The present application is related to pending U.S. application Ser. No. 10/157,921, filed May 31, 2002, and which is incorporated herein in its entirety by reference.
The present invention is generally directed to a particulate material, and more particularly to a multifunctional particulate material, composition, and fluid capable of exhibiting one or more properties, such as magnetic, thermal, optical, electrical, biological, lubrication and rheological.
Dispersions of particles in fluids, termed as functional fluids, exhibit controllable property changes with an application of either one or a combination of electrical, thermal, optical or magnetic impulses. The prominent examples from the art, include thermal heat transfer fluids, magnetorheological (MR) fluids and electrorheological (ER) fluids. ER and MR fluids are known to exhibit changes in rheological behavior in the presence of an electrical and magnetic field, respectively, making them useful in a wide spectrum of applications, such as brakes, clutches, dampers and many others. However, if these fluids could exhibit more than one functionality, their performance and life would increase many-folds. For example, if MR fluids, in addition to Theological control, have a thermal tunablity, the life of the device, which is adversely affected by the dissipated heat, can be significantly increased. Such multifunctional fluids are not known to exist presently.
Various examples of prior art in this area include U.S. Pat. Nos. 3,047,507; 3,937,839; 4,064,409; 4,106,488; 4,107,288; 4,183,156; 4,219,945; 4,267,234; 4,268,413; 4,303,636; 4,323,056; 4,340,626; 4,342,157; 4,443,430; 4,452,773; 4,454,234; 4,472,890; 4,501,726; 4,545,368; 4,554,088; 4,574,782; 4,613,304; 4,628,037; 4,637,394; 4,662,359; 4,672,040; 4,695,392; 4,695,393; 4,721,618; 4,992,190; 4,999,188; 5,067,952; 5,108,359; 5,161,776; 5,180,583; 5,202,352; 5,207,675; 5,236,410; 5,354,488; 5,358,659; 5,374,246; 5,427,767; 5,466,609; 5,493,792; 5,507,744; 5,525,249; 5,565,215; 5,582,425; 5,595,735; 5,597,531; 5,624,685; 5,635,162; 5,635,215; 5,645,849; 5,646,185; 5,667,715; 5,670,078; 5,695,480; 5,702,630; 5,707,078; 5,714,829; 5,782,954; 5,800,372; 5,900,184; 5,927,753; 5,947,514; 6,027,664; 6,036,226; 6,036,955; 6,039,347; 6,044,866; 6,051,607; 6,076,852; 6,096,021; 6,149,576; 6,149,832; 6,167,313; 6,186,176 B1; 6,189,538 B1; 6,266,897 B1; 6,274,121 B1; 6,299,619 B1; 6,315,709 B1; 6,335,384 B1; 6,355,275 B1; 6,399,317 B1 6,409,851 B1; US 2001/0016210 A1; US 2001/0033384 and US 2002/0045045 A1; and.
The principal object of the present invention is to provide a particulate material that is capable of exhibiting multifunctional properties.
An object of the present invention is to provide a particulate composition that is capable of exhibiting multifunctional properties.
Another object of the present invention is to provide a fluid that is capable of exhibiting multifunctional properties. In particular, a fluid in accordance with the present invention is capable of exhibiting one or more properties, such as magnetic, thermal, optical, electrical, biological, chemical, lubrication, Theological, etc.
An additional object of the present invention is to provide a fluid that is sensitive to one or more stimuli or fields, such as magnetic, thermal, optical, electrical, etc.
Yet an additional object of the present invention is to provide a particulate material, a composition, a fluid, and/or an article including one or more of the same, which is capable of exhibiting substantially simultaneous variations in one or more of its properties when subjected to one or more stimuli, such as magnetic, thermal, optical, electrical, etc.
Still yet an additional object of the present invention is to provide a particulate material, a composition, a fluid, and/or an article including one or more of the same, wherein multifunctional properties are preferably derived from the core particles, one or more coatings, and the carrier medium.
In summary, the main object of the present invention is to provide a fluid which includes single or multilayered coated particles of one or more compositions in a suitable carrier medium. The particles, coatings and the carrier medium, preferably include non-interacting compositions. The fluid exhibits a novel multifunctional behavior. A fluid possesses multifunctionality when it exhibits two or more properties. A wide variety of processes are adopted to (1) synthesize the particles in various sizes (about 1 nm to 500 μm), shapes (spherical, needle-like, etc.), and composition (iron and its oxides, cobalt, nickel, etc.), (2) apply a coating of a variable thickness (about 1 nm to 10 μm) and/or in multilayers (1 to 10 or more layers), and (3) dispersing the coated particles in a medium (aqueous, oils, and the like). The main properties attained by the present invention include magnetic, optical, thermal, electrical, Theological, lubrication, and biological, in various combinations. The properties of the fluid can be easily tuned by either altering the material properties, or the proportion of applied stimuli. Table 1 (below) lists various tunable parameters for the fluid of the present invention.
