Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow

Information

  • Patent Grant
  • 7422563
  • Patent Number
    7,422,563
  • Date Filed
    Thursday, February 21, 2002
    22 years ago
  • Date Issued
    Tuesday, September 9, 2008
    16 years ago
Abstract
Disclosed herein are devices for altering gaseous flow within a lung to improve the expiration cycle of an individual, particularly individuals having Chronic Obstructive Pulmonary Disease (COPD). More particularly, devices are disclosed to produce collateral openings or channels through the airway wall so that expired air is able to pass directly out of the lung tissue to facilitate both the exchange of oxygen ultimately into the blood and/or to decompress hyper-inflated lungs.
Description
FIELD OF THE INVENTION

The invention is directed to devices for altering gaseous flow within a lung to improve the expiration cycle of an individual, particularly individuals having Chronic Obstructive Pulmonary Disease (COPD). More particularly, devices are disclosed to produce collateral openings or channels through the airway wall so that expired air is able to pass directly out of the lung tissue to facilitate both the exchange of oxygen ultimately into the blood and/or to decompress hyper-inflated lungs.


BACKGROUND OF THE INVENTION

The term “Chronic Obstructive Pulmonary Disease” (COPD) is generally used to describe the disorders of emphysema and chronic bronchitis. Previously, COPD was also known as Chronic Obstructive Lung Disease (COLD), Chronic Airflow Obstruction (CAO), or Chronic Airflow Limitation (CAL). Some also consider certain types of asthma to fall under the definition of COPD. Emphysema is characterized by an enlargement of air spaces inside the lung. Hence, emphysema is an anatomic definition and it can only be presumed in a living patient. Chronic bronchitis is characterized by excessive mucus production in the bronchial tree. Chronic bronchitis is a clinical definition and denotes those individuals who meet criteria defining the disease. It is not uncommon for an individual to suffer from both disorders.


In 1995, the American Lung Association (ALA) estimated that between 15-16 million Americans suffered from COPD. The ALA estimated that COPD was the fourth-ranking cause of death in the U.S. The ALA estimates that the rates of emphysema is 7.6 per thousand population, and the rate for chronic bronchitis is 55.7 per thousand population.


Those inflicted with COPD face disabilities due to the limited pulmonary functions. Usually, individuals afflicted by COPD also face loss in muscle strength and an inability to perform common daily activities. Often, those patients desiring treatment for COPD seek a physician at a point where the disease is advanced. Since the damage to the lungs is irreversible, there is little hope of recovery. Most times, the physician cannot reverse the effects of the disease but can only offer treatment and advice to halt the progression of the disease.


To understand the detrimental effects of COPD, the workings of the lungs requires a cursory discussion. The primary function of the lungs is to permit the exchange of two gasses by removing carbon dioxide from venous blood and replacing it with oxygen. Thus, to facilitate this exchange, the lungs provide a blood gas interface. The oxygen and carbon dioxide move between the gas (air) and blood by diffusion. This diffusion is possible since the blood is delivered to one side of the blood-gas interface via small blood vessels (capillaries). The capillaries are wrapped around numerous air sacs called alveoli which function as the blood-gas interface. A typical human lung contains about 300 million alveoli.


The air is brought to the other side of this blood-gas interface by a natural respiratory airway, hereafter referred to as a natural airway or airway, consisting of branching tubes which become narrower, shorter, and more numerous as they penetrate deeper into the lung. Specifically, the airway begins with the trachea which branches into the left and right bronchi which divide into lobar, then segmental bronchi. Ultimately, the branching continues down to the terminal bronchioles which lead to the alveoli. Plates of cartilage may be found as part of the walls throughout most of the airway from the trachea to the bronchi. The cartilage plates become less prevalent as the airways branch. Eventually, in the last generations of the bronchi, the cartilage plates are found only at the branching points. The bronchi and bronchioles may be distinguished as the bronchi lie proximal to the last plate of cartilage found along the airway, while the bronchiole lies distal to the last plate of cartilage. The bronchioles are the smallest airways that do not contain alveoli. The function of the bronchi and bronchioles is to provide conducting airways that lead inspired air to the gas-blood interface. However, these conducting airways do not take part in gas exchange because they do not contain alveoli. Rather, the gas exchange takes place in the alveoli which are found in the distal most end of the airways.


The mechanics of breathing include the lungs, the rib cage, the diaphragm and abdominal wall. During inspiration, inspiratory muscles contract increasing the volume of the chest cavity. As a result of the expansion of the chest cavity, the pleural pressure, the pressure within the chest cavity, becomes sub-atmospheric with respect to the pressure at the airway openings. Consequently, air flows into the lungs causing the lungs to expand. During unforced expiration, the expiratory muscles relax and the lungs begin to recoil and reduce in size. The lungs recoil because they contain elastic fibers that allow for expansion, as the lungs inflate, and relaxation, as the lungs deflate, with each breath. This characteristic is called elastic recoil. The recoil of the lungs causes alveolar pressure to exceed the pressure at airway openings causing air to flow out of the lungs and deflate the lungs. If the lungs' ability to recoil is damaged, the lungs cannot contract and reduce in size from their inflated state. As a result, the lungs cannot evacuate all of the inspired air.


In addition to elastic recoil, the lung's elastic fibers also assist in keeping small airways open during the exhalation cycle. This effect is also known as “tethering” of the airways. Such tethering is desirable since small airways do not contain cartilage that would otherwise provide structural rigidity for these airways. Without tethering, and in the absence of structural rigidity, the small airways collapse during exhalation and prevent air from exiting thereby trapping air in within the lung.


Emphysema is characterized by irreversible biochemical destruction of the alveolar walls that contain the elastic fibers, called elastin, described above. The destruction of the alveolar walls results in a dual problem of reduction of elastic recoil and the loss of tethering of the airways. Unfortunately for the individual suffering from emphysema, these two problems combine to result in extreme hyperinflation (air trapping) of the lung and an inability of the person to exhale. In this situation, the individual will be debilitated since the lungs are unable to perform gas exchange at a satisfactory rate.


One further aspect of alveolar wall destruction is that the airflow between neighboring air sacs, known as collateral ventilation or collateral air flow, is markedly increased as when compared to a healthy lung. While alveolar wall destruction decreases resistance to collateral ventilation, the resulting increased collateral ventilation does not benefit the individual since air is still unable to flow into and out of the lungs. Hence, because this trapped air is rich in CO2, it is of little or no benefit to the individual.


Chronic bronchitis is characterized by excessive mucus production in the bronchial tree. Usually there is a general increase in bulk (hypertrophy) of the large bronchi and chronic inflammatory changes in the small airways. Excessive amounts of mucus are found in the airways and semisolid plugs of this mucus may occlude some small bronchi. Also, the small airways are usually narrowed and show inflammatory changes.


Currently, although there is no cure for COPD, treatment includes bronchodilator drugs, and lung reduction surgery. The bronchodilator drugs relax and widen the air passages thereby reducing the residual volume and increasing gas flow permitting more oxygen to enter the lungs. Yet, bronchodilator drugs are only effective for a short period of time and require repeated application. Moreover, the bronchodilator drugs are only effective in a certain percentage of the population of those diagnosed with COPD. In some cases, patients suffering from COPD are given supplemental oxygen to assist in breathing. Unfortunately, aside from the impracticalities of needing to maintain and transport a source of oxygen for everyday activities, the oxygen is only partially functional and does not eliminate the effects of the COPD. Moreover, patients requiring a supplemental source of oxygen are usually never able to return to functioning without the oxygen.


Lung volume reduction surgery is a procedure which removes portions of the lung that are over-inflated. The improvement to the patient occurs as a portion of the lung that remains has relatively better elastic recoil which allows for reduced airway obstruction. The reduced lung volume also improves the efficiency of the respiratory muscles. However, lung reduction surgery is an extremely traumatic procedure which involves opening the chest and thoracic cavity to remove a portion of the lung. As such, the procedure involves an extended recovery period. Hence, the long term benefits of this surgery are still being evaluated. In any case, it is thought that lung reduction surgery is sought in those cases of emphysema where only a portion of the lung is emphysematous as opposed to the case where the entire lung is emphysematous. In cases where the lung is only partially emphysematous, removal of a portion of emphysematous lung increases the cavity area in which the non-diseased parenchyma may expand and contract. If the entire lung were emphysematous, the parenchyma is less elastic and cannot expand to take advantage of an increased area within the lung cavity.


Both bronchodilator drugs and lung reduction surgery fail to capitalize on the increased collateral ventilation taking place in the diseased lung. There remains a need for a medical procedure that can alleviate some of the problems caused by COPD. There is also a need for a medical procedure that alleviates some of the problems caused by COPD irrespective of whether a portion of the lung, or the entire lung is emphysematous.


The present invention addresses the problems caused by COPD by providing a device configured to create collateral openings through an airway wall which allows expired air to pass directly out of the lung tissue responsible for gas exchange. These collateral openings ultimately decompress hyper inflated lungs and/or facilitate an exchange of oxygen into the blood.


