The present disclosure is related to downhole tools for use in a wellbore environment and more particularly to an assembly for isolating portions of a multilateral wellbore.
A multilateral well may include multiple wellbores drilled off of a main wellbore for the purpose of exploration or extraction of natural resources such as hydrocarbons or water. Each of the wellbores drilled off the main wellbore may be referred to as a lateral wellbore. Lateral wellbores may be drilled from a main wellbore in order to target multiple zones for purposes of producing hydrocarbons such as oil and gas from subsurface formations. Various downhole tools may be inserted into the main wellbore and/or lateral wellbore to extract the natural resources from the wellbore and/or to maintain the wellbore during production.
A more complete and thorough understanding of the various embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
Embodiments of the present disclosure and its advantages may be understood by referring to
At various times during production and/or maintenance operations within a multilateral wellbore, a branch of the multilateral wellbore (e.g., the main wellbore or a lateral wellbore) may be temporarily isolated from pressure and/or debris. In accordance with the teachings of this disclosure, an isolation sleeve and/or a deflector that seals to the junction may be used to temporarily prevent the flow of fluid into or out of the isolated wellbore. To position the isolation sleeve, a deflector may be used. The deflector may be positioned within a junction disposed at the intersection of a main wellbore and a lateral wellbore such that the path into the wellbore to be isolated is obstructed. The isolation sleeve may be inserted into the wellbore, and when the isolation sleeve enters the junction, it may contact the deflector and be deflected away from the wellbore to be isolated. The uphole end of the isolation sleeve may be engaged with a liner uphole from the intersection of the main wellbore and the lateral wellbore to form a fluid and pressure tight seal. The downhole end of the isolation sleeve may engage with the main or lateral leg of a junction installed at the intersection of the main wellbore and the lateral wellbore to form a fluid and pressure tight seal. Additionally, the deflector may engage with the junction to form a fluid and pressure tight seal, thereby preventing fluid flow into and out of the isolated wellbore. The seal formed between the deflector and the junction may permit temporary isolation of the isolated wellbore. The deflector may include a channel extending axially there through and a plug disposed in the channel and engaged with the channel to form a fluid and pressure tight seal. To resume fluid flow into or out of the isolated wellbore, the isolation sleeve may be extracted and the plug may be removed from the deflector.
Well system 100 may also include production string 103, which may be used to produce hydrocarbons such as oil and gas and other natural resources such as water from formation 112 via multilateral wellbore 114. Multilateral wellbore 114 may include a main wellbore 114a and a lateral wellbore 114b. As shown in
Lateral casing string 111 may be placed in lateral wellbore 114b and held in place by cement, which may be injected between lateral casing string 111 and the sidewalls of lateral wellbore 114b. Lateral casing string 111 may provide radial support to lateral wellbore 114b. Additionally, lateral casing string 111 in conjunction with the cement injected between lateral casing string 111 and the sidewalls of lateral wellbore 114b may provide a seal to prevent unwanted communication of fluids between lateral wellbore 114b and surrounding formation 112. Alternatively, lateral casing string 111 in conjunction with isolation packers, such as open hole packers, may provide a seal to prevent unwanted communication of fluids between lateral wellbore 114b and surrounding formation 112. Lateral casting string 111 may extend from the intersection between main wellbore 114a and lateral wellbore 114b to a downhole location within lateral wellbore 114b. Portions of main wellbore 114a and lateral wellbore 114b that do not include casing string 110 may be described as “open hole.”
The terms “uphole” and “downhole” may be used to describe the location of various components relative to the bottom or end of wellbore 114 shown in
Well system 100 may also include downhole assembly 120 coupled to production string 103. Downhole assembly 120 may be used to perform operations relating to the completion of main wellbore 114a, the production of natural resources from formation 112 via main wellbore 114a, and/or the maintenance of main wellbore 114a. Downhole assembly 120 may be located at the end of main wellbore 114a, as shown in
Although downhole assembly 120 is illustrated in main wellbore 114a