The above and other objects, novel features and advantages of the present invention will become apparent from the following detailed description of the invention, as illustrated in the drawings, in which:
A multifunctional fluid, in accordance with the present invention, is capable of exhibiting substantially simultaneous variations in one or more of its properties, when subjected to one or more specific stimuli. The multifunctional fluid includes one or more core particles with one or more coatings, dispersed in a suitable carrier medium. While the overall properties of the fluid are generally dictated by all three components, the core particles contribute the main desirable property, while the coatings and the carrier medium adds various other variable functionalities.
The core particles that are the subject of the present invention can be synthesized by various methods, such as chemical synthesis, sol-gel, chemical co-precipitation and rapid solidification. The microwave plasma technique, described in U.S. Pat. No. 6,409,851, issued Jun. 25, 2002 (incorporated herein in its entirety by reference) is the preferred technique as it can make a wide spectrum of particles with high purity. The properties of the particle, including electrical, thermal, magnetic or optical, vary significantly with the size of the particle. Tailoring the size of the particle can be used as a tool to effect required changes in the system.
The functional fluid of the present invention, includes core particles, preferably having an average particle size of about 1 nm to 500 μm. Other parameters, as listed below in Table 1, influence the desired functionality of the final fluid, and can be controlled by optimizing the synthesis process. For example, as the shape of the particle changes, so does the active surface area and the filled-up volume.
The particles can be made of metal, polymer, ceramic material, intermetallic material, alloy, or a combination thereof. Preferable examples of the metal include iron, cobalt, nickel, copper, gold, silver, chromium, tungsten, silicon, aluminum, zinc, magnesium, titanium, molybdenum, tin, vanadium, germanium, zirconium, niobium, rhenium, iridium, cadmium, indium, hafnium, tantalum, platinum, neodymium, gallium, zinc, and a combination thereof. Preferable examples of the polymer include polystyrene, polymethyl methacrylate, polyvinyl alcohol, polyphenylene vinylene, and a combination thereof. Preferable examples of the ceramic material include iron oxide, zinc ferrite, manganese ferrite, zinc oxide, aluminum oxide, silicon dioxide, silicon carbide, boron carbide, carbon and its types, indium oxide, titania, aluminum nitride, zirconia, tin oxide, chromium oxide, yttrium oxide, niobium oxide, hafnium oxide, tantalum oxide, tungsten oxide, magnesium oxide, boron nitride, silicon nitride, hafnium nitride, tantalum nitride, tungsten nitride, iron nitride, vanadium nitride, titanium, silicon carbide, chromium carbide, vanadium carbide, titanium carbide, iron carbide, zirconium carbide, niobium carbide, hafnium carbide, tungsten carbide, tantalum carbide, titanium diboride, vanadium boride, iron boride, zirconium diboride, hafnium diboride, tantalum diboride, nickel boride, cobalt boride, chromium boride, and a combination thereof. Preferable examples of the intermetallic material include titanium aluminide, niobium aluminide, iron aluminide, nickel aluminide, ruthenium aluminide, iridium aluminide, chromium aluminide, titanium silicide, niobium silicide, zirconium silicide, molybdenum silicide, hafnium silicide, tantalum silicide, tungsten silicide, iron silicide, cobalt silicide, nickel silicide, magnesium silicide, yttrium silicide, cadmium silicide, berryllium oxide, nickel berryllide, niobium berryllide, tantalum berryllide, yttrium berryllide, tantalum berryllide, zirconium berryllide, and a combination thereof. Preferable examples of the alloy include indium tin oxide, cadmium selenide, iron-cobalt, ferro-nickel, ferro-silicon, ferro-manganese, ferro-magnesium, brass, bronze, steel, a combination of two or more of the aforementioned metals, and a combination thereof.
Preferable examples of the shape of the particles, utilized in the present invention, include spherical, needle-shaped, cubic, oval, irregular, cylindrical, diamond-shaped, lamellar, polyhedral, and a combination thereof (
The present invention involves uniformly coating particles (noted above) with adherent layers of one or more materials, either in the gas or the liquid phase using techniques, such as sol-gel, chemical precipitation, chemical vapor deposition, plasma vapor deposition, gas phase condensation, evaporation and sublimation. During the gas phase process, the precursors or starting materials for synthesizing particles, as well as the coating material (in liquid or molten form) are subjected to high thermal energy. The uniformity and extent of coating(s) are controlled by varying operating parameters, such as temperature, feeding rate and proportions (of the starting materials or precursors), and the pressure of the process. The number of coated layers will depend simply on the feed composition and their concentration. One of the important advantages of the gas phase coating process is that it does not allow any gases or static charges to get adsorbed on the particle surface, thereby maintaining phase purity.