Furthermore, there is also a need for devices that are able to access remote areas of the body to provide dual functions of locating an acceptable site for removal or cutting of tissue and then removing or cutting the tissue without having to reposition the device. Such a need is evident in dynamically moving environments (e.g., the lungs) where repositioning of a device to find the original target site may be difficult.


Doppler ultrasound is an effective means to determine the presence or absence of a blood vessel within tissue. It is known that sound waves at ultrasonic frequencies travel through tissue and reflect off of objects/interfaces where density gradients exist. In such a case, the reflected signal and the transmitted signal will have the same frequency. Alternatively, in the case where the signal is reflected from the blood cells moving through a blood vessel, the reflected signal will have a shift in frequency from the transmitted signal. This shift is known as a Doppler shift. However, since the characteristics of components used to detect a Doppler shift vary from characteristics of components used to cut or remove tissue, it is difficult to cut or remove tissue in precisely the same location and immediately after detection has taken place. It is usually required that the component or device used to detect any Doppler shift first must be moved to allow a second component or device to cut or remove the tissue at the same precise location. For instance, if a device uses energy to create an opening or ablate tissue, the energy delivery components may not have acceptable characteristics to function as Doppler components. Furthermore, the process of delivering energy through the device may undesirably impact any Doppler components.


When using Doppler in tissue it is noted that the acoustic impedance of the ultrasound transducer and the acoustic impedance of tissue differ significantly. As a result, the ultrasound signal may experience significant reflection and divergence at the tissue/transducer interface. To address this issue, a tip or lens may be used as an interface between the transducer and tissue.


In common Doppler ultrasound applications, a tip material is selected to provide an optimum acoustic match between the ultrasonic transducer and tissue. This optimum acoustic match is the geometric mean impedance between the tissue and the transducer material, governed by the following equation.

Zoptimum=(Ztissue×Ztransducer)^½


Where Zoptimum is the desired acoustic impedance of the tip material; Ztissue is the acoustic impedance of tissue; and Ztranducer is the acoustic impedance of the transducer. Generally, Ztissue ranges from 1.38 MRayls (for fat) to 1.70 MRayls (for muscle), while Ztransducer is approximately 30 MRayls for ceramic transducer materials. Therefore, using Ztransducer of 1.54 MRayls (the average acoustic impedance for tissue) the desirable tip material should have an acoustic impedance around 6.79 MRayls.


Most materials having an acoustic impedance close to this range are made of epoxy composites and range from, for example, 1.78 MRayls for a methylpentene copolymer (e.g., TPX, Matsui Plastics, White Plains, N.Y.) to 4.39 MRayls for high temperature plastics (e.g., CELAZOLE, Curbell Plastics, Glenshaw, Pa.).


One drawback to using Doppler ultrasound devices for placing collateral openings in tissue is that conventional tip materials selected for their desirable acoustic impedance are not effective to deliver energy (e.g., RF, resistive heat, etc.) The acoustic impedance of electrically and thermally conductive materials is higher than the desired acoustic impedance of 6.79 MRayls. For example, Zaluminum is approximately 18 MRayls, Ztitanium is approximately 27 MRayls, and Zstainless steel is approximately 45 MRayls.


Another drawback to delivering energy through devices configured for Doppler applications is that the transducer is prone to being damaged. For example, when used to deliver therapeutic RF energy, an electrically conductive tip experiences heating. If a sufficient amount of heat is conducted from the tip, the transducer may depolarize. Moreover, conduction of heat through the device may adversely affect the joints and bonds between the transducer, tip and device. As a result, there is the potential of a catastrophic failure of the device if the assembly breaks apart during use in the body.


In view of the above, the present invention provides a device capable of locating an acceptable site for the creation of a collateral opening and then creating an opening in the tissue using a device capable of both functions. While the present invention is discussed as having applicability to creation of collateral openings it was found to have utility for other applications as well. For example, the present invention is suited for the application of energy to tissue in a safe manner (e.g., tumor ablation, tissue removal, application of heat to structures within the body, etc.). Especially when there is a need to avoid blood vessels, or other tissue/organs/structures. The invention has applicability given a need to use of Doppler effect to locate movement within tissue and then apply energy based on the observation of the Doppler effect.


Methods and devices for creating, and maintaining collateral channels are also discussed in U.S. patent application Ser. No. 09/633,651, filed on Aug. 7, 2000; U.S. patent application Ser. Nos. 09/947,144, 09/946,706, and 09/947,126 all filed on Sep. 4, 2001; U.S. Provisional Application No. 60/317,338 filed on Sep. 4, 2001, and 60/334,642 filed on Nov. 29, 2001, whereas the entirety of each listed application is incorporated by reference herein.


SUMMARY OF THE INVENTION

The invention related to devices for applying energy to tissue. The invention includes an elongate member having a proximal portion and a distal portion; a transducer assembly located towards the distal portion of the elongate member, and an electrically conductive tip located at a distal end of the elongate member adjacent to the transducer assembly and having a front and back surface, the back surface being in acoustical communication with the transducer assembly wherein the tip is adapted to communicate a source signal from the transducer assembly out through the front surface, the tip also being adapted to communicate a reflected signal from the front surface to the transducer; and at least two conducting members extending through at least a portion of the elongate member, at least one of the conducting members capable of electrically coupling an RF energy supply to the tip.


The tip of the device functions to direct signals to and from the transducer assembly as well as conduct electro-surgical energy (e.g., RF energy) to desired areas. As such, to accommodate the nature of electrically conductive materials so that they function as an acceptable Doppler tip, variations of the invention include tips that have a length selected from a multiple of one quarter of a wavelength of the source signal.


The invention further includes transducer assemblies wherein the transducer assembly comprises a covering having a proximal and distal end, at least one transducer having at least a first and second pole, at least a portion of the transducer being located within the covering, a first conductive medium in contact with the first pole of the transducer and extending to at least a portion of an outer surface of the covering, and wherein at least a first of the conducting members is electrically coupled to the first conductive medium, and a second of the conducting members extends through the proximal end of the covering and electrically couples to the second pole of the transducer.


The invention may include insulating layers that serve to protect tissue and/or parts of the device from unwanted heating. The elongate member of the device may also serve as the insulating layer or as additional insulation.


The invention also includes a transducer assembly that is configured to minimize the size of the device so that it may access deeper regions of the body (e.g., deeper regions of airways in the lungs). The transducer assembly may include a covering that is either conductive or is covered by a conductive medium. As such, the covering (or conductive medium) provides an electrical path to a pole of the transducer, thereby eliminating the need for a separate electrical connection. The conductive covering (or conductive medium) may optionally be used as an electrical path to a conductive tip.


The invention also includes a medical device for detecting Doppler shift and for applying energy to tissue, the medical device comprising an elongate member having a proximal portion and a distal portion; a transducer means (e.g., a transducer assembly as described herein) for generating a source signal and for receiving a reflected signal wherein the transducer means is located towards the distal portion of the elongate member; a directing means (e.g., a tip as described herein) for directing the source signal and the reflected signal, the signal directing means located at a distal end of the distal portion of the elongate member and being in acoustical communication with the transducer means, and a first conducting member and a second conducting member both extending through at least a portion of the elongate member, the conducting members electrically coupled to at least the transducer assembly.


The signal directing means described above may also be adapted to direct or deliver energy to tissue.


The invention also includes methods of locating a site to apply energy to tissue and applying energy to tissue. These methods include generating a source signal with a transducer, transmitting the source signal through an electrically conductive electrode to the tissue, receiving a reflected signal, determining any difference in frequency between the source signal and reflected signal, and applying energy to tissue using the electrically conductive electrode. In the present invention, the electrically conductive tip may serve as the electrically conductive electrode.


The methods include receiving the reflected signal through the electrically conductive electrode. The electrically conductive electrode may comprise a material selected from the group consisting of aluminum, titanium, stainless steel. Or, the electrically conductive electrode may comprise a non-electrically conductive material coated with an electrically conductive material.


The methods include generating the source signal using pulsed wave ultrasound. In such a case the source signal may have a pulse length equal to or less than (preferably half of) the time required for the reflected signal to return from a first area of interest.


The method includes determining any difference in frequency between the source signal and reflected signal starting at the time required for the reflected signal to return from the first area of interest and ending at the time required for the reflected signal to return from a second area of interest. In such cases, the first and second areas of interest may include the range of depth of penetration for determining the Doppler effect.


The invention includes kits containing the inventive device with any one or more of the following components, an RF energy supply, a Doppler ultrasound controller, a conduit as described in one or more of the applications listed herein, and a bronchoscope/endoscope.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C illustrate various states of the natural airways and the blood-gas interface.



FIG. 1D illustrates a schematic of a lung demonstrating a principle of the effect of collateral channels placed therein.



FIGS. 2A-2C are side views of variations of the invention having an electrically conductive tip which is able to function as a Doppler tip as well as create the collateral channels.



FIGS. 3A-3D illustrate examples of tip configurations of the present invention.



FIGS. 4A-4B illustrate cross sectional views of examples of transducer assemblies of the present invention.



FIGS. 5A-5E illustrate various configurations used to deliver energy to the tip of the inventive device.



