Multifunctional relay module for use with CO and smoke alarms

Information

  • Patent Application
  • 20070279213
  • Publication Number
    20070279213
  • Date Filed
    June 02, 2006
    18 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
A multi-function relay module for use with a series of hazardous condition detectors that are interconnected by an interconnect line. The relay module is positioned between the interconnected hazardous condition detectors and one or more auxiliary devices such that the relay module can selectively activate each of the auxiliary devices. The relay module receives the interconnect signal and determines whether the interconnect signal is indicating a first sensed condition or a second sensed condition. A selection signal having multiple states is received by the control unit. The control unit is programmed to respond to the type of sensed condition indicated by the interconnect signal based upon the state of the selection signal. Thus, the relay module can selectively respond to either the first sensed condition, the second sensed condition or either of the first or second sensed conditions.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate the best mode presently contemplated of carrying out the invention. In the drawings:



FIG. 1 is a schematic illustration of a relay module connected between a series of interconnected hazardous condition detectors and one or more auxiliary devices;



FIG. 2 is a schematic illustration of the internal operating components of the relay module;



FIG. 3 is a table illustrating the response of the control unit to the different states of the selection signal;



FIG. 4 is a schematic representation of a typical interconnect signal present on the interconnect line to indicate the detection of smoke; and



FIG. 5 is a schematic representation of a typical interconnect signal present on the interconnect line to indicate the detection of carbon monoxide.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 illustrates a system 10 of interconnected hazardous condition detectors. In the embodiment of the invention illustrated in FIG. 1, the system includes different types of hazardous condition detectors, such as a carbon monoxide detector 12, a smoke detector 14 and a combination smoke and carbon monoxide detector 16. Although the system 10 shown in FIG. 1 illustrates one each of three different types of detectors, it should be understood that the interconnected hazardous condition detection system 10 could incorporate various different combinations of the three basic types of detectors 12, 14 and 16 illustrated in FIG. 1 or could incorporate other types of detectors, such as heat or flammable vapors. Further, the hazardous condition detection system 10 could also incorporate only one type of detector, such as the combo detector 16, throughout the entire premises while operating within the scope of the present invention.


The interconnected hazardous condition detection system 10 utilizes a standard three-wire interconnect 18. The three-wire interconnect 18 provides main AC power from a source 20 to each of the various detectors 12, 14 and 16. Although each of the detectors are shown operating from an AC power source, each of the detectors could be DC or an AC/DC detector. The AC power from the source 20 is provided to each of the detectors by a power supply line (hot) 22 and a neutral line 24. As illustrated, each of the detectors is coupled to both the power supply line 22 and the neutral line 24. The three-wire interconnect system 10 further includes an interconnect line 26 that allows each of the detectors to communicate an interconnect signal between the various detectors.


As described previously with reference to the Schmurr '204 patent, it is important that the protocol of the interconnected hazardous condition detection system 10 allows for the interconnection of the various different types of detectors shown in FIG. 1. In view of these principles, the communication protocol for the interconnected hazardous condition detection system 10 allows each of the detectors to generate different interconnect signals for transmission on the single interconnect line 26. The detectors that are all connected to the interconnect line 26 will either understand certain signals and alarm appropriately, or the detectors will not understand the signal, ignore it and will not alarm at all.


In the embodiment of the invention illustrated in FIG. 1, the interconnect signal present along the interconnect line 26 is a digital signal that includes information relating to the type of hazardous condition detected by the detector 12, 14 or 16 that generated the signal. As an example, when the carbon monoxide detector 12 detects the presence of carbon monoxide in levels that exceed the alarm threshold for the detector 12, the carbon monoxide detector 12 enunciates a local, audible alarm signal and generates an interconnect signal along the interconnect line 26.



FIG. 5 illustrates a sample interconnect signal present along the interconnect line 26 when one of the detectors senses the presence of carbon monoxide. The carbon monoxide interconnect signal 27 includes a series of spaced pulses 29 each having a fixed duration. The series of pulses are separated by gaps 31 each also having the same duration. Although an example of the interconnect signal to indicate the detection of carbon monoxide is shown in FIG. 5, it should be understood that the interconnect signal could have many different configurations while operating within the scope of the present invention.


When the interconnect signal from the carbon monoxide detector 12 is present along the interconnect line 26, the smoke detector 14 and the combo detector 16 receive the interconnect signal, decode the signal and respond by generating an audible alarm that has the horn pattern required for the detection of carbon monoxide.