The liquid phase process is typically a chemical synthesis route in which the coating is established by reduction of the precursor (or starting material) while the favorable reaction site is the surface of the particles. In contrast to the gas phase reaction, this technique proves useful only in materials, which readily undergo reduction in a solution phase. Inert species, such as gold or silver, and gel forming polymers, such as polyethylene glycol and dextran, are a few examples. One of the primary advantages of this technique is that coating is established in stages, which gives precise control over the coating thickness and uniformity of layers in a multilayered system.
In the case of polymer coating, the solution route may be similar to a core-shell polymerization while the gas phase would relate to a thermally assisted free radical polymerization reaction. The type of polymer (hydrophilic, i.e., water-loving, or hydrophobic, i.e., insoluble in water) would decide the nature of carrier fluid, such as water, oil, or the like, in which these coated particles can be effectively dispersed.
Preferably, one to ten coatings are provided, and each has a thickness range of about 1 nm to 500 μm, and preferably 1 nm to 10 μm. The coatings can have generally the same or varying thicknesses. It is noted that it is within the scope of the present invention to provide more than ten coatings of a different range of thickness.
The coating can be made of metal, polymer, ceramic material, intermetallic material, alloy, or a combination thereof. Preferable examples of the metal include iron, cobalt, nickel, copper, gold, silver, chromium, tungsten, silicon, aluminum, zinc, magnesium, titanium, molybdenum, tin, indium, bismuth, vanadium, magnesium, germanium, zirconium, niobium, rhenium, iridium, cadmium, indium, hafnium, tantalum, platinum, neodymium, gallium, zinc, and a combination thereof. Preferable examples of the polymer include polyethylene glycol, sorbitol, manitol, starch, dextran, polymethyl methacrylate, polyaniline, polystyrene, poly pyrolle, N-isopropyl acrylamide, acrylamide, lecithin, and a combination thereof. Preferable examples of the ceramic material include iron oxide, zinc ferrite, manganese ferrite, zinc oxide, aluminum oxide, silicon dioxide, silicon carbide, boron carbide, carbon and its types, indium oxide, titania, aluminum nitride, zirconia, tin oxide, chromium oxide, yttrium oxide, niobium oxide, hafnium oxide, tantalum oxide, tungsten oxide, magnesium oxide, boron nitride, silicon nitride, hafnium nitride, tantalum nitride, tungsten nitride, iron nitride, vanadium nitride, titanium, silicon carbide, chromium carbide, vanadium carbide, titanium carbide, iron carbide, zirconium carbide, niobium carbide, hafnium carbide, tungsten carbide, tantalum carbide, titanium diboride, vanadium boride, iron boride, zirconium diboride, hafnium diboride, tantalum diboride, nickel boride, cobalt boride, chromium boride, and a combination thereof. Preferable examples of the intermetallic material include titanium aluminide, niobium aluminide, iron aluminide, nickel aluminide, ruthenium aluminide, iridium aluminide, chromium aluminide, titanium silicide, niobium silicide, zirconium silicide, molybdenum silicide, hafnium silicide, tantalum silicide, tungsten silicide, iron silicide, cobalt silicide, nickel silicide, magnesium silicide, yttrium silicide, cadmium silicide, berryllium oxide, nickel berryllide, niobium berryllide, tantalum berryllide, yttrium berryllide, tantalum berryllide, zirconium berryllide, and a combination thereof. Preferable examples of the alloy include indium tin oxide, cadmium selenide, iron-cobalt, ferro-nickel, ferro-silicon, ferromanganese, ferro-magnesium, brass, bronze, steel, a combination of two or more of the aforementioned metals, and a combination thereof.
The final property of the fluid will preferably depend upon the nature and type of carrier medium. In one embodiment, water alone can be used. However, water miscible organic solvents, such as ethanol, glycerol, ethylene glycol, propanol, dimethyl formamide, and the like can be used. Water-based carrier fluids may also be used in various biological applications, such as imaging or drug targeting. In another embodiment, wherein the application requires higher viscosity, oil may be used. The coated particle, when dispersed in a high viscosity fluid, would reduce their natural Brownian motion, thereby rendering a higher level of stability to the system.
A non-limiting example of the carrier fluid that may be used in the present invention, includes water, mineral oil, hydraulic oil, silicone oil, vegetable oil (corn oil, peanut oil and the like), ethanol, glycerol, ethylene glycol, propanol, dimethyl formamide, paraffin wax, and a combination thereof.
The particles and their respective coatings essentially define the properties for the entire fluid. However, properties, such as optical, thermal or magnetic, are all dependent upon the force distribution between the particles, which is closely related to the interparticle distance. In general, microscopic properties are strongly affected by the force fields and the interfacial contact area. In order to get superior functionality, it is preferred that the particles do not agglomerate. The present invention therefore utilizes a dispersant (or surfactant) stabilized system, wherein the agent assists the particles in remaining dispersed and reduces their tendency to get settled. Preferable examples of surfactants include: dextran, starch, lecithin, glycol, glycerol, sorbitol, manitol, oleic acid, polyethylene glycol, and a combination thereof.
