This application claims priority to and all the advantages of International Application No. PCT/CN2008/000648, filed on Mar. 31, 2008, which claims priority to Chinese Patent Application No. 200710021300.8, filed on Apr. 18, 2007.
The present invention relates to a power tool, and more especially, to a multi-functional power tool capable of realizing impact wrench function and electric drill function or electric screwdriver set function or impact drill function.
Among the existing power tools, the impact wrench is used to tighten the screw fastener to work piece. It generally comprises a main shaft driven by the rotation of the motor, impact block connected with the main shaft through spiral scroll and ball, and working shaft fit for the impact block through the end tooth and located in front of the impact block. An impact spring is configured in the back of the impact block, which compresses the impact block to enable the impact block to keep reliable coordination with the working shaft. During working, the rotation movement of the main shaft directly outputs to the screw piece through the impact block and working shaft so as to secure the screw piece to work piece. During the tightening, the load on the working shaft gradually increases. When the load exceeds the preset value, the impact moves toward the motor relative to the working shaft through the rolling of the ball in the spiral scroll, and compresses the spring behind it. At the moment that the impact block and the end tooth of the working shaft are unfitted, under the action of the impact spring, the impact block moves forward in axial direction and beats the working shaft in rotation direction, so as to enable the working shaft to keep tightening the screw piece in the direction of rotation. In such cycles, through endless intermittent beating of the impact block, the screw piece can be secured to a work piece in the end. Electric drill is used to drill holes in work piece. However, the user generally requires tightening screw pieces onto the work piece or drilling holes in work piece during working. In this way, it is very inconvenient when the user is required to change tools again and again for operation.
US patent application No. 2005/0199404A1 discloses a power tool capable of realizing impact wrench and electric drill functions in one tool. The power tool secures the impact block (7) and working shaft (8) on the outer circumference through function shifting mechanism (the function shifting button 33 and connecting piece 25 shown in
The present invention provides a multi-functional power tool which can realize the shifting between impact wrench function and electric drill function or functions. This function shifting mechanism features simple structure, low manufacturing cost, convenient and efficient operation.
Aimed to realized the above features, the present invention provides: A multi-functional power tool, characterized in that: the power tool comprises an housing, a motor set in the housing, a main shaft driven through the rotation of the motor, a working shaft used to connect corresponding working head when running, wherein an active impact block, which can make axial motion with respect to the main shaft, is configured on the main shaft, a passive impact block which rotates with the working shaft and can alternatively make axial motion with respect to the working shaft is mounted on the working shaft, the active impact block rotates to drive the passive impact block through the coordination of the first end tooth set on the active impact block and the second end tooth set on the passive impact block; the power tool further includes a function shifting button which can move between the first location and the second location to alternatively limit the passive impact block's axial motion with respect to the working shaft, in this way to realize the shifting between the first function and the second function of the power tool.
As an improvement of the invention, the power tool further comprises a compression piece set on the passive impact block and away from the side of the active impact block, wherein the compression piece compresses the passive impact block so that the passive impact block is apt to make movement toward the active impact block.
Aimed to realized the above features, the present invention also could provides: A drilling tool, characterized in that: the power tool comprises an housing, a power source, a main shaft driven by the power source and a working shaft fit for the working head, the main shaft is provided with impact storage block making axial movement with respect to the main shaft, wherein the working shaft is provided with the passive impact block in axial movement, the first working mode and the second working mode exist between the impact storage block and passive impact block, wherein there is no relative axial displacement between the impact storage block and passive impact block in the first working mode, while there is relative axial displacement between the impact storage block and passive impact block in the first working mode, a function shifting button is set on the housing, which includes a location limiting part alternatively limiting the axial movement of the passive impact block.
Aimed to realized the above features, the present invention also could provides: A power tool, comprising:
An housing;
A power source, set in the housing and outputting rotation power;
A working shaft, extending toward the front of the housing and capable of connecting the external working head;
A gear reduction mechanism, set between the power source and working shaft and transmitting the rotation output of power source to the working shaft;
An active impact block, driven by the rotation of output shaft of the gear reduction mechanism;
A passive impact block, capable of engaging with the active impact block and driven by the rotation, the passive impact block is set on the working shaft and rotates to drive the working shaft, and the passive impact block can make axial motion with respect to the working shaft, wherein the active impact block can alternatively ungear the passive impact block when the load on the working shaft increases to the specific value, then mesh with the passive impact block again under the output shaft's rotation driving, thus to exert intermittent impact on the working shaft in the direction of rotation.
