The modern monohull watercraft can be traced back to the hollowed log canoes used by primitive cultures around the world. The long narrow hull of these ancient boats is a very efficient shape in the water, which is an important feature for a vehicle propelled only by human or wind power. In today's world of limited resources and energy an efficient hull shape continues to be a very desirable feature. For a given displacement, a hull with high aspect ratio (the length divided by the width) is much easier to push through the water than a hull with low aspect ratio.
One big disadvantage of a narrow monohull is lateral stability. The narrow hull presents a greater risk of capsize, especially for sailboats. Making the boat wider increases the stability, but creates much more drag though the water. An alternate solution is to keep the narrow hull form, but add ballast in the form of a weighted keel. The heavy ballast adds stability, but the boat is pulled deeper into the water which increases the water displacement and again increases drag.
Early Polynesians developed a clever solution to the problem of maintaining stability in a narrow monohull. The Outrigger canoe adds a secondary hull connected to the first hull by a pair of support arms. This results in a very stable boat that still retains the more efficient narrow hull form. Modern multihull watercraft (catamarans and trimarans) incorporate this idea to achieve significantly improved performance on the water.
As the multihull form developed into the 21st century, it continued to offer many advantages over traditional monohulls, but the design still has several inherent problems. There is a conflict between accommodation space and hull form. The narrow shape of catamaran and trimaran hulls, while highly efficient when moving through the water, also create awkward interior spaces. Humans prefer accommodations with roughly square-shaped floor plans, not uncomfortable tunnel shapes that are neither convenient nor inviting for any activity except sleep. Widening the hull improves the accommodation space but seriously de-grades the performance of the boat.
Conventional multihulls have a further problem of awkward boarding and disembarking. This is particularly true for large catamarans on a side dock, where the high freeboard (the distance between the deck and the water) requires a ladder or portable staircase for boarding. The high freeboard also results in high amounts of lateral windage. Compensating for this windage while under way wastes a significant amount of energy, and docking and maneuvering in a tight marina can be difficult as the wind pushes the boat off course.
Conventional multihulls have a further problem of awkward storage and deployment of a shore craft (dinghy). Storage on deck takes up valuable space and may also require a crane for deployment. Dinghy davits (typically a pair of metal arms used for both storage and deployment) are also not an optimum solution in terms of convenience and aesthetic appeal. In either case, boarding and exiting the dinghy can be awkward and dangerous because there is no suitable boarding platform.
Conventional multihulls have a further problem of very complicated sailing rigs. The standard Bermuda rig is difficult to operate and maintain. The sailor must manage an intimidating profusion of control lines including halyards, main sheet, jib sheets, outhaul, travelers, stays, reefing lines, and more. The sheer number of mechanical components also makes the system prone to failure.
The present invention addresses all of these problems while providing additional benefits.
Unlike conventional multihulls that use the cramped float hulls for accommodation, the present invention moves the passenger cabins to the upper hull several feet above the water-line. This removes the conflict between the accommodation space and the float hull form; each can be independently optimized without compromising the other. The higher elevation improves interior ventilation, increases thermal isolation between the cabins and the water, and provides better view of the surroundings for both skipper and passengers.
There are four support structures between the upper hull and the float hulls which are designed to reduce windage from the high cross winds that can be encountered at sea. Each structure is comprised of a plurality of narrow columns that provide mechanical support while allowing lateral air flow.
In order to maximize the accommodation space, the forward and aft portions of the upper hull (enclosing the private cabins) extend laterally over the left and right float hulls. The central portion (enclosing the salon, galley, and other common areas) of the main hull is narrower, extending laterally to points inboard of the longitudinal centerline of the left and right float hulls. This unique configuration creates space for deck areas on the top side of the left and right float hulls. The low freeboard of the twin decks allow easy boarding and disembarking to docks on either side of the boat, and safer boarding of shore craft.