The present invention provides fluids which can exhibit multifunctional characteristics. These include optical, magnetic, thermal, electrical, rheological and biological properties that can be controlled (or altered) by one or more external stimuli. The core particle represents the main properties, while the coatings and the carrier medium contribute to other accompanying functionalities. The fluid according to the present invention, preferably contains all the components, which are non-interactive and the properties do not interact with each other.
In order to achieve the highest performance efficiency, it is desirable that both the core and one or more coatings remain intact. In particular, since the selected and/or the desired properties are derived from the core and coating(s), it is preferred that the core and coating(s) remain stable and intact from the time of manufacture to storage and through use. If the coating(s) was to separate from the core, dissolve or otherwise disintegrate, the utility of the coated particulate material would be compromised or lost. Thus, the core and coating(s) are designed or manufactured so as not to dissociate, dissolve or disintegrate due, for example, to temperature variations, interaction with moisture, soil, water, bodily fluids, etc. The coating(s) is, therefore, permanent or non-sacrificial in nature. In this regard, it is preferred that the core and coating(s) remain stable for a period of at least one year, from manufacture.
Preferably, one of the coatings is made of or includes a surfactant material, and alone, or with the core, provides the particulate material and/or the composition with at least one property selected from the group including magnetic, thermal, optical, electrical, biological, chemical, lubrication, rheological, and a combination thereof.
The following embodiments illustrate non-limiting examples of various types of fluids prepared in accordance of the present invention.
Magneto-Responsive Functional Fluids
Magnetic particles, preferably of Fe, Co, Ni, Fe2O3 or ferrites (about 2% to 90 vol % concentrations, i.e., about 2 to 90 vol % of the fluid is comprised of the magnetic particles, dispersed in various media, such as water, mineral oil, glycerol, elastomers, polymeric liquids, organic solvents and the like, exhibit a change in viscosity upon interaction with a magnetic field (
One example is coating of magnetic particles with thermally conducting metal, such as copper, aluminum, silica, aluminum oxide, and tungsten. This can be introduced via a conventionally known reverse miceller procedure, wherein the coating is established in a solution phase. The thermal coating would absorb any heat, which may have been generated due to the motion of particles in the medium. These fluids are useful in all mechanical applications of magnetic fluid technology, such as dampers, clutches and shock absorbers.
In another embodiment, magnetic particles are dispersed in an optically clear matrix, such a polymethyl methacrylate (PMMA), polycarbonate, indium oxide, or the like polymer. Optically clear materials in general are transparent to white light and have very low coefficient of absorption. The turbidity (or transparency) would be a function of the loading level of the particles. However, at constant solid's content, the application of magnetic field would align the particles, thereby forming a layered structure (
In yet another embodiment, coated polymer magnetic particles exhibited sharp magnetic switching effects. This is believed to be due to the dipolar contribution of the polymer that directly influences the interparticle interactions. Magnetic bistability and switching at low fields obtained in polymer-coated particles would be desirable in systems where the impedance in response to electrical or magnetic stimuli needs to be monitored with high precision. These compositions would therefore be of interest in, for example, RF switching and EMI shielding applications.
The above-noted fluids can be slightly modified to obtain magnetically controlled conductive composites, wherein magnetic particles, such as ferrites, are doped in conductive polymers, such as polyaniline, or polyphenylene vinylenes (PPV). As the particles are aligned in chains, an increase in electrical pathway is seen (
Using the magnetic fluid technology, a biological fluid is produced. This fluid includes biocompatible magnetic particles. The biocompatibility is due of the coating of polymers, such as dextran, starch, polyethylene glycol, sorbitol, or the like. The fluid can be injected inside the body to arrest internal hemorrhage or seal off blood vessels in order to inhibit angiogenesis. The sealing action is a result of a reversible viscosity increase in the presence of an externally positioned magnet.
As shown in
Optical Fluids
A fluid which exhibits optical multifunctionality is disclosed. This fluid is capable of transmitting visible light at a broad range of temperature range. The optical properties of fluids seem to drastically change as a function of increasing temperature, typically increasing their attenuation. In accordance with the present invention, optically clear ceramic particles, such as ZnO or InO, are coated with a thin layer of copper having a thickness of about 10 nm to 100 nm. The coating thickness is limited by the optical clarity of the fluid. When the fluid is subjected to a temperature increase, all or part of the heat is absorbed by the surrounding copper layer, thereby averting any turbidity that may have been caused due to the input of heat.