Likewise, if the smoke detector 14 detects the presence of smoke in a concentration above an alarm threshold, the smoke detector 14 enunciates a local, audible alarm and generates an interconnect signal along the interconnect line 26. FIG. 4 illustrates a sample of the interconnect signal along the interconnect line 26 to signal the presence of smoke. Upon detection of smoke, the local detector generates the smoke interconnect signal 33 which transitions from a generally zero voltage level 35 to a +9 volt high state 37. Although a sample of the smoke interconnect signal 33 is shown in FIG. 4, it should be understood that other types of detector systems could include a different type of smoke interconnect signal 33 while operating within the scope of the present invention.


Upon receiving the interconnect signal from the smoke detector 14, both the carbon monoxide detector 12 and the combo detector 16 recognize the representation of the detected smoke condition and generate the correct audible temporal pattern. The combo detector 16 can detect the presence of either smoke or carbon monoxide and generates the different interconnect signals depending upon the type of hazardous condition detected. Based upon the representation of the interconnect signal on the interconnect line 26, the carbon monoxide detector 12 and smoke detector 14 generate the correct temporal pattern for the type of hazardous condition detected and represented by the interconnect signal present on the interconnect line 26.


Although the interconnect signal present on the interconnect line 26 is taught as being a digital signal in the preferred embodiment of the invention, it should be understood that the interconnect signal can take various different forms depending upon the specific configuration of the various detectors 12, 14 and 16. However, in systems that use interconnect signals other than digital, the interconnect signal must still have a different value or pattern depending upon whether the interconnect signal represents a first sensed condition, such as the presence of carbon monoxide, or a second sensed condition, such as the presence of smoke. The at least two different interconnect signals represent the two different types of sensed conditions and are required to ensure that the interconnected detectors generate the correct temporal pattern based upon the detected hazardous condition.


As illustrated in FIG. 1, a multi-function relay module 28 can be connected to the three-wire interconnect system 18. The relay module 28 includes a power input 30, a ground input 32 and an interconnect input 34 that receive the three wires of the three-wire interconnect system 18. The relay module 28 includes an internal relay 36 connected between a normally closed output wire 38, a common, neutral output wire 40 and a normally open output wire 42. The relay 36 includes a movable contact 44 that is selectively movable from the first position shown in FIG. 1 to a second position in which the contact 44 is moved into physical contact with the normally open output wire 42. When the movable contact 44 is moved into contact with the normally open output wire 42, electric power from the source 20 is supplied to the auxiliary devices 46 to activate each of the auxiliary devices. As an example, the auxiliary devices 46 could be strobe lights, sirens, outside lights, exit signals, escape lights, exhaust fans, fire doors or any other type of auxiliary device that may be beneficial upon one of the hazardous condition detectors detecting an alarm condition. Although multiple auxiliary devices 46 are shown in FIG. 1, it should be understood that either a single auxiliary device 46 or any number of auxiliary devices 46 could be connected to the multi-function relay module 28.


Although the auxiliary devices 46 are shown connected to the normally open output wire 42 and are activated upon movement of the movable contact 44, it should be understood that the auxiliary devices 46 could be connected to the normally closed output wire 38 and thus be de-activated when the movable contact 44 moves into contact with the normally open output wire 42. In such a configuration, the auxiliary devices 46 would remain active until the movable contact 44 is moved to the second position.


Referring w to FIG. 2, thereshown is a detailed view of the multi-function relay module 28 constructed in accordance with the present invention. As illustrated, the relay module 28 includes a power supply circuit 47 that receives the supply voltage and regulates the voltage to a value required to operate integrated circuits, namely +33 V DC. The power supply 47 is coupled to a control unit 48 that is in operative communication with a relay unit 50 to control the movement of the movable contact 44 between the first position shown in FIG. 2 and a second position in which the contact 44 moves into contact with the normally open wire 42. In the preferred embodiment of the invention shown in FIG. 2, the control unit 48 is a microcontroller connected to the relay unit 50 through a control line 52. The microcontroller can selectively generate a control signal along the control line 52, which causes the relay unit 50 to move the contact 44 between its first and second positions.


In the embodiment of the invention illustrated in FIG. 2, the relay module 28 includes a detector interconnect interface 54 having an input 56 connected directly to the interconnect line 26 through the interconnect input 34 of the relay module. The detector interconnect interface 54 receives the interconnect signal along the interconnect line 26 and interprets the interconnect signal to determine whether the interconnect signal is indicating the presence of the first sensed condition or the second sensed condition. In the embodiment of the invention described, the first sensed condition is the presence of carbon monoxide as detected by one of the interconnected detectors while the second sensed condition is the detection of smoke.