An impact shifting piece, capable of alternatively limiting the passive impact block's axial motion with respect to the working shaft, so as to make the impact mechanism shift between the impact status that the active and passive impact blocks can ungear each other and the limiting status that the active and passive impact blocks cannot ungear each other.
Compared with the existing technology, the present invention has the following favorable effects: the power tool is additionally provided with independent passive impact block, and limits the passive impact block's movement together with the active impact block through function shifting button, thus to realize impact wrench function; moreover, this function shifting button can also cancel the limitation to the passive impact block, so as to make it move together with the active impact block, thus to realize drilling function, wherein the abovementioned function shifting mechanism features simple structure, relatively low manufacturing cost, convenient and efficient operation.
The present invention is further detailed in combination with the drawings attached and embodiments hereinafter, wherein:
Similar to
By referring to
By referring to
When the nut end face contacts the surface of the working piece (not shown in the drawings), the resisting moment rapidly increases. After reaching a certain value, the active impact block 31 and passive impact block 41 engaged with each other are both held back. The passive impact block 41 stops rotation, but the main shaft 24 keeps rotation under the driving of the motor output shaft 12, in this way, to force the ball 25 to roll along the scroll by overcoming the friction force between the inner and outer spiral scrolls 312, 241, so as to push the active impact block 31 to move toward the motor and compress the impact spring 32. In this process, the early-stage passive impact block 41 makes axial movement at a tiny distance along with the active impact block 31 under the action of the compression piece 42. However, when the location limiting part 442 of the function shifting button 44 is propped up, further movement is impossible. Therefore, the active impact block 31 is gradually away from the passive impact block 41 in the axial direction. When the axial movement distance of the active impact block 31 exceeds the height of the second end tooth 411 of the passive impact block, namely, at the moment the active impact block 31 and passive impact block 41 ungear each other, the main shaft 24 drives the active impact block 31 to rotate so that the first end tooth 311 slides over the second end tooth 411 of the passive impact block. At the moment of sliding, due to the impact spring 32, the ball 25 returns to the original location along the spiral scrolls 312, 241 again. The active impact block 31 is pushed forwards, and impacts the second end tooth 411 of the passive impact block due to the accelerated rotation of the main shaft 24 so that the passive impact block 41 keeps movement in the rotation direction. In such cycles, the screw piece can be secured under the force of impact. It is easy to figure out the solution for common technicians in this field and the outer ball spiral scroll impact structure can be also adopted to realize the function of impact wrench. The working process and principles are the same to the inner ball spiral scroll impact structure disclosed in this embodiment, so they are not detailed herein.
When realizing the abovementioned impact wrench function, it is required that the active impact block 31 rotates intermittently to impact the passive impact block 41 so as to enable the working head (fastener) capable of tightening the nuts. However, when realizing the drilling function, it is only required that the working head (twist drill) keeps drilling, while the intermittent impact of the active impact block is not required any more. By referring to
In other embodiments, when the function shifting button is at the second location, namely the passive impact block moves together with the active impact block, the clutch structure added between the planetary gear reduction system of the power tool and inner ball spiral scroll impact structure can realize the electric screwdriver set function correspondingly, while the active impact block structure of dynamic, static end teeth in the front of the working shaft can realize impact drill function correspondingly. The abovementioned functions can be set separately and form double-functional power tool in combination with the impact wrench function, form tri-functional power tool or quarter-functional power tool by means of overlying setting. Since the abovementioned functional mechanism added is the existing technology and it has been described in detail in the reference document cited by the background technology of this application, it is unnecessary for the applicant to give details herein.
Number | Date | Country | Kind |
---|---|---|---|
2007 1 0021300 | Apr 2007 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2008/000648 | 3/31/2008 | WO | 00 | 4/2/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/128418 | 10/30/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5343961 | Ichikawa | Sep 1994 | A |
5531278 | Lin | Jul 1996 | A |
5601149 | Kawasaki et al. | Feb 1997 | A |
6199640 | Hecht | Mar 2001 | B1 |
6688406 | Wu et al. | Feb 2004 | B1 |
7124839 | Furuta et al. | Oct 2006 | B2 |
7380613 | Furuta | Jun 2008 | B2 |
7410007 | Chung et al. | Aug 2008 | B2 |
7735575 | Trautner | Jun 2010 | B2 |
7798245 | Trautner | Sep 2010 | B2 |
20050199404 | Furuta et al. | Sep 2005 | A1 |
20060213675 | Whitmire et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2292902 | Sep 1998 | CN |
1836847 | Sep 2006 | CN |
1050381 | Nov 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20100186977 A1 | Jul 2010 | US |