FIGS. 6A-6B show sectional views of the inventive device where a conductive medium also serves to attach a tip to the device.



FIGS. 7A-7E illustrate various configurations to retain a tip to devices of the present invention.



FIG. 8 illustrates an insulating layer on the device.



FIGS. 9A-9C shows the device when used to create a collateral channel in the airways of the lung.



FIGS. 10A-10B illustrate time-of-flight diagrams for the Doppler echo signal used to determine the Doppler control settings.



FIG. 10C illustrates an example of a schematic representation of a pulsed wave Doppler electronic system for use with the inventive device.





DETAILED DESCRIPTION OF THE INVENTION

Prior to considering the invention, simplified illustrations of various states of a natural airway and a blood gas interface found at a distal end of those airways are provided in FIGS. 1A-1C. FIG. 1A shows a natural airway 100 which eventually branches to a blood gas interface 102. FIG. 1B illustrates an airway 100 and blood gas interface 102 in an individual having COPD. The obstructions 104 (e.g., excessive mucus resulting from COPD, see above) impair the passage of gas between the airways 100 and the interface 102. FIG. 1C illustrates a portion of an emphysematous lung where the blood gas interface 102 expands due to the loss of the interface walls 106 which have deteriorated due to a bio-chemical breakdown of the walls 106. Also depicted is a constriction 108 of the airway 100. It is generally understood that there is usually a combination of the phenomena depicted in FIGS. 1A-1C. More usually, the states of the lung depicted in FIGS. 1B and 1C are often found in the same lung.


The following illustrations are examples of the invention described herein. It is contemplated that combinations of aspects of specific embodiments/variations or combinations of the specific embodiments/variations themselves are within the scope of this disclosure.


As will be explained in greater detail below, the production and maintenance of collateral openings or channels through airway walls permits expired air to pass directly out of the lung tissue and into the airways to ultimately facilitate exchange of oxygen into the blood and/or decompress hyper inflated lungs. The term ‘lung tissue’ is intended to include the tissue involved with gas exchange, including but not limited to, gas exchange membranes, alveolar walls, parenchyma and/or other such tissue. To accomplish the exchange of oxygen, the collateral channels allow fluid communication between an airway and lung tissue. Therefore, gaseous flow is improved within the lung by altering or redirecting the gaseous flow within the lung, or entirely within the lung.



FIG. 1D illustrates a schematic of a lung 118 to demonstrate a benefit of the production and maintenance of collateral openings or channels through airway walls. As shown, a collateral channel 112 (located in an airway wall 110) places lung tissue 116 in fluid communication with airways 100 allowing expired air to directly pass out of the airways 100. The term channel is intended to include an opening, cut, slit, tear, puncture, or any other conceivable artificially created opening. As shown, constricted airways 108 may ordinarily prevent air from exiting the lung tissue 116. In the example illustrated in FIG. 1D, there is no implanted structure placed in the collateral channel 112. However, conduits (not shown) may be placed in the collateral channels 112 to assist in maintaining the patency of the collateral channels 112. Examples of conduits may be found in the applications discussed above. While there is no limit to the number of collateral channels which may be created, it is preferable that 1 or 2 channels are placed per lobe of the lung. For example, the preferred number of channels is 2-12 channels per individual patient. In current trials, it was found that 1-4 channels placed per lobe of the lung and 4-16 channels per individual patient was preferable. This number may vary on a case by case basis. For instance, in some cases an emphysematous lung may require 3 or more collateral channels in one or more lobes of the lung.


In the following explanation of figures, similar numerals may represent similar features for the different variations of the invention. The invention herein is described by examples and a desired way of practicing the invention is described. However, the invention as claimed herein is not limited to that specific description in any manner. Equivalence to the description as hereinafter claimed is considered to be within the scope of protection of this patent.


The devices of the present invention are configured to locate a target site for creation of a collateral channel in the tissue and to create an opening in tissue. As discussed above, a benefit of this combination feature is that a single device is able to select a target location and then create an opening without having been moved. Although the device is discussed as being primarily used in the lungs, the device is not limited as such and it is contemplated that the invention has utility in other areas as well, specifically in applications in which blood vessels or other structures must be avoided while cutting or removing tissue (one such example is tumor removal.)


The present invention includes the use of a device which is able to detect the presence or absence of a blood vessel by placing a front portion of the device in contact with tissue. One variation of the invention includes the use of Doppler ultrasound to detect the presence of blood vessels within tissue. However, the frequency of the signals is not limited to the ultrasonic range, for example the frequency may be within the range of human hearing, etc.


The ultrasound Doppler operates at any frequency in the ultrasound range but preferably between 2 Mhz-30 Mhz. It is generally known that higher frequencies provide better resolution while lower frequencies offer better penetration of tissue. In the present invention, because location of blood vessels does not require actual imaging, there may be a balance obtained between the need for resolution and for penetration of tissue. Accordingly, an intermediate frequency may be used (e.g., around 8 Mhz). A variation of the invention may include inserting a fluid into the airway to provide a medium for the Doppler sensors to couple to the wall of the airway to detect blood vessels. In those cases where fluid is not inserted, the device may use mucus found within the airway to directly couple the sensor to the wall of the airway.



FIG. 2A illustrates a variation of a device 200 of the present invention where a tip 204 of the device has a conductive portion, (e.g., is made from a conductive material or has a conductive coating) allowing the tip to serve as both an acoustic lens and an RF electrode. Accordingly, the tip 204 is connected to an RF generator 188 for creating channels within tissue and a transducer assembly 202 is placed in communication with an analyzing device 190 that is adapted to measure the Doppler shift between generated and reflected signals. It is contemplated that, throughout this disclosure, the transducer assembly 202 may be a transducer or a transducer coupled with a covering and other components. In this variation, the tip 204 may be separated from the transducer 202, but both the tip 204 and transducer 202 are in acoustic communication through the use of a separation medium 211. The separation medium 211 transmits signals between the tip 204 and the transducer 202. In some variations of the invention, the spacing of the transducer 202 from the tip 204 serves to prevent heat or RF energy from damaging the transducer 202. It is intended that the spacing between the transducer 202 and tip 204 shown in the figures is for illustration purposes only. Accordingly, the spacing may vary as needed. The separation medium must have acceptable ultrasound transmission properties and may also serve to provide additional thermal insulation as well. For example, an epoxy as describe herein, may be used for the separation medium.


It is also contemplated that the inventive device may create openings in tissue using any type of energy capable of removing/ablating tissue. For example, either RF energy, or a focused ultrasound may be used.



FIG. 2B illustrates a sectional side view of a variation of the inventive device 200. The device 200 includes a transducer assembly 202. As shown in the figure, an electrically conductive tip 204 is adjacent to the transducer assembly 202 and at a distal end of the elongate member 218. The transducer assembly 202 is located towards a distal portion of the elongate member 218. The transducer assembly of any variation of the present invention may be located within the elongate member, or it may be located within a portion of the tip of the device. In any case, the transducer assembly will be located towards the distal portion of the elongate member. The elongate member 218 of the present invention may or may not have a lumen extending therethrough. The elongate member described herein may be comprised of any commercially available medical-grade flexible tubing. Furthermore, the elongate member may be selected from material that provides insulation from the heat generated by the device. For example, the elongate member may comprise a PTFE material. In such cases, the elongate member will provide insulation for tissue that is adjacent to the area where creation of a collateral channel is desired. Also, in some cases, insulation may be required to prevent damage to the transducer assembly.


The device 200 further includes a first conducting member 220 and a second conducting member 222 (e.g., wires) both extending through at least a portion of elongate member 218 to the transducer assembly 202. The conducting members 220, 222 may extend through a lumen of the elongate member 218 or may extend in the wall of the elongate member 218. In any case, the conducting members 220, 220 provide the energy and controls for the transducer assembly 202. For example, the conducting members 220, 222 may be coupled to an ultrasound source 190. Moreover, variations of the inventive device include conducting members 220, 222 which may be comprised of a series of wires, with one set of wires being coupled to respective poles of the transducer, and any number of additional sets of wires extending through the device. Ultimately, the wires enable the device to couple to energy and control units. Although not illustrated, the device 200 may also include an outer sheath (not shown in FIG. 2B) in which the device 200 may be advanced to a target tissue site.



FIG. 2C illustrates another variation of a device 200 for creating collateral channels. In this variation, a transducer assembly 202 is provided with a conductive tip 204 having a flatter front surface 240. It should be noted that the shape of the tips illustrated in FIGS. 2A-2C are intended to illustrate examples of tips for the present invention, the shapes of the tips are not meant to be limited to any particular variation of the device. The tip 204 is located adjacent to a covering 206 of the transducer assembly 202. The transducer assembly 202 is located towards a distal portion of the elongate member 218. In the variation depicted in FIG. 2C the device 200 also includes an (optional) outer sheath 226. As illustrated, the conductive tip 204 may be coupled to an energy source 188 using one of the conducting members 220 or 222. In such a case, the tip 204 will be electrically coupled to one of the conducting members.


Although the transducer assembly is adapted to generate a source signal and receive a reflected signal, variations of the invention may omit the transducer covering and other structures not necessary to generate a source signal and receive a reflected signal. Therefore, it is contemplated that the invention may simply have a transducer that is coupled to a controller.