The interconnect interface 54 interprets the interconnect signal received at the input 56 and provides a signal to the control unit 48 on one of the two control lines 58, 60. For example, if the interconnect interface 54 detects the first sensed condition, the interconnect interface provides a high signal along control line 58 which is received by the control unit 48. Alternatively, if the detector interconnect interface 54 determines that the interconnect signal is indicating the detection of the second sensed condition, the interconnect interface 54 provides a high signal to the control unit 48 along the second control line 60. In this manner, the control unit 48 can determine whether the interconnect signal includes an indication of the first sensed condition or the second sensed condition. Although the preferred embodiment of the invention shows the control unit 48 separate from the interconnect interface 54, it should be understood that the interconnect interface 54 could be incorporated into the control unit 48 while operating within the scope of the present invention.


The multi-function relay module 28 of the present invention further includes a selection input 62 that is directly coupled to the control unit 48 through a restrictor (not shown). The selection input 62 receives a selection signal from the selection line 64 coupled to the selection input. In the embodiment of the invention illustrated in FIG. 2, the selection line 64 is a wire that can be selectively connected to the power supply line 22 or the neutral line 24, or can be left unconnected. The three different positions for the selection line 64 are shown by dashed lines in FIG. 2.


When the selection line 64 is connected to the power supply line 22, the control unit 48 receives an AC voltage at its selection input 62. When the selection line 64 is connected to the neutral line 24, the control unit 48 receives a low, neutral voltage signal at the selection input 62. When the selection line 64 is left unconnected, the control unit receives a floating voltage, which is interpreted by the control unit as being neither the zero voltage ground level nor the power input voltage level. In this manner, the selection line 64 can provide a selection signal to the control unit 48 having one of three states.


As described above, the control unit 48 receives two separate inputs, namely the selection signal and the interconnect signal, and interprets these signals to selectively control the movement of the movable contact 54 within the relay unit 50. FIG. 3 illustrates the preferred operational decision chart used by the control unit 48. As illustrated, when the selection line 64 is connected to the power supply line 22, the microcontroller of the control unit 48 is programmed to respond only to the presence of the first sensed condition, namely the detection of carbon monoxide. In the embodiment of the invention previously described and shown in FIG. 2, the control unit will receive a high signal on the control line 58 when the interconnect interface 54 detects the presence of the first sensed condition as part of the interconnect signal along the interconnect line 26. Thus, when the control unit receives the first state of the selection signal, namely the AC voltage, the control unit 48 will generate a signal along the control line 52 to move the movable contact to a second position only when the interconnect signal indicates the detection of the first sensed condition, namely carbon monoxide.


Referring back to FIG. 3, when the select line 64 is not connected to either the power supply line 22 or the neutral line 24, which corresponds to the second state of the selection signal, the control unit is programmed to respond only to the second sensed condition as part of the interconnect signal, namely the detection of smoke. Thus, when the interconnect interface 54 detects that the interconnect signal present on interconnect line 26 indicates the activation of one of the smoke alarms, the interconnect interface provides a high signal along control line 60 which is received by the control unit 48. Since the control unit is detecting the second state at the selection input, the control unit 48 will generate a control signal to the relay unit 50 to move the movable contact 44 to the second position only when a high signal is present on control line 60.


Finally, when the selection line 64 is connected to the neutral line 24, the microcontroller of the control unit 48 is programmed to respond to either the smoke or carbon monoxide alarm signals. Thus, the control unit will generate the control signal along control line 52 upon a high level at either the first control line 58, indicating the presence of the first sensed condition or a high signal along the second control line 60, indicating the presence of the second sensed condition.


As can be understood above, the microcontroller of the control unit 48 is programmed to selectively respond to either the first sensed condition, the second sensed condition or the presence of either one of the first and second sensed conditions based upon the state of the selection input 62. The state of the selection input is determined by whether the selection line 64, which is preferably a wire, is connected to either the hot, power line 22, the neutral line 24 or is left unconnected to either the power line 22 or the neutral line 24. The microcontroller of the control unit 48 detects the state of the selection input and is programmed to respond by generating a control signal along line 52 to control the movement of the relay unit 50 based upon the state of the selection signal. Thus, by selectively coupling the select line 64 to one of three states, a user can provide a control input to the control unit 48 to select how the control unit 48 will respond to the signal along the interconnect line 26.


Although the present invention has been shown and described with reference to a relay module interconnected within a network of hazardous condition detectors, it should be understood that the relay module 28 could be used in various other applications in which an informational signal is received by the relay module and the relay module selectively responds depending upon the value of the informational signal. The use of the selection line 64 to determine the operation of the control unit 48 allows the single relay module 28 to be utilized with various different types of situations that can be identified by the value of the interconnect signal.

