as described on the table top, the relative lengths of the wires (70) will now change as the circumference arc length of the inner bend curve and outer bend curve diverge equally and opposite from the fixed known axial length measurement. Therefore the lengths of the projecting wires (70) in relation to the simple tube example second end are also changing with respect to each other as a function of bending.
To control accurately any distal positioned element from a proximal control point such as assembly 320 described in this application, there is a need to compensate for this ever changing and varying length of off axis placed control features as a result of device bending. Such a compensating mechanism for control of distal features will now be further described.
To control the position and deployment of instruments within the peripheral instrument channels 119, therefore, it is highly desirable to be able to position, lock and actuate these instruments using embodiments located at or on the control end tubular member 80, regardless of the general path or curvature of the overall instrument and the effect such curvature has on the operating length of said instruments located within the peripheral instrument channels (119).
Such a length compensation scheme has been devised to overcome the varying length peripheral instrument channel attribute. This compensation mechanism is described as follows, with reference to
The function of the pull wire pivot plate 340 and interfacing geometries residing within firing collar 321 is to provide for a means of positioning, securing and actuating shell element 40 regardless of the overall profile and curvature of the of the multifunctional instrument introducer 39. Any motion generating instrument curvature changes the relative position of one pull wire proximal end 72 in relation to the other located symmetrically on the instrument. This available compensational ability allows the surgeon to lock the axial location position of firing collar 321 at the instrument proximal end, which in turn locks the axial position of shell element 40.
In detail:
That is, the preferred embodiment of the present invention provides a means for setting and maintaining a fixed axial location for peripheral instruments with regard to the multifunctional instrument introducer distal end detail 38 and more specifically, in the preferred embodiment, the physical location of shell element distal end 41 as related to the tubular connecting element distal end 51 location is controlled for the purpose of securing and firing self closing tissue fastener 26.
This position relation can be maintained and controlled regardless of device curvature or flexure during use. Furthermore, this positional relationship and control mechanism may be utilized for manipulating any instruments, singly or jointly, which may reside within the peripheral instrument channels 119.
In
Length control sliding lock 227 is attached to the length control wire proximal end 232.
The location of length control wire 230 and the position of length control sliding lock 227 engages a length control sliding lock spring 228, such that flexure or curvature of the instrument (which, as previously detailed, generates a differential axial length relationship for mirrored symmetrical features residing within peripheral instrument channels 119), can maintain a spring tension force on endoscope delivery tube assembly 60 regardless of instrument curvature or path.
An alternative embodiment, not shown, which also enables securing the distal and proximal ends of endoscope delivery tube assembly 60 during flexure, includes pivoting features and wire engaging slides similar to the general configuration construct described above, that was used in this embodiment for position and control of the self closing tissue fastener firing collar assembly 320, which enables manipulation of shell element 40. Such an embodiment would include modifications and added elements, like those shown in assembly 320, for the purpose of generating an axial spring like tension force on pull wire compensation plate 340 by applying the tension force member at the interface of pull wire compensation plate pivot 335 and firing collar pivot 325 respectively.
A further enhancement to this embodiment would include user manipulated control features attached to pull wire compensation plate 340 to selectively tension or move length control wires, such as wires 230, thus providing a directional bending or steering function to the instrument. The axial motion of the pull wire changes the interlocking multi-lumen tubular element pivot gap 104 shown in
Such a manipulation scheme would be best for interlocking features which are located about 70 to 90 degrees (in rotation) from the peripheral instrument channels 119 where the length control wire 230 elements reside. In
One skilled in the art may now easily conceptualize any number of constructs, arrangement of features, selection of material compositions either singly or multiple coupled with control schemes which include the compensation geometry and control mechanism typical of that described herein. Such embodiments could be used in the design of a multifunctional instrument introducer with multiple user activated directional control features to provide for specific device attributes and performance.
In
Rotary vacuum mount collar 520 includes a pair of rotary vacuum mount collar ports 522 which are aligned with the control end tubular member vacuum port 86 features on the control end tubular member 80, thus providing an access pathway to the clear unobstructed central volume 36 for vacuum energy to be applied.