In another embodiment, semiconductor nanocrystals, such as gallium arsenide, silicon carbide, silicon, germanium, cadmium selenide, and a combination thereof, are dispersed in an index matching liquid, such as water, oil, mixture of water and oil, polyethylene glycol, polymethylmethacrylate, polyacrylamide, polystyrene, and a combination thereof. The fluid is subjected to a laser impulse of fixed wavelength. As the intensity of the input laser is increased, the refractive index mismatch increases, thereby lowering the transparency of the medium (
In yet another embodiment, Cu-coated ceramic particles are dispersed in a conducting matrix. The transparency of this fluid changes from clear (about 100% transmittance) to opaque (0% transmittance), as a function of the varying electric field (0 Å to 1000 Å) (
The present invention further discloses luminescent particles of gold and silver, which have a characteristic size on the order of the wavelength of visible light. These particles are embedded in a thermally switchable polymer matrix, such as N-isoproplylacrylamide, polyvinyl alcohol, polyethylene glycol, polyalkelene glycol, and a combination thereof. These polymeric gels possess a lower critical solution temperature of about room temperature. Above and below this temperature, there are significant differences between the excluded free volumes, which change the configuration of the encapsulated particles resulting in change in color (
The embodiment of
Electro-responsive Functional Fluids
An electrically tunable fluid is disclosed. This includes silica particles coated with Cu (about 10 nm to 10 μm thickness) in a dielectric solvent, such as water, mineral oil, polypyrole, polyaniline, ethylene glycol, and a combination thereof. As the electric potential increases, 0-10 KV/mm, the rheology (change in viscosity ranging from 1.0 cP to 200,000 cP) of the medium changes. In addition, the electric current increases the thermal energy of the entire system (
Multifunctional Biological Fluid
A fluid capable of delivering drugs to a targeted body site is disclosed. The selected drug is attached to a magnetic core of iron or ferrites, cobalt or nickel coated with an optical layer of fluorescent Au or Ag molecules. The fluid particles are then magnetically driven to the target site where the drug is desorbed. Optical capturing, which is a consequence of the fluorescent molecules, assists in the magnetic localization.
The fluid of the previous embodiment can be extended to magnetic bioseparation and detection. For example, magnetic particles can be functionalized with a bioligand, which specifically binds to a target molecule, cell, toxin, pathogen, DNA, RNA, proteins, and other biochemicals. This would isolate the required biomolecule from a mixture and the number of separated magnetic particles can be detected with the help of highly sensitive magnetic field sensors, such as HGMS (high gradient magnetic separators), or SQUID (Superconducting Quantum Interface Design).
All of these modules can be miniaturized and placed on a microchip where micropumps would inject the sample fluid into various microchambers/microreactors. The microreactors will contain a multifunctional biological fluid with different anylate specificity. Embedded in the reactors would be highly sensitive magnetic particle sensors, which will transduce the signal in to a user-friendly output.
Based on the above, gas sensors for CO, CO2, O2, and the like, chemical sensors for water and other liquids, and biological sensors for glucose, DNA, and the like can be easily made.
Frequency Agile Functional Fluids
A functional fluid capable of switching from a RF (radiofrequency) transparent to RF opaque state is disclosed. The core can be either magnetic, such as Fe, Co, Ni, etc., or conducting, such as Cu, Ag, Au, polymers, such as polyaniline, polypyrolle, etc., and the encapsulating polymer matrix can be polystyrene or PMMA. Variations in electric or magnetic field will cause local permeability variations to effect RF limiting features.
In another embodiment, indium tin oxide in a silica, alumina or titanium oxide matrix are subjected to varying electric fields. The electric field changes the oxidation state of the metal oxide particles, thereby exhibiting an electrochromic effect.
In yet another embodiment, semiconductor nanocrystals, such as CdSe are dispersed in a polymer matrix containing a dye. As the intensity of the light changes, a photochromic effect is observed. This is due to optical nonlinearity possessed by semiconductor species. These photochromic fluids may be made to form a flexible polymer sheet, which would be useful in making, for example, automatic automobile sunshades, etc.
Other Functional Fluids
Multifunctionality in fluids is highly desirable. In general, upon interaction of one energy form with the other, there is a creation of a third energy component to meet the law of conservation of energy. For example, SiC-based particles used as abrasives generate a lot of heat, which may severely damage the surface they are acting on. The present invention addresses this by coating SiC particles with a coating of Au, Ag, Cu, Ni, or the like. An abrasive fluid, including SiC coated particles, can be used in sensitive applications, such as in microelectronics where heat is a big deterrent and causes damage to microelectronic circuitry. Other abrasive particles that can likewise be coated with a heat-absorbing material, include those made of boron carbide, iron carbide, aluminum oxide, zirconium oxide, titanium diboride, silica, yttrium-aluminum-garnet, or a combination thereof.