FIGS. 3A-3D, illustrate possible variations of the tip 204 of the device. It is noted that these variations are provided for illustrative purposes and are not meant to be exhaustive. The tips 204 of the present invention may function as a lens to disperse and/or direct a signal over a substantial portion of the outer surface of the tip 204. The tip 204 also is adapted to disperse and/or direct (e.g., by diffraction) a reflected signal towards the transducer (not shown in FIGS. 3A-3D). Accordingly, given the above described configuration, the inventive device 200 will be able to detect vessels with substantially most of the tip 204. Because most of the tip 204 is able to direct a signal to and from the transducer 208, this device 200 may detect vessels through a greater range of motion (e.g., as opposed to requiring the device 200 to be orthogonal to the tissue.) Furthermore, the tip may comprise a directing means.


The tip 204 is designed such that it interferes and redirects the signals in a desired direction in a manner like a lens. It also may be desirable to place an epoxy between the tip 204 and the transducer. Preferably, the epoxy is thin and applied without air gaps, bubbles or pockets. Also, the density/hardness of the epoxy should provide for transmission of the signal while minimizing any effect or change to the source signal. The configuration of the transducer assembly 202 permits the tip 204 to disperse a signal over a substantial portion of its outer surface 240. The tip 204 also is adapted to refract a reflected signal towards the transducer 208. Accordingly, given the above described configuration, the inventive device will be able to detect vessels with any part or substantially all of the lens 204 that contacts tissue.


Although the tip is of the present invention is able to transmit a source signal and receive a reflected signal, the invention is not limited to requiring both functions. For example, the inventive device could be configured to generate a source signal and direct the source signal to an area of interest but a second device or transducer assembly could be used to receive the reflected signal. Accordingly, a separate device could be used to generate the source signal with the inventive device being used to receive the reflected signal.


The invention contemplates the tip 204 as comprising an electrically conductive material such that energy (e.g., RF energy or thermal energy) may be delivered to the tissue via the tip 204. For example, the tip may comprise titanium, aluminum, or stainless steel, etc. any electrically conductive metal. Also, the tip 204 may be comprised of any material suitable for ultrasound applications but is not particularly electrically conductive. In such a case, the tip will have an electrically conductive coating about at least a portion of the tip. These tip materials include dimethyl pentene, a methylpentene copolymer (plastic-TPX), carbon aerogel, polycarbonate (e.g., Lexan), polystyrene, etc. (e.g., any standard material used for ultrasound applications.) Electrically conductive coatings include gold, silver, tantalum, copper, chrome, or any bio-compatible electrically conductive material, etc. This material may be coated, deposited, plated, painted, wound, wrapped (e.g., a conductive foil), etc. onto the tip 204.


As discussed above, traditional tip materials are selected to provide an optimum acoustic match between the ultrasonic transducer and tissue. Use of such electrically conductive materials do not provide optimum acoustic impedance in Doppler applications. To overcome the problem associated with tip materials having undesirable acoustic impedance, the tip 204 of the present invention is selected to be long enough to avoid excessive heating of the transducer 208 and at a length that minimizes the signal clutter resulting from the use of material.


In view of the above, a tip 204 length is selected in accordance with the following equation:

L=N(λ/4) for Ztransducer>Ztip>Ztissue


Where L=tip length; N=any integer; and λ=wavelength of the signal. It was found that the best performance was obtained by selecting a tip length where N is an odd integer. This minimizes the destructive interference of the signal caused by echoes reverberating within the tip. It was also found that while N=1 was acceptable for the Doppler function, the resulting tip length caused undesirable heating of the transducer. To achieve a balance of a tip length that would prevent unacceptable heating of the transducer, N was chosen to be 7 for one variation of the device. Accordingly, an acceptable length for a titanium tip corresponding to a frequency of 8 Mhz, equals 1.33 mm or 0.052 in.


A measurement of the tip lengths 242 may be seen in FIGS. 3A-3D. FIG. 3A illustrates a variation of the tip 204 having a rounded front surface 240. In this case, the tip length 242 of the entire tip may be selected such that N is an odd integer (e.g., 9) and the length behind the front surface 244 may be selected to be any integer multiple of the wavelength (e.g., 6 or 7). In such an example the length of 242 may be selected, for example, L242=9(λ/4) and L244=7(λ/4).


As illustrated in FIG. 3A, although the front surface 240 of the tip 204 is illustrated as being hemispherical, the tip 204 may have other profiles as well. For example, it is desirable that the tip 204 produce a certain amount of divergence of the signal being passed therethrough. However, depending on a variety of factors (e.g., material, frequency of the signal, etc.) a tip 204 may encounter excessive divergence which is destructive to the outgoing signal. Accordingly, it may be desirable to produce a tip 204 as illustrated in FIG. 3B in which a front surface 240 of the tip 204 is substantially flat. The degree of flatness of the tip 204 will often depend upon experimentation to reduce the amount of destructive reflections, thus minimizing excessive divergence due to differences in speed of sound in tip versus tissue. Use of a materials with higher acoustical impedance, such as titanium and stainless steel, may require a flatter tip due to the resulting divergence of the source signal. FIG. 3C illustrates another variation of a tip 204 having a rounded front surface 240 but with no projections on the sides of the tip 204. FIG. 3D illustrates a tip 204 with a concave front surface 240.


It may also be desirable that the device is configured such that there are no exposed sharp edges that may cause any unintended damage to tissue while the device is being used to determine the presence or absence of a blood vessel. In such a case, for example, the tip may be designed such that it doesn't have sharp edges, or any sharp edges may be covered by other parts of the device (e.g., the elongate member, an outer sheath, etc.)


As discussed herein, for some variations of the invention it is desirable to minimize the size of the device especially at the distal end. Although the invention may be any size, it was found that an overall device diameter of 0.071″ was acceptable. As noted, because the device is advanced through the airways, the device may treat deeper areas in the airways of the lungs given a smaller outside diameter of the distal end of the device. This size also permits delivery of the device into the lungs through the working channel of a standard bronchoscope or endoscope. However, this reduction in size is limited as functionality of the device may suffer. For example, one or more wires will be selected such that they will deliver sufficient RF energy over a desired period of time without experiencing unacceptable heating. Therefore, the smallest acceptable cross sectional area of a single wire or multiple wires will be a balance of the energy delivery requirements of the device versus the characteristics of the wire or wires.



FIGS. 4A-4B illustrate variations of the transducer assembly 202 which are configured to reduce an overall size of the assembly. FIG. 4A illustrates a cross-sectional view of a basic variation of a transducer assembly 202 for use with the present invention. For illustration purposes, the transducer assembly 202 illustrated in FIG. 4A is shown without a tip. The transducer assembly 202 includes at least one transducer 208 (e.g., a piezoelectric transducer.) In this variation, the front surface of the transducer 208 comprises a first pole and the rear surface comprises a second pole.


The transducer or transducers may comprise a piezo-ceramic crystal (e.g., a Motorola PZT 3203 HD ceramic). In the current invention, a single-crystal piezo (SCP) is preferred, but the invention does not exclude the use of other types of ferroelectric material such as poly-crystalline ceramic piezos, polymer piezos, or polymer composites. The substrate, typically made from piezoelectric single crystals (SCP) or ceramics such as PZT, PLZT, PMN, PMN-PT; also, the crystal may be a multi layer composite of a ceramic piezoelectric material. Piezoelectric polymers such as PVDF may also be used. Micromachined transducers, such as those constructed on the surface of a silicon wafer are also contemplated (e.g., such as those provided by Sensant of San Leandro, Calif.) As described herein, the transducer or transducers used may be ceramic pieces coated with a conductive coating, such as gold. Other conductive coatings include sputtered metal, metals, or alloys, such as a member of the Platinum Group of the Periodic Table (Ru, Rh, Pd, Re, Os, Ir, and Pt) or gold. Titanium (Ti) is also especially suitable. The transducer may be further coated with a biocompatible layer such as Parylene or Parylene C.


The covering 206 of the transducer assembly 202 contains the transducer 208. In some variations of the invention, the covering 206 may comprise a conductive material. In such cases the covering 206 itself becomes part of the electrical path to the first pole of the transducer 208. Use of a conductive covering 206 may require insulating material 213 between the sides of the transducer 208, thereby permitting a first conductive medium 214 to electrically couple only one pole of the transducer 208 to the covering 206.


At least a portion of the front surface of the transducer 208, will be in contact with the conductive medium 214. The conductive medium 214 permits one of the poles of the transducer 208 to be placed in communication with a conducting member that is ultimately coupled to a power supply. As shown in this example, the conductive medium 214 places the pole of the transducer 208 in electrical communication with the covering 206. In some variations the conductive medium 214 may coat the entire transducer 208 and covering 206. Alternatively, the conductive medium 214 may be placed over an area small enough to allow for an electrical path between a conducting member and the respective pole of the transducer 208. The conductive medium 214 may be any conductive material (e.g., gold, silver, tantalum, copper, chrome, or any bio-compatible conductive material, etc. The material may be coated, deposited, plated, painted, wound, wrapped (e.g., a conductive foil), etc. onto the transducer assembly 202.