Claims
  • 1. A relay module for use with a series of hazardous condition detectors interconnected by an interconnect line, the relay module comprising: an interconnect input connectable to the interconnect line to receive an interconnect signal from the series of hazardous condition detectors, the interconnect signal indicating the detection of either a first sensed condition or a second sensed condition by one or more of the hazardous condition detectors;a control unit operable to selectively move a relay coupled to the control unit between a first position and a second position; anda selection input coupled to the control unit, wherein the control unit selectively moves the relay to the second position upon the interconnect signal indicating either the first sensed condition, the second sensed condition or both based upon the state of the selection input.
  • 2. The relay module of claim 1 wherein the first sensed condition is the detection of smoke and the second sensed condition is the detection of carbon monoxide.
  • 3. The relay module of claim 1 wherein the selection input can be selected to be one of three different states and the control unit selectively moves the relay to the second position based upon the state of the selection input.
  • 4. The relay module of claim 1 wherein the control unit moves the relay to the second position upon indication of the first sensed condition when the selection input has a first state, wherein the control unit moves the relay to the second position upon indication of the second sensed condition when the selection input has a second state and wherein the control unit moves the relay to the second position upon indication of either the first sensed condition or the second sensed condition when the selection input has a third state.
  • 5. The relay module of claim 4 further comprising a selection wire coupled to the selection input, wherein the selection wire can be selectively coupled to a power supply, a neutral line or unconnected to provide the three different states of the selection input to the control unit.
  • 6. The relay module of claim 1 wherein the control unit receives the interconnect signal and distinguishes between the first sensed condition and the second sensed condition.
  • 7. The relay module of claim 6 wherein the interconnect signal is a digital signal.
  • 8. A relay module for use with a series of hazardous condition detectors interconnected by an interconnect line, the relay module comprising: an interconnect input configured to receive an interconnect signal present on the interconnect line;a control unit operable to selectively move a relay coupled to the control unit between a first position and a second position; anda selection input coupled to the control unit,wherein the control unit selectively moves the relay to the second position based upon the interconnect signal and the state of the selection input.
  • 9. The relay module of claim 8 wherein the interconnect signal indicate the detection of a first sensed condition and a second sensed condition by the interconnected hazardous condition detectors.
  • 10. The relay module of claim 9 wherein the control unit selectively moves the relay to the second state when the interconnect signal indicates either a first sensed condition, a second sensed condition or both based upon the state of the selection input.
  • 11. The relay module of claim 10 wherein the control unit moves the relay to the second position upon indication of the first sensed condition when the selection input has a first state, wherein the control unit moves the relay to the second position upon indication of the second sensed condition when the selection input has a second state and wherein the control unit moves the relay to the second position upon indication of either the first sensed condition or the second sensed condition when the selection input has a third state.
  • 12. The relay module of claim 11 further comprising a selection wire coupled to the selection input, wherein the selection wire can be selectively coupled to a power supply, a neutral line or unconnected to provide the three different states of the selection input.
  • 13. A method of operating a relay module connected to an interconnect line extending between a series of hazardous condition detectors each operable to detect at least one of a first sensed condition and a second sensed condition and generate an interconnect signal along the interconnect line, the method comprising the steps of: receiving an interconnect signal from the interconnect line at a control unit of the relay module;determining whether the first sensed condition or the second sensed condition has been detected based upon the interconnect signal;receiving a selection signal at the control unit; andselectively moving a relay from a first position to a second position based upon whether the first sensed condition, the second sensed condition or both are indicated on the interconnect signal and the state of the selection signal.
  • 14. The method of claim 13 wherein the selection signal includes at least three states.
  • 15. The method of claim 14 further comprising the steps of: moving the relay to the second position upon detection of the first sensed condition on the interconnect signal and receipt of a first state of the selection signal;moving the relay to the second position upon detection of the second sensed condition on the interconnect line and receipt of a second state of the selection signal; andmoving the relay to the second position upon detection of the first sensed condition or the second sensed condition on the interconnect signal and receipt of a third state of the selection signal.
  • 16. The method of claim 13 wherein the first sensed condition is the detection of smoke and the second sensed condition is the detection of carbon monoxide.
  • 17. The method of claim 14 further comprising the steps of: connecting a selection wire to a selection input of the relay module;selectively coupling the selection wire to a power supply to define a first state of the selection signal;selectively coupling the selection wire to a neutral line to define a second state of the selection signal; andallowing the selection wire to remain unconnected to define a third state of the selection signal.
  • 18. The method of claim 13 further comprising the steps of: receiving the interconnect signal at a detector interconnect interface coupled to the control unit;interpreting the interconnect signal to determine whether the first sensed condition or the second sensed condition has been detected; andproviding an indication of the detection of the first sensed condition or the second sensed condition to the control unit.