In another embodiment, SiC particles are coated with a pre-ceramic polymer, such as polysilsesquioxane or polycarbosilane. These are structural materials useful in flame-resistance and high temperature applications, where the pre-ceramic polymer turns into a ceramic with applied heat (
In yet another embodiment, a self-lubricating high temperature functional fluid is disclosed. The core particle can be made of Cu, while the coatings can be of graphite, bismuth, indium or Teflon®. The coated copper particles are dispersed in oils, such as hydraulic oil or mineral oil. These fluids can be used in various engineering structures, such as engines and transmission housing.
In yet another embodiment, a quenching fluid used in heat-treating operation of metals, such as quenching, tempering, austempering and martempering is disclosed. The fluid removes heat from the heated metal. The cooling rate determines the microstructure, such as grain size, grain shape and phase (alpha, gamma, beta, delta, austenite, matensite, bainite, pearlite, cementite) composition of the part being made. The cooling rate can be adjusted by adjusting the thermal conductivity of the fluid. By incorporating polymer-coated particles with desired thermal conductivities in the quenching fluid, the cooling rate can be adjusted or controlled. The coating thickness preferably varies from 1 nm to 100 μm with the number of layers ranging preferably from one to ten. The polymer coating is preferably based on polyalkylene glycol, polyvinyl alcohol, or a combination thereof. The particles can be metals (aluminum, titanium, copper, silicon, zinc, iron, cobalt, nickel, chromium, bismuth, silver, tungsten, molybdenum, or a combination thereof), ceramics (graphite, aluminum oxide, silicon oxide, beryllium oxide, titanium boride, molybdenum boride, silicon carbide, boron carbide, zirconium boride, hafnium boride, aluminium nitride, iron oxide, or a combination thereof) intermetallics (molybdenum silicide, titanium aluminides, nickel aluminides, berrylides, or a combination thereof), or a combination thereof. The coated particles can be dispersed in water, oil (mineral oil, silicone oil, hydraulic oil, synthetic oil, or a combination thereof) or an emulsion (sodium dodecyl sulfate in water, polyethylene glycol in water, polyvinyl alcohol in water, oil in water, polystyrene in water, polyacrylamide in water, or a combination thereof). The composition of the particles can be tailored to obtain different thermal conductivities (0-400 W/m.° K) in the fluid. Similarly, by adjusting the quantity of the particles (1-90 volume %) in the fluid, thermal conductivities can be adjusted.
Powder particles of iron with particle size of about 20 nm were synthesized from iron pentacarbonyl using microwave plasma synthesis technique. Argon was used as the plasma gas. The iron powders were subsequently coated with a layer of copper measuring with variable thickness (about 1 nm to 1000 nm) using a chemical synthesis technique. These powders were coated with sodium hexametaphosphate for dispersion in hydraulic oil for use as magneto-rheological fluids with a thermal control. The viscosity of the fluid could be changed by the application of a magnetic field to effect damping in shock absorbers used in automobiles and machinery. The copper coating will dissipate the heat generated from the motion of the moving parts in the damper.
Table 4 below shows the effect of the applied magnetic field on the yield stress. The magnetic field is varied by varying the current that is applied. The change in yield stress is effected as a result in the change of viscosity. In other words, an increase in yield stress signifies a higher viscosity.
Ultrafine particles of aluminum oxide with a particle size of about 1 nm to 200 nm were prepared using microwave plasma synthesis of aluminum hydroxide using oxygen as the plasma gas. The nanoparticles were coated with a layer of cetyl trimethyl ammonium bromide with a coating thickness from about 1 nm to 20 nm. The coated particles were dispersed in a polyetherimide (PEI) polymer. The particles increased the inherent flame retardancy of the polymer while the fillers increased the mechanical properties and resistance to wear.
Powder particles of iron with particle size ranging from about 1 nm to 40 μm were synthesized by microwave plasma synthesis using iron pentacarbonyl as the source and argon as the plasma gas. The powder particles were coated with a layer of polystyrene. The polystyrene coating was carried out in the gas phase in the microwave plasma synthesis. The thickness of the polystyrene ranges from about 1 nm to 100 nm. The coated particles are dispersed in a carrier fluid such as saline solution, water or blood for injection into a human body. These particles may be surface modified with various procoagulants such as thrombin, factor 7A and like for arresting internal hemorrhage. Also, the particles may be attached with various antibodies/drugs/antigens for toxin, purification, isolation of biomolecules, water and chemical pollution and like.
Aluminum nitride powders with a particle size of about 1 nm to 10 μm were coated with an about 1 nm to 100 nm layer of ethyl cyano acrylate using microwave plasma technique. The aluminum nitride powders were prepared using microwave plasma synthesis of trimethyl aluminum and ammonia. The coated aluminum nitride particles are then dispersed in an adhesive resin for mounting heat sinks to electronic substrates. The aluminum nitride provides effective heat dissipation due to its high thermal conductivity as well as provide good mechanical strength to the adhesive.