The transducer assembly 202 depicted in FIG. 4A also illustrates conducting members 220, 222 electrically coupled to respective poles of the transducer 208. Optionally, the conducting members 220, 222 may be encapsulated within an epoxy 211 located within the covering 206. The epoxy 211 may extend to the transducer 208 thereby assisting in retaining both the conducting members 220, 222 and transducer 208 within the covering. It may also be desirable to maintain a gap 228 between the transducer 208 and any other structure. It is believed that this gap 228 improves the ability of the transducer assembly 202 to generate a signal.



FIG. 4B illustrates another variation of a transducer assembly 202. In this variation, the conductive medium 214 extends over the entire transducer covering 206. Accordingly, the covering 206 may be made of a non-conducting material (e.g., a polyamide tube, polyetherimide, polycarbonate, etc.) The transducer assembly 202 may further comprise a second tube 216 within the covering 206. This second tube 216 may be a hypo-tube and may optionally be used to electrically couple one of the conducting members to a pole of the transducer 208. As shown, the covering 206 may contain a non-conductive epoxy 210 (e.g., Hysol 2039/3561 with Scotchlite glass microspheres B23/500) which secures both the conducting member and the second tube 216 within the covering 206. This construction may have the further effect of structurally securing the transducer 208 within the assembly 202. Again, a gap 228 may or may not be adjacent to the transducer to permit displacement of the transducer 208.



FIG. 4B also illustrates the assembly 202 as having a conductive epoxy 212 which encapsulates the alternate conducting member 220. An example of a conductive epoxy is Bisphenol epoxy resin with silver particulates to enable conductivity. The particulates may be from 70-90% of the resin composition. The resin may then be combined with a hardener (e.g., 100 parts resin per 6 parts hardener.) The conductive epoxy 212 is in electrical communication with the conductive medium 214 allowing for a conductive path from the conducting member 220 to the conductive medium 214. Accordingly, use of the conductive epoxy 212 secures the conducting member 220 to the assembly 202 while electrically coupling the conducting member 220 to the transducer via the conductive coating 214.



FIG. 5A illustrates a variation of the inventive device 200 having a conductive tip 204 located at the front of the transducer assembly 202. As illustrated, the conductive tip 204 may have a third conducting member (e.g., a wire) electrically coupled directly to the conductive tip 204. However, this configuration requires an elongate member 218 with a diameter larger than that of the transducer assembly 202 to accommodate a wire along side of the transducer assembly 202. It may be desirable to minimize the diameter of the transducer assembly 202 so that the device 200 may fit within the working channel of a bronchoscope or other endoscope. FIG. 5B illustrates another variation of the inventive device 200 which attempts to minimize the size of the elongate sheath 218. As illustrated in FIG. SB, the transducer assembly 202 may have an outer perimeter that is smaller than an inner perimeter of a lumen of the elongate member 218 such that the third conducting member 250 extends along the lumen and parallel to the transducer assembly 202. As shown in FIG. 5C, which is a side view of the variation of FIG. 5B, this variation of the transducer assembly 202 has a non-circular shape to permit passage of the third conducting member 250 along the side of the transducer assembly 202. As shown, the elongate member 218 may have a retaining epoxy 230 placed within the elongate member 218 to secure the third conducting member 250 and to seal any opening in the distal end caused by the difference in size between the transducer assembly 202 and the elongate member 218.



FIG. 5D illustrates another variation used to minimize the size of the device. For sake of illustration, FIG. 5D only illustrates the transducer assembly 202, conducting members 220, 222, tip 204, and transducer 208 (hidden lines.) As discussed above, the transducer assembly 202 will have a conductive medium (not shown) placed on an outside surface. FIG. 5D illustrates a second conductive medium 254 placing the tip 204 in electrical communication with the first conductive medium (not shown.) This configuration permits delivery of energy to the tip 204 via one of the conducting members 220 or 222. Therefore, the need for a separate conducting member is eliminated. It should be noted that the amount of second conductive medium 254 is shown for illustrative purposes only. Moreover, the second conductive medium 254 may be located between the tip 204 and the transducer 208. In such a case, an epoxy (not shown) may be used to secure the tip 204 to the transducer assembly 208. The second conductive medium 254 may be any conductive material (e.g., gold, silver, tantalum, copper, chrome, or any biocompatible conductive material, etc. Furthermore, the second conductive material 254 may be different or the same material as the first conductive material. In the latter case, the device will appear to have a single conductive material. In FIG. 5D, the second conductive medium 254 is shown to be a coating or deposition. However, as discussed herein, the conductive mediums are not limited as such.


When using a second conductive medium 254 to provide the energy supply to a conductive tip 204 it may be desirable to provide a conductive medium 254 of sufficient thickness so that the energy delivered to the tip 204 does not produce unwanted heating of the overall transducer assembly 202. As discussed above, conducting member(s) were sized to provide sufficient energy while minimizing heating of the member. In practice, the device used gold foils having a thickness ranging from 2-10 microns.



FIG. 5E illustrates a variation of the device where the tip 204 of the transducer assembly 202 is covered with the second conductive material 254. Such a configuration may be used when using a tip 204 that is not bio-compatible. For example, as discussed above, a tip 204 comprised of aluminum may offer excellent acoustic characteristics. However, an aluminum tip 204 may not offer the desired bio-compatibility. Accordingly, coating the tip 204 with the second conductive material 254 where it is exposed to tissue may provide the desired bio-compatibility characteristics. In this configuration it will be necessary to provide the second conductive material 254 in sufficient amounts such that it may deliver sufficient energy to the tip 204 while not reducing performance of the transducer assembly 202. It was found that in using an aluminum tip 204 a gold coating of 5-10 microns was sufficient to deliver sufficient energy to the tip 204. Moreover, because 10 microns corresponds to approximately 1/40th of a wavelength (when using 8 Mhz frequency), the thickness of the coating provided very little signal degradation.



FIG. 6A illustrates a variation of the inventive device where the second conductive medium is formed from a spring 260. The spring 260 may be formed from one or more spring wound wires. The wire(s) forming the spring 260 may extend through the device but ultimately couple to an energy source. In such a case, there is a need for an insulation between the spring 260 and the covering 206 or any exposed portion of any conducting members. For example, it was found that two wires of 0.005″ diameter wound into a spring was of sufficient size to conduct sufficient current to the tip 204 without resulting in unwanted heating of the wires. Or, the spring 260 may be coupled to the covering 206 or one of the conducting members for delivery of the energy through the spring 260 to the tip 204. As illustrated, the spring 260 may optionally be secured (e.g., crimped, welded, soldered, glued, or reduced in diameter) about the tip 204 as additional means to retain the tip 204. Moreover, a beneficial feature of the spring 260 is that it provides additional flexibility to the end of the device when articulated in a bronchoscope.



FIG. 6B illustrates another variation of the inventive device 200. In this variation, the second conductive medium comprises a tube 262. The tube 262 may be independently connected to an energy source via a third conducting member 250 (as illustrated.) In such cases, it may be necessary to insulate respective portions of the tube 262 from parts of the transducer assembly 202. Alternatively, the tube 262 may be in electrical communication with a portion of the transducer assembly 202 which supplies the energy to the tip 204. As shown, the tube 262 may optionally be secured (e.g., crimped, or reduced in diameter) about the tip 204. It is noted that the tube 262 may have a cross-sectional shape to match the outer shape of the transducer assembly 202 (e.g., circular, oval, rectangular, etc.) The tube 262 may be a hypo-tube comprised of any conductive and preferably bio-compatible material.



FIGS. 7A-7E illustrate examples of configurations for redundant joints to retain the tip 204 with the device by increasing the retention strength of the tip 204 within the device. It is contemplated that these concepts may be combined as necessary with the variations of the invention disclosed herein.



FIG. 7A illustrates a tip 204 attached to the transducer assembly 202. The tip 204 may be bonded, via a retaining epoxy 230, to either the transducer 208 or to the first conductive medium, such as a gold coating, etc. (not shown.) Naturally, the retaining epoxy 230 should be selected to minimize any interference to the source or return signal. Examples of the retaining epoxy 230 include Epotech 301, Epotech 353, Epotech 377, provided by Epoxy Technology, Inc., Bellerica, Mass. As illustrated in FIG. 7A, the retaining epoxy 230 may run along the sides of the transducer assembly 202 in which case the epoxy 230 may adhere to the elongate member (not shown.) Moreover, the tip 204 may be machined, etched, etc., to contain a plurality of small grooves 232 for seating the retaining epoxy 230. Such a configuration increases the retention strength of the tip 204 within the device and is shown in FIG. 7B which illustrates a magnified view of the section marked 7B found in FIG. 7A. Although not shown, the epoxy 230 may be placed on a lip 234 of the lens 204. In such cases, the epoxy 230 may also adhere to a front end of the elongate member (not shown.)