Mounted sealably and axially on rotary vacuum mount collar 520, is a rotary vacuum rotation collar 530 with a rotary vacuum hose connector 540 and a rotary vacuum clamp collar 520. Rotary vacuum rotation collar 530 is able to freely move a full 360 degrees in a sealed condition unimpeded while engaged sealably with rotary vacuum mount collar 520 and rotary vacuum clamp collar 520 respectively.
Rotary vacuum rotation collar 530 includes a defined annular rotary vacuum rotation collar vacuum space 532 which regardless of rotational position, allows a clear internal pathway from the rotary vacuum hose barb port 542, rotary vacuum rotation collar vacuum space 532, then through the rotary vacuum mount collar ports 522, with matched tubular member vacuum port 86 features to the clear unobstructed central volume 36 of the instrument for the purpose of providing vacuum energy. A rotary vacuum hose barb 546 connection feature is defined on the rotary vacuum hose connector 540 for connecting a vacuum energy delivery hose.
Referring to
Suture “t” stay needle assembly 700 is comprised of a hollow suture “t” stay needle 710 with a suture “t” stay needle proximal end 714 located generally at the control end tubular member proximal end 84, and a suture “t” stay needle distal end 712 located generally at the multifunctional instrument introducer distal end detail 38 location.
Residing within hollow suture “t” stay needle 710 at its distal end 712 is a suture “t” stay 740, with a suture “t” stay suture string 730 attached which runs the length of suture “t” stay needle 710. Inside the needle 710 is a “t” stay push wire 720, the distal end of which is in contact with the suture “t” stay 740 residing within. Push wire 720 has a proximal end which is terminated by a push wire control 722 feature, located at the suture “t” stay needle proximal end 714.
Suture “t” stay suture string 730 extends beyond the suture “t” stay push wire control 722, and can be secured and tensioned by the proximal suture collar suture anchor 420 which is located on the proximal suture collar 410 of the proximal suture collar assembly 400 securely and sealably positioned at the control end tubular member proximal end 84.
Referring to
The length of suture “t” stay needle 710 is designed to place the suture “t” stay needle distal end 712 slightly proximal to the tubular connecting element proximal end 52 when the “t” stay needle deployment slide 716 is located in its most proximal location. In this position, suture “t” stay needle 710 resides within the peripheral instrument channel 119 of distal transition element 102 and is hidden by outer sheath 190 which covers the suture “t” stay needle 710 in a sheath like manner and prevents the suture “t” stay needle 710 from engaging tissue inadvertently or causing tissue damage during the placement or movement of the instrument in the surgical field. (Deployment of the T-stay will be described below.)
In
Endoscope seal instrument access feature 456 is designed both geometrically and by material specification to allow endoscopic instruments of numerous sizes to pass through the embodiment and into the clear unobstructed central volume 36 of the instrument while still maintaining a seal adequate for generating a vacuum force within the central space. Materials and geometric designs which are useful for creating this embodiment feature and function are well known in the art and may consists of radial slits, annular corrugations or similar features, elasticity and lubricity of seal 450, or a combination thereof.
The target site represented by Tissue 10 has been located and is shown in contact with shell element 40. A self closing tissue fastener (not shown) is residing within shell element 40 at its distal end 41.
Vacuum energy is applied to the central volume 36 of the multifunctional instrument introducer 39, through the rotary vacuum hose barb port 542 located on rotary vacuum assembly 500, which freely communicates with the central volume 36 within control end tubular member 80 and endoscope delivery tube assembly 60. This vacuum energy secures the tissue 10 against the distal end 41 of the instrument allowing the peripheral instruments to interact with tissue 10 in a predictable manner.
Once the tissue is engaged and held securely, the suture ‘T’ stay needle assemblies 700 can be deployed into tissue 10. First, each suture “t” stay needle deployment slide 716 is axially displaced distally along tubular member 80. Referring to
Next, sliding the suture “t” stay push wire control 722, connected to the suture “t” stay push wire 720, in an axial motion toward the suture “t” stay needle proximal end 714 will eject the suture “t” stay 740 from the inside of the suture “t” stay needle distal end 712. This additional motion causes suture “t” stay 740 to penetrate into the tissue fully and allows the complete engagement of suture “t” stay 740 with tissue 10.