Copper powders with a particle size of about 1 nm to 50 μm were mixed in a solution of ethylene glycol and water. The concentration of the copper powders in the ethylene glycol solution varied from about 10 vol % to 60 vol %. This fluid is used for heat transfer in furnaces, pumps and engines. The ethylene glycol acts as a rust inhibitor while the copper powders help in the removal of heat.
While this invention has been described as having preferred sequences, ranges, steps, materials, or designs, it is understood that it includes further modifications, variations, uses and/or adaptations thereof following in general the principle of the invention, and including such departures from the present disclosure as those come within the known or customary practice in the art to which the invention pertains, and as may be applied to the central features hereinbeforesefforth, and fall within the scope of the invention and of the limits of the appended claims.
The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3047507 | Winslow | Jul 1962 | A |
3127528 | Lary et al. | Mar 1964 | A |
3287677 | Mohr | Nov 1966 | A |
3488531 | Rosenswelg | Jan 1970 | A |
3560378 | Weiss et al. | Feb 1971 | A |
3767783 | Lung et al. | Oct 1973 | A |
3927329 | Fawcett et al. | Dec 1975 | A |
3937839 | Strike et al. | Feb 1976 | A |
4064409 | Redman | Dec 1977 | A |
4106488 | Gordon | Aug 1978 | A |
4107288 | Oppenheim et al. | Aug 1978 | A |
4183156 | Rudy | Jan 1980 | A |
4219945 | Rudy | Sep 1980 | A |
4267234 | Rembaum | May 1981 | A |
4268413 | Dabisch | May 1981 | A |
4303636 | Gordon | Dec 1981 | A |
4321020 | Mittal | Mar 1982 | A |
4323056 | Borrelli et al. | Apr 1982 | A |
4340626 | Rudy | Jul 1982 | A |
4342157 | Gilbert | Aug 1982 | A |
4364377 | Smith | Dec 1982 | A |
4443430 | Mattei et al. | Apr 1984 | A |
4452773 | Molday | Jun 1984 | A |
4454234 | Czerlinski | Jun 1984 | A |
4472890 | Gilbert | Sep 1984 | A |
4501726 | Schröder et al. | Feb 1985 | A |
4545368 | Rand et al. | Oct 1985 | A |
4554088 | Whitehead et al. | Nov 1985 | A |
4574782 | Borrelli et al. | Mar 1986 | A |
4613304 | Meyer | Sep 1986 | A |
4628037 | Chagnon et al. | Dec 1986 | A |
4637394 | Racz et al. | Jan 1987 | A |
4662359 | Gordon | May 1987 | A |
4672040 | Josephson | Jun 1987 | A |
4695392 | Whitehead et al. | Sep 1987 | A |
4695393 | Whitehead et al. | Sep 1987 | A |
4721618 | Giles et al. | Jan 1988 | A |
4770183 | Groman et al. | Sep 1988 | A |
4834898 | Hwang | May 1989 | A |
4951675 | Groman et al. | Aug 1990 | A |
4992190 | Shtarkman | Feb 1991 | A |
4999188 | Solodovnik et al. | Mar 1991 | A |
5067952 | Gudov et al. | Nov 1991 | A |
5069216 | Groman et al. | Dec 1991 | A |
5079786 | Rojas | Jan 1992 | A |
5108359 | Granov et al. | Apr 1992 | A |
5161776 | Nicholson | Nov 1992 | A |
5178947 | Charmot et al. | Jan 1993 | A |
5180583 | Hedner | Jan 1993 | A |
5202352 | Okada et al. | Apr 1993 | A |
5207675 | Canady | May 1993 | A |
5236410 | Granov et al. | Aug 1993 | A |
5348050 | Ashton | Sep 1994 | A |
5354488 | Shtarkman et al. | Oct 1994 | A |
5358659 | Ziolo | Oct 1994 | A |
5374246 | Ray | Dec 1994 | A |
5427767 | Kresse et al. | Jun 1995 | A |
5466609 | Siiman et al. | Nov 1995 | A |
5493792 | Bates et al. | Feb 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5525249 | Kordonsky et al. | Jun 1996 | A |
5549837 | Ginder et al. | Aug 1996 | A |
5565215 | Gref et al. | Oct 1996 | A |
5582425 | Skanberg et al. | Dec 1996 | A |
5595735 | Saferstein et al. | Jan 1997 | A |
5597531 | Liberti et al. | Jan 1997 | A |
5599474 | Weiss et al. | Feb 1997 | A |
5624685 | Takahashi et al. | Apr 1997 | A |
5635162 | Fischer | Jun 1997 | A |