FIG. 7C illustrates another variation where the tip 204 has a single groove 246 for better retention of the tip 204 in the device. It is noted that the grooves discussed herein may either extend around the entire perimeter of the tip 204 or they may extend over only portions of the tip 204. In the latter case, the term ‘groove’ is intended to include structures such as: dimples, furrows, indentations, pockets, notches, recesses, voids, etc. For sake of illustration, the elongate member is not illustrated in these figures.



FIG. 7D illustrates a variation of a tip 204 having at least one rib 248 which may provide a friction fit with the elongate member 218. The rib 248 may be deformable or rigid.



FIG. 7E illustrates another variation of the invention where the tip has a at least one grove 246 where the elongate member 218 is either crimped or filled into the groove 246. The elongate member 218 may also be reformed using heat such that it forms/flows into the groove 246.



FIG. 8 illustrates a variation of the device 200 with an insulating layer 264 on the distal end of the device 200. The insulating layer 264 may be a coating, sleeve, etc. which prevents heat generated by the device from adversely affecting either tissue or the transducer assembly. The insulating layer 264 may extend over a limited area of the device as needed. Examples of the insulating layer 264 materials include polyimide, silicone, PTFE, FEP, PFA.



FIG. 9A-9C illustrates use of the device within a lung to create a collateral channel in the airway wall tissue. FIG. 9A illustrates the advancement of an access device 120 into the airways 100 of a lung. The access device may be a bronchoscope, endoscope, endotracheal tube with or without vision capability, or any type of delivery device. The access device 120 will have at least one lumen or working channel 122. The access device 120 will locate an approximate site 114 for creation of a collateral channel. In cases where the access device 120 is a bronchoscope or similar device, the access device 120 is equipped so that the surgeon may observe the site for creation of the collateral channel. In some cases it may be desirable for non-invasive imaging of the procedure. In such cases, the access device 120 as well as the other devices discussed herein, may be configured for detection by the particular non-invasive imaging technique such as fluoroscopy, “real-time” computed tomography scanning, or other technique being used.



FIG. 9B illustrates a variation of the inventive device 200 advanced through the channel 122 of the access device 120 towards the site 114. The site 114 is then inspected to determine whether a blood vessel is adjacent to the site.



FIG. 9C illustrates the creation of a collateral channel 112. As shown in FIG. 9C, the device 200 may be manipulated to a position that is optimal for creation of the collateral channel 112. It is noted that either the access device 120 or the inventive device 200 may be steerable. Such a feature may assist in the positioning of any of the devices used in the inventive method. Although it is not illustrated, as discussed herein, it is desirable to create the collateral channel such that it is in fluid communication with an air-sac. The fluid communication allows for the release of trapped gasses from the hyper-inflated lung.


The inventive device is configured to communicate with an analyzing device or control unit 190 adapted to recognize the reflected signal or measure the Doppler shift between the signals. As mentioned above, the source signal may be reflected by changes in density between tissue. In such a case, the reflected signal will have the same frequency as the transmitted signal. When the source signal is reflected from blood moving within a vessel, the reflected signal has a different frequency than that of the source signal. This Doppler effect permits determination of the presence or absence of a blood vessel within tissue. The device may include a user interface which allows the user to determine the presence or absence of a blood vessel at the target site. Typically, the user interface provides an audible confirmation signal. However, the confirmation signal may be manifested in a variety of ways (e.g., light, graphically via a monitor/computer, etc.)


Although depicted as being external to the device 200, it is contemplated that the analyzing device 190 may alternatively be incorporated into the device 200. The transducer assembly of the invention is intended to include any transducer assembly that allows for the observation of Doppler effect, e.g., ultrasound, light, sound etc.


In variations of the invention using pulsed Doppler, the selection of the tip length, as discussed above, sets an important parameter for design of the Doppler pulse length and range gate so that excessive echo signal clutter caused by the use of titanium is reduced before the arrival of the echo signals from the area of interest.


The transmit pulse length is set to be less than the acoustic travel time for an echo signal from the area of tissue to be inspected. This setting allows the receiver to begin recovery from the transmit pulse before the first echo signal arrives at the transducer. As shown in FIG. 10A, the gated gain control and carrier are set based upon the time-of-flight (TOF) of a signal given pre-desired depths at which the device listens for blood vessels.


The values discussed herein are intended to serve as examples only with the underlying calculations being intended to show the methodology used for Doppler detection of blood vessels. For example, during trials it was found that an acceptable minimum and maximum depth of penetration of the device was 0.8 mm and 10 mm respectively. It is noted that depths are often measured as being normal to the surface of the tissue, and because the device will often approach the tissue at an angle to the surface of the tissue, the maximum and minimum ranges Rmax and Rmin used for determining the TOF are adjusted to reflect the normal distance from the tip of the device to the desired depth. (e.g., assuming a 60 degree angle of incidence, and a minimum and maximum depths of 0.8 mm and 10 mm, Rmin=0.92 mm and Rmax=11.55 mm.)


The time for a signal to travel from the tip to and from Rmin equals 2Rmin/Ctissue where Ctissue equals the speed of the signal in tissue (approximately 1540 m/s). The time for a signal to travel back and forth through the tip (assuming a 1.33 mm titanium tip, with Ctitanium=6100 m/s) was found to be 0.44 μs. Therefore, the time for the closest echoes of interest is approximately 1.2 μs plus 0.44 μs or 1.64 μs. The Transmit Pulse Length is then set to be less than time for the closest echoes of interest, preferably about ½ of 1.64 μs or ˜0.82 μs. Setting the Transmit Pulse Length to be less than the time for the closest echoes of interest allows the receiver to begin recovery from the reverberation of the transmit pulse in the titanium tip before the first echo signals arrives back at the transducer. As a result, the controller is configured to listen for the first Doppler echo signal starting at the earliest time the first echo signal will return. Based upon the above example, this time is 1.64 μs.


Using a combination of a gated gain control applied to the receiver and a gated carrier applied to the demodulator, the Doppler echo signals are thereafter received until a time that echoes return from the deepest area of interest (e.g., as noted above, 10 mm). This value is calculated based upon the TOF from the tip to the deepest area of interest (15 μs, calculated from 2Rmax/Ctissue.) plus the TOF through the tip (0.44 μs as discussed above.) Accordingly, Doppler signals from tissue of up to 1 cm of depth (Rmax) may be received up to 15.44 μs. FIG. 10B illustrates the above calculated values as applied to the TOF diagram. As noted above, these values are intended to be exemplary and illustrate the methodology used in determining the timing for the Doppler system. Accordingly, these values may also be adjusted depending upon the desired depth to be examined.



FIG. 10C illustrates an example of a schematic representation of a pulsed wave Doppler electronic system for use with the inventive device. The electronics system uses standard circuit elements.


As illustrated, the timing control 281 supplies timing and control signals to the Doppler transmitter 282, the Doppler receiver 288, and the Doppler demodulator 290. The Doppler transmitter 282 amplifies an applied signal applied to generate a transmit pulse which is ultimately applied to the device 200. In one example, the transmit pulse, had a center frequency of 8 MHz and a pulse length of approximately 1 μs and an amplitude of 15 V peak. The transducer at the distal tip of the device 200 converts the transmit pulse into an acoustic pulse. As the acoustic pulse travels through the tissue and blood the structures and cells produce reflections that travel back toward the probe tip and there converted from acoustic echoes to electrical echo signals 287. These echo signals 287 consist of a mixture of signals, some of a frequency equal to that of the transmitted signal (echoes from stationary structures in the ultrasonic field), and some echoes that are shifted in frequency by the Doppler effect. The echo signals 287 are amplified by the Doppler receiver 288. A gated gain control 284 is set to start increasing gain after the transmit pulse ends but soon enough for echo signals 287 of interest to be amplified. The gated gain control 284 lasts until echo signals 287 from the deepest structures of interest have been amplified. These echo signals 287 are demodulated in the Doppler demodulator 290 using a gated carrier 285 in order to produce demodulated echo signals 291 that contain Doppler signals from moving blood cells at audio frequencies. The demodulated echo signals 291 are then filtered and amplified by the Doppler audio processor 292 to improve the signal fidelity of the Doppler audio signals. These filtered and amplified signals are then sent to the Audio Speaker 293.


It is also noted that the device may also designed to have a double shield. First, the twisted pair wires connecting the transducer assembly to the Doppler control unit 190 will be shielded. Furthermore, because the energy supply 188 may be delivered through one of the pair of wires, the outer portion of the catheter that is exposed proximal to the working channel of an endoscope will also be shielded to prevent undesirable conduction of current.