Access to the upper hull is via a staircase from the deck of the left or right float hull. This eliminates the need for portable boarding stairs at the dock; passengers simply step onto the deck of the float hull, then go up the stairs into the upper hull.
The present invention offers an improved method of storing and deploying a shore craft (dinghy). When not in use, the dinghy is stored in a compartment located on the underside of the upper hull. To launch the dinghy, the compartment cover is lowered to provide access to the compartment via the adjacent float hull deck. The dinghy is moved across the deck and into the water along the outside edge of the hull where it can be easily and safely boarded. In an alternate embodiment, the dinghy may be lowered directly into the water, where it may be boarded from the inboard edge of the adjacent float hull deck.
The present invention incorporates a new sail configuration that is substantially easier to operate and maintain in comparison to the typical Bermuda rig found on most sailboats. The rig includes a forward sail and an aft sail which can be rotated simultaneously to the optimum position for the current wind direction. The rotation of the rig can be set by manually turning a single winch, control wheel, or equivalent electrical means.
The top-view diagram in
A forward sail 15 is suspended between the forward stay and the mast. An aft sail 16 is suspended between the aft stay and the mast. The manner in which the sails are attached to the mast and stays is not relevant to the present invention, and may include any of the conventional elements such as bolt rope and tracks, hanks, or roller furling devices.
The bottom end of the forward stay connects to a sliding car 17 that runs along a curved forward track 18 that is rigidly fixed to the the boat forward of the mast. Similarly, the aft stay 12 connects to an aft sliding car 19 which runs along an aft curved track 20 located aft of the mast. The sliding cars and track are commonly used on sailing rigs and are widely available from marine equipment suppliers, however the specific design of the car is not important. Any type of sliding car and track that can withstand the tension applied by the stays may be used, thus the scope of the invention is defined by the claims and not limited by the specification. The track can be mounted on a horizontal deck surface as shown in
The curved tracks 18 and 20 are shaped with a constant radius of curvature equal to the distance between the track and the mast, and the sliding cars are installed at opposing positions relative to the mast (180 degrees apart). This ensures that the stays do not apply any lateral force on the top of the mast, only a compression force pushing the mast downward.
A car positioning means moves the cars to any desired location on their tracks while still maintaing their relative positions at 180 degrees. One embodiment is illustrated in
When the watercraft is sailing, the prevailing wind applies pressure on the forward sail and aft sail simultaneously, which in turn applies pressure to the slider cars and control line. Since the cars are controlled by a single control line in a loop, the pressure on the forward sail counteracts the pressure on the aft sail, which means the rig can be rotated even under load with only moderate force on the rotation control line.
The winch 23 shown in in
An alternate embodiment of the car positioning means could place the control line alongside the track guided by pulley wheels, instead of running inside the track as illustrated. Many other equivalent means may be used to perform the same car positioning function, including linear actuators or hydraulic devices that move the control lines or cars directly, or electric motors that attach to the car and engage the track using wheels or gear teeth. Thus the scope of the invention is defined by the attached claims and their equivalent means, rather than the examples cited.
The sailing rig described above may be enhanced in order to accommodate larger sails for more propulsive power.
With the booms installed, the forward and aft stays are pushed farther away from the mast, which allows for larger sail area without increasing mast height or boat length. There is also the benefit that the stays are less likely to come into contact with passengers or equipment on the deck.
The sailing rig described above can be further enhanced as shown in
The added elements in this configuration of the sailing rig provide two important benefits. First, the deck tracks no longer need to have constant radius of curvature, so there's more flexibility in where they are installed. Second, the tracks can be extended further amidships (toward the mast) to allow greater rotation of the sailing rig in either direction, as illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
The patent discloses a multihull watercraft with a unique hull configuration providing numerous benefits, an improved means for dinghy storage and deployment, and a new simplified sailing rig that is easier to operate and maintain than the conventional Bermuda rig. The scope of the present is not limited to the examples provided in the specification, but is defined by the claims.