As illustrated in
Next, after using the multifunctional instrument introducer of the present invention for providing a secure controlled access pathway to target tissue, a surgeon following the general outline of a NOTES procedure would pass instruments through the clear unobstructed central volume 36 to perform various operative procedures, including, without limitation, to incise the target tissue and open a passage through it; to pass instruments, endoscopes and the like through and into the body cavity to conduct a surgical procedure; and to monitor said procedure. Upon completion of the NOTES procedure, the surgeon may use additional functional embodiments of the present invention to close and secure the target tissue, to promote healing of said incision in the target tissue.
Once the tip of the device has been attached to the target tissue surface, various other operations and materials can be applied to the tissue surface via the introducer device. Either the peripheral lumens 119 or the central lumen 36 can carry devices for irrigation, drug delivery, cleansing and sterilizing liquids, fiber optics, electrocautery leads, heated cautery tips, grasping devices, cutting devices, and in general any of the many functional devices known in the art that can be passed through the approximately 0.5 to 3 mm diameter of a peripheral lumen 119, or the larger diameter of the central lumen 36.
Referring to
As the multifunctional instrument introducer 39 is withdrawn from the surgical site, the array of suture “t” stay suture strings 730 remain, the proximal end of each suture string at a location outside the patient which was generally located at about the proximal end location of the instrument and is readily accessable for manipulation. Using techniques well known in the art, the surgeon can use remote suture securing apparatuses, fastener clips, and the like to secure the individual suture “t” stay suture strings 730 in a scheme to further secure the target tissue. Such a scheme if executed for example in an opposite corner pattern will pass directly across the tissue engaged central self closing tissue fastener 26. Such a pattern is advantageous in that it creates a primary and a secondary means of ensuring effective tissue closure thus providing a redundant highly secure closing mechanism.
Furthermore, such suture securing schemes may also include the use of medicated, medicament delivery or biomaterial wound healing aids which would be deployed and secured by the suture securing technique, further providing enhanced healing benefits to the patient.
The designs of the embodiments of the present invention provide numerous opportunities to select materials and fabrication processes which are extremely cost effective while still providing the performance properties needed. Interlocking multi-lumen tubular elements (100) which by design can snap fit together, may be comprised of polymeric materials, composites or laminates which are light weight and durable, or conversely could be die cast metallic based ultra thin wall constructs with a-traumatic soft outer coatings and slippery lumen coatings or combinations thereof. Such constructs can be easily injection molded, metal injection molded or cast molded since the design of the multi lumen embodiment features and their relationship to the tubular geometry and central volume provides for a robust tool design and long tool life.
Control end tubular member (80), tubular connecting element (50), shell element (40), the distal collar assembly (220) components, the self closing tissue fastener firing collar assembly (320) components, the rotary vacuum assembly (500) components, the suture “t” stay needle deployment slide (716), and the proximal suture collar assembly (400) components currently in the preferred embodiment comprised of metals such as aluminum and stainless steel, may also be comprised of well known engineering thermoplastic materials which can use injection molding processes and tooling to generate consistent, robust, structural components which by design can have assembly engaging features, position locators, snap fitting embodiments and the like integral to the embodiment for further cost effective assembly.
In generating these components and assemblies, biological, drug, therapeutic and/or antibacterial coatings may also be employed on selected surfaces to aid and assist in maintaining a sterile field within the clear unobstructed central volume 36 of the instrument. Other such lubricious coatings may be employed for use within the peripheral instrument channels. In generating a sterile field, sterilizing substances may be introduced from the proximal end of the instrument after the distal tip of the instrument has been affixed to target tissue, to wash away or sterilize any contaminant.
Various embodiments and figures have been described in this specification to allow it to be understood by persons of ordinary skill in the appropriate arts. The scope of the invention is not limited to the specific embodiments described, but is limited only by the scope of the claims.
This application claims the benefit of the priority of U.S. provisional application 60/801,301, filed May 18, 2006, which is hereby incorporated in its entirety by reference where permitted.
Number | Date | Country | |
---|---|---|---|
60801301 | May 2006 | US |