Claims
  • 1. A medical device for applying energy to tissue, the medical device comprising: an elongate member having a proximal portion and a distal portion;a transducer assembly located entirely within an interior of the elongate member and towards said distal portion of said elongate member,an RF tissue-cutting electrode comprising an electrically conductive tip located entirely distally to said transducer assembly at a distal end of said distal portion of said elongate member, said tip having a front face covering said distal end of said distal portion, said tip being adapted to conduct energy to tissue, said tip having a front and back surface, said back surface being in acoustical communication with said transducer assembly wherein said tip is adapted to communicate a source signal from said transducer assembly out through said surface, said tip also being adapted to communicate a reflected signal said front surface to said transducer assembly; andat least two conducting members extending through at least a portion of said elongate member, at least one of said conducting members capable of electrically coupling an RF energy supply to said tip to electrosurgically remove tissue.
  • 2. The medical device of claim 1, wherein a length of said tip is selected from a multiple of one-quarter of said wavelength of said signal.
  • 3. The medical device of claim 2, wherein said length of said tip is approximately seven-quarters of said wavelength of said signal.
  • 4. The medical device of claim 1, wherein said tip comprises a material selected from the group consisting of titanium, aluminum, and stainless steel.
  • 5. The medical device of claim 1, wherein the tip comprises an electrically conductive coating about at least a portion of the tip.
  • 6. The medical device of claim 1, wherein the tip is adapted as a lens to disperse the signal over a substantial portion of an outer surface of the tip.
  • 7. The medical device of claim 1, wherein the tip is adapted to direct the signal toward the ultrasonic transducer.
  • 8. The medical device of claim 1, wherein the tip has a substantially flat surface.
  • 9. A catheter comprising: a proximal section, a flexible intermediate section, a distal section, and a distal end;a blood vessel sensor means comprising an ultrasonic transducer, said ultrasonic transducer adapted to emit and receive ultrasonic signals; andan electrosurgical cutting means for cutting tissue comprising an electrode located entirely distally to said ultrasonic transducer and attached to said distal end of said catheter, said electrode being connected to an energy source, and said electrode and said ultrasonic transducer being positioned such that when ultrasonic signals are emitted and received by said ultrasonic transducer said signals are transmitted through said electrode.
  • 10. The catheter of claim 9, wherein a length from the ultrasonic transducer to the distal end is selected from a multiple of one-quarter of a wavelength of said the ultrasonic signal.
  • 11. The catheter of claim 10, wherein the length from the ultrasonic transducer to the distal end is approximately seven-quarters of the wavelength of said the ultrasonic signal.
  • 12. The catheter of claim 9, wherein the distal section comprises a material selected from the group consisting of titanium, aluminum, and stainless steel.
  • 13. The catheter of claim 9, wherein said catheter comprises an insulating material.
  • 14. The catheter of claim 9, wherein the distal end comprises an electrically conductive coating about at least a portion of the distal end.
  • 15. The catheter of claim 9, wherein the distal end is adapted as a lens to disperse the signal over a substantial portion of an outer surface of the distal end.
  • 16. The catheter of claim 9, wherein the distal end is adapted to direct the signal toward the ultrasonic transducer.
US Referenced Citations (360)
Number Name Date Kind
2127903 Bowen Aug 1938 A
3174851 Buehler et al. Mar 1965 A
3351463 Rozner et al. Nov 1967 A
3433226 Boyd Mar 1969 A
3556079 Omizo Jan 1971 A
3565062 Kuris Feb 1971 A
3617060 Leggi Nov 1971 A
3753700 Harrison et al. Aug 1973 A
3779234 Eggleton et al. Dec 1973 A
3823717 Pohlman et al. Jul 1974 A
3942530 Northeved Mar 1976 A
4249539 Vilkomerson et al. Feb 1981 A
4249541 Pratt Feb 1981 A
4319580 Colley et al. Mar 1982 A
4355426 MacGregor Oct 1982 A
4407294 Vilkomerson Oct 1983 A
4431006 Trimmer et al. Feb 1984 A
4503569 Dotter Mar 1985 A
4534761 Raible Aug 1985 A
4538618 Rosenberg et al. Sep 1985 A
4582067 Silverstein et al. Apr 1986 A
4583969 Mortensen Apr 1986 A
4658817 Hardy Apr 1987 A
4674498 Stasz Jun 1987 A
4676782 Yamamoto et al. Jun 1987 A
4682596 Bales et al. Jul 1987 A
4687482 Hanson Aug 1987 A
4750902 Wuchinich et al. Jun 1988 A
4753236 Healey Jun 1988 A
4757821 Snyder Jul 1988 A
4757822 Di Giuliomaria et al. Jul 1988 A
4769031 McGough Sep 1988 A
4770185 Silverstein et al. Sep 1988 A
4771788 Millar Sep 1988 A
4773413 Hussein et al. Sep 1988 A
4785402 Matsuo et al. Nov 1988 A
4795465 Marten Jan 1989 A
4802476 Noerenberg et al. Feb 1989 A
4807634 Enjoji et al. Feb 1989 A
4808153 Parisi Feb 1989 A
4834102 Schwarzchild et al. May 1989 A
4869268 Yoon Sep 1989 A
4870953 DonMicheal et al. Oct 1989 A
4887606 Yock et al. Dec 1989 A
4892098 Sauer Jan 1990 A
4899757 Pope, Jr. et al. Feb 1990 A
4917097 Proudian, et al. Apr 1990 A
4920954 Alliger et al. May 1990 A
4924863 Sterzer May 1990 A
4936281 Stasz Jun 1990 A
4957508 Kaneko et al. Sep 1990 A
4967753 Haase et al. Nov 1990 A
4973301 Nissenkorn Nov 1990 A
4977898 Schwarzschild et al. Dec 1990 A
5002058 Martinelli Mar 1991 A
5030201 Palestrant Jul 1991 A
5042981 Gross Aug 1991 A
5054483 Marten et al. Oct 1991 A
5061275 Wallstén et al. Oct 1991 A
5064435 Porter Nov 1991 A
5069664 Suess et al. Dec 1991 A
5081993 Kitney et al. Jan 1992 A
5100423 Fearnot Mar 1992 A
5105816 Shimura et al. Apr 1992 A
5105817 Uchibori et al. Apr 1992 A
5125926 Linhares et al. Jun 1992 A
5127917 Niederhauser et al. Jul 1992 A
5131394 Gehlbach Jul 1992 A
5148809 Biegeleisen-Knight et al. Sep 1992 A
5170793 Takano et al. Dec 1992 A
5190528 Fonger et al. Mar 1993 A
5201316 Pomeranz et al. Apr 1993 A
5209721 Wilk May 1993 A
5226421 Frisbie et al. Jul 1993 A
5238027 Lee Aug 1993 A
5254112 Sinofsky et al. Oct 1993 A
5257990 Nash Nov 1993 A
5259385 Miller et al. Nov 1993 A
5261409 Dardel Nov 1993 A
5269326 Verrier Dec 1993 A
5273529 Idowu Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5282824 Gianturco Feb 1994 A
5287861 Wilk Feb 1994 A
5295484 Marcus et al. Mar 1994 A
5299578 Rotteveel et al. Apr 1994 A
5309915 Ember May 1994 A
5311871 Yock May 1994 A
5313950 Ishikawa et al. May 1994 A
5316001 Ferek-Petric et al. May 1994 A
5320106 Tanaka Jun 1994 A
5330500 Song Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334210 Gianturco Aug 1994 A
5339289 Erickson Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5351693 Taimisto et al. Oct 1994 A
5363852 Sharkawy Nov 1994 A
5363853 Lieber et al. Nov 1994 A
5368035 Hamm et al. Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5380316 Aita et al. Jan 1995 A
5381795 Nordgren et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5383887 Nadal Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5389096 Aita et al. Feb 1995 A
5402792 Kimura Apr 1995 A
5409012 Sahatjian Apr 1995 A
5409019 Wilk Apr 1995 A
5411466 Hess May 1995 A
5413601 Keshelava May 1995 A
5425739 Jessen Jun 1995 A
5427107 Milo et al. Jun 1995 A
5429144 Wilk Jul 1995 A
5435314 Dias Jul 1995 A
5452733 Sterman et al. Sep 1995 A
5454373 Koger et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5456258 Kondo et al. Oct 1995 A
5458120 Lorraine Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5465726 Dickinson et al. Nov 1995 A
5466242 Mori Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5474075 Goldberg et al. Dec 1995 A
5484416 Gittings Jan 1996 A
5485841 Watkin et al. Jan 1996 A
5500012 Brucker et al. Mar 1996 A
5505088 Chandraratna et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5520684 Imran May 1996 A
5522822 Phelps et al. Jun 1996 A
5527292 Adams et al. Jun 1996 A