5635215 | Boschetti et al. | Jun 1997 | A |
5645849 | Pruss et al. | Jul 1997 | A |
5646185 | Giaccia et al. | Jul 1997 | A |
5650681 | DeLerno | Jul 1997 | A |
5667715 | Foister | Sep 1997 | A |
5670078 | Ziolo | Sep 1997 | A |
5673721 | Alcocer | Oct 1997 | A |
5695480 | Evans et al. | Dec 1997 | A |
5702630 | Sasaki et al. | Dec 1997 | A |
5707078 | Swanberg et al. | Jan 1998 | A |
5707877 | Siiman et al. | Jan 1998 | A |
5714829 | Guruprasad | Feb 1998 | A |
5782954 | Luk | Jul 1998 | A |
5800372 | Bell et al. | Sep 1998 | A |
5813142 | Demon | Sep 1998 | A |
5900184 | Weiss et al. | May 1999 | A |
5919490 | Zastrow et al. | Jul 1999 | A |
5927753 | Faigle et al. | Jul 1999 | A |
5947514 | Keller et al. | Sep 1999 | A |
5958794 | Bruxvoort et al. | Sep 1999 | A |
5993358 | Gureghian et al. | Nov 1999 | A |
6013531 | Wang et al. | Jan 2000 | A |
6027664 | Weiss et al. | Feb 2000 | A |
6036226 | Brown et al. | Mar 2000 | A |
6036955 | Thorpe et al. | Mar 2000 | A |
6039347 | Maynard | Mar 2000 | A |
6044866 | Rohrbeck | Apr 2000 | A |
6051607 | Greff | Apr 2000 | A |
6076852 | Faigle | Jun 2000 | A |
6083680 | Ito et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6136428 | Truong et al. | Oct 2000 | A |
6149576 | Gray et al. | Nov 2000 | A |
6149832 | Foister | Nov 2000 | A |
6167313 | Gray et al. | Dec 2000 | A |
6186176 | Gelbmann | Feb 2001 | B1 |
6189538 | Thorpe | Feb 2001 | B1 |
6207178 | Westesen et al. | Mar 2001 | B1 |
6225705 | Nakamats | May 2001 | B1 |
6266897 | Seydel et al. | Jul 2001 | B1 |
6274121 | Pilgrimm | Aug 2001 | B1 |
6299619 | Greene, Jr. et al. | Oct 2001 | B1 |
6312484 | Chou et al. | Nov 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6319599 | Buckley | Nov 2001 | B1 |
6335384 | Evans et al. | Jan 2002 | B1 |
6355275 | Klein | Mar 2002 | B1 |
6358196 | Rayman | Mar 2002 | B1 |
6364823 | Garibaldi et al. | Apr 2002 | B1 |
6391343 | Yen | May 2002 | B1 |
6399317 | Weimer | Jun 2002 | B1 |
6409851 | Sethuram et al. | Jun 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6468730 | Fujiwara et al. | Oct 2002 | B2 |
6475710 | Kudo et al. | Nov 2002 | B2 |
6481357 | Lindner et al. | Nov 2002 | B1 |
6489694 | Chass | Dec 2002 | B1 |
6527972 | Fuchs et al. | Mar 2003 | B1 |
6530944 | West et al. | Mar 2003 | B2 |
6548264 | Tan et al. | Apr 2003 | B1 |
6557272 | Pavone | May 2003 | B2 |
6582429 | Krishnan et al. | Jun 2003 | B2 |
6663673 | Christensen | Dec 2003 | B2 |
6666991 | Atarashi et al. | Dec 2003 | B1 |
6683333 | Kazlas et al. | Jan 2004 | B2 |
6734574 | Shin | May 2004 | B2 |
6768230 | Cheung et al. | Jul 2004 | B2 |
6789820 | Meduvsky et al. | Sep 2004 | B2 |
6815063 | Mayes | Nov 2004 | B1 |
6871871 | Parizat et al. | Mar 2005 | B2 |
6982501 | Kotha et al. | Jan 2006 | B1 |
7007972 | Radhakrishnan et al. | Mar 2006 | B1 |
7101862 | Cochrum et al. | Sep 2006 | B2 |
7200956 | Kotha et al. | Apr 2007 | B1 |
7249604 | Mohanraj | Jul 2007 | B1 |
20010011810 | Saiguchi et al. | Aug 2001 | A1 |
20010016210 | Mathiowitz et al. | Aug 2001 | A1 |
20010033384 | Luo et al. | Oct 2001 | A1 |
20020045045 | Adams et al. | Apr 2002 | A1 |
20020164474 | Buckley | Nov 2002 | A1 |
20030009910 | Pavone | Jan 2003 | A1 |
20030216815 | Christensen | Nov 2003 | A1 |
20040002665 | Parihar et al. | Jan 2004 | A1 |
20040022849 | Castan et al. | Feb 2004 | A1 |
20040051283 | Parizat et al. | Mar 2004 | A1 |
20040132562 | Schwenger et al. | Jul 2004 | A1 |
20040154190 | Munster | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
2328826 | Mar 2001 | CA |
37 38 989 | May 1989 | DE |
10240530 | Mar 2004 | DE |
WO 9953901 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040105980 A1 | Jun 2004 | US |