5527324 Krantz et al. Jun 1996 A
5540713 Schnepp-Pesch et al. Jul 1996 A
5545195 Lennox et al. Aug 1996 A
5545210 Hess et al. Aug 1996 A
5554118 Jang Sep 1996 A
5554152 Aita et al. Sep 1996 A
5555886 Weng et al. Sep 1996 A
5564434 Halperin et al. Oct 1996 A
5571086 Kaplan et al. Nov 1996 A
5571180 Blom Nov 1996 A
5573531 Gregory Nov 1996 A
5575818 Pinchuk Nov 1996 A
5588432 Crowley Dec 1996 A
5593417 Rhodes Jan 1997 A
5596989 Morita Jan 1997 A
5607444 Lam Mar 1997 A
5615679 Ri et al. Apr 1997 A
5618301 Hauenstein et al. Apr 1997 A
5630837 Crowley May 1997 A
D380266 Boatman et al. Jun 1997 S
5645559 Hachtman et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5653746 Schmitt Aug 1997 A
5655548 Nelson et al. Aug 1997 A
5658279 Nardella et al. Aug 1997 A
5658280 Issa Aug 1997 A
5672172 Zupkas Sep 1997 A
5674277 Freitag Oct 1997 A
5674298 Levy et al. Oct 1997 A
5678555 O'Connell Oct 1997 A
5693085 Buirge et al. Dec 1997 A
5704361 Seward et al. Jan 1998 A
5713949 Jayaraman Feb 1998 A
5716393 Lindenberg et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5725547 Chuter Mar 1998 A
5736642 Yost et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741333 Frid Apr 1998 A
5752518 McGee et al. May 1998 A
5755769 Richard et al. May 1998 A
5755778 Kleshinski May 1998 A
5759769 Sia et al. Jun 1998 A
5779642 Nightengale Jul 1998 A
5792119 Marx Aug 1998 A
5795325 Valley et al. Aug 1998 A
5797920 Kim Aug 1998 A
5810008 Dekel et al. Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824046 Smith et al. Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5830222 Makower Nov 1998 A
5840431 Kall Nov 1998 A
5843175 Frantzen Dec 1998 A
5846205 Curley et al. Dec 1998 A
5849037 Frid Dec 1998 A
5855597 Jayaraman Jan 1999 A
5860920 McGee et al. Jan 1999 A
5860951 Eggers et al. Jan 1999 A
5868763 Spence et al. Feb 1999 A
5876345 Eaton et al. Mar 1999 A
5876434 Flomenblit et al. Mar 1999 A
5876448 Thompson et al. Mar 1999 A
5885219 Nightengale Mar 1999 A
5916158 Webster, Jr. Jun 1999 A
5921995 Kleshinski Jul 1999 A
5922019 Hankh et al. Jul 1999 A
5935135 Bramfitt et al. Aug 1999 A
5938697 Killion et al. Aug 1999 A
5951567 Javier, Jr. et al. Sep 1999 A
5954649 Chia et al. Sep 1999 A
5957849 Munro Sep 1999 A
5957919 Laufer Sep 1999 A
5957974 Thompson et al. Sep 1999 A
5967990 Thierman et al. Oct 1999 A
5968053 Revelas Oct 1999 A
5968070 Bley et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5972017 Berg et al. Oct 1999 A
5976178 Goldsteen et al. Nov 1999 A
5984871 TenHoff et al. Nov 1999 A
5993484 Shmulewitz Nov 1999 A
6001124 Bachinski Dec 1999 A
6002955 Willems et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004273 Sakamoto et al. Dec 1999 A
6004319 Gobel et al. Dec 1999 A
6007544 Kim Dec 1999 A
6007574 Pulnev et al. Dec 1999 A
6010529 Herweck et al. Jan 2000 A
6011995 Guglielmi et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6013093 Nott et al. Jan 2000 A
6013854 Moriuchi Jan 2000 A
6015405 Schwartz et al. Jan 2000 A
6019787 Richard et al. Feb 2000 A
6022371 Killion et al. Feb 2000 A
6024703 Zanelli et al. Feb 2000 A
6030392 Dakov Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6036702 Bachinski et al. Mar 2000 A
6045511 Ott et al. Apr 2000 A
6045532 Eggers et al. Apr 2000 A
6048362 Berg Apr 2000 A
6053941 Lindenberg et al. Apr 2000 A
6059731 Seward et al. May 2000 A
6059811 Pinchasik et al. May 2000 A
6063111 Hieshima et al. May 2000 A
6064902 Haissaguerre et al. May 2000 A
6068638 Makower May 2000 A
6070094 Swanson et al. May 2000 A
6074349 Crowley Jun 2000 A
6074416 Berg et al. Jun 2000 A
6080109 Baker et al. Jun 2000 A
6096053 Bates Aug 2000 A
6112123 Kelleher et al. Aug 2000 A
6113612 Swanson et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6120432 Sullivan et al. Sep 2000 A
6129726 Edwards et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6143019 Motamedi et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6152945 Bachinski et al. Nov 2000 A
6159225 Makower Dec 2000 A
6162245 Jayaraman Dec 2000 A
6165127 Crowley Dec 2000 A
6174323 Biggs et al. Jan 2001 B1
6183444 Glines et al. Feb 2001 B1
6186942 Sullivan et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200313 Abe et al. Mar 2001 B1
6206831 Suorsa et al. Mar 2001 B1
6231587 Makower May 2001 B1
6235024 Tu May 2001 B1
6235054 Berg et al. May 2001 B1
6241742 Spence et al. Jun 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6258100 Alferness et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6270524 Kim Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6287290 Perkins et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6293951 Alferness et al. Sep 2001 B1
6299635 Frantzen Oct 2001 B1
6309375 Glines et al. Oct 2001 B1
6309416 Swanson et al. Oct 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6336933 Parodi Jan 2002 B1
6344053 Boneau Feb 2002 B1
6371964 Vargas et al. Apr 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6428550 Vargas et al. Aug 2002 B1
6440163 Swanson et al. Aug 2002 B1
6488673 Laufer et al. Dec 2002 B1
6490474 Willis et al. Dec 2002 B1
6514249 Maguire Feb 2003 B1
6514290 Loomas Feb 2003 B1
6533812 Swanson et al. Mar 2003 B2
6585655 Crowley Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6616675 Evard et al. Sep 2003 B1
6623437 Hinchliffe et al. Sep 2003 B2
6629951 Laufer et al. Oct 2003 B2
6634363 Danek et al. Oct 2003 B1
6692494 Cooper et al. Feb 2004 B1
6712804 Roue et al. Mar 2004 B2
6749606 Keast et al. Jun 2004 B2
6770070 Balbierz Aug 2004 B1
6970733 Willis et al. Nov 2005 B2
6997189 Biggs et al. Feb 2006 B2
7175644 Cooper et al. Feb 2007 B2
20010007940 Hosheng et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20020002401 McGuckin, Jr. et al. Jan 2002 A1
20020022833 Maguire et al. Feb 2002 A1
20020042564 Cooper et al. Apr 2002 A1
20020042566 Cooper et al. Apr 2002 A1
20020055772 McGuckin, Jr. et al. May 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020128647 Roschak Sep 2002 A1
20020138074 Keast et al. Sep 2002 A1
20030070676 Cooper et al. Apr 2003 A1
20030130657 Tom et al. Jul 2003 A1
20040073155 Laufer et al. Apr 2004 A1
20040073201 Cooper Apr 2004 A1
20040211434 Loomas et al. Oct 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20050043751 Phan et al. Feb 2005 A1
20050043752 Phan et al. Feb 2005 A1
20050049615 Cooper et al. Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050060041 Phan et al. Mar 2005 A1
20050060042 Phan et al. Mar 2005 A1
20050060044 Roschak Mar 2005 A1
20050085801 Cooper et al. Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050107783 Tom et al. May 2005 A1
20050137518 Biggs et al. Jun 2005 A1
20050137611 Escudero et al. Jun 2005 A1
20050137712 Biggs et al. Jun 2005 A1
20050137715 Phan et al. Jun 2005 A1
20050171527 Bhola Aug 2005 A1
20050177144 Phan et al. Aug 2005 A1
20050182475 Jen et al. Aug 2005 A1
20050192526 Biggs et al. Sep 2005 A1
20050228268 Cole Oct 2005 A1
20060116749 Willink et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142672 Keast et al. Jun 2006 A1
20060276807 Keast et al. Dec 2006 A1
20060280772 Roschak et al. Dec 2006 A1
20060280773 Roschak et al. Dec 2006 A1
20070123922 Cooper et al. May 2007 A1
Foreign Referenced Citations (25)
Number Date Country
3821836 Jan 1990 DE
0347098 Dec 1989 EP
0443256 Aug 1991 EP
2000-107178 Apr 2000 JP
2001-104315 Apr 2001 JP
WO 8906515 Jul 1989 WO
WO 9001300 Feb 1990 WO
WO 9502361 Jan 1995 WO
WO 9639914 Dec 1996 WO
WO 9717014 May 1997 WO
WO 9717105 May 1997 WO
WO 9816161 Apr 1998 WO
WO 9828035 Jul 1998 WO
WO 9848706 Nov 1998 WO
WO 9901076 Jan 1999 WO
WO 9911182 Mar 1999 WO
WO 9925419 May 1999 WO
WO 9960953 Dec 1999 WO
WO 0067825 Nov 2000 WO
WO 0072908 Dec 2000 WO
WO 0113839 Mar 2001 WO
WO 0128433 Apr 2001 WO
WO 0132088 May 2001 WO
WO 0170117 Sep 2001 WO
WO 0200278 Jan 2002 WO
Related Publications (1)
Number Date Country
20020128647 A1 Sep 2002 US
Provisional Applications (3)
Number Date Country
60269130 Feb 2001 US
60176141 Jan 2000 US
60147528 Aug 1999 US
Continuations (1)
Number Date Country
Parent 09633651 Aug 2000 US
Child 09908087 US
Continuation in Parts (2)
Number Date Country
Parent 09946706 Sep 2001 US
Child 10080344 US
Parent 09908087 Jul 2001 US
Child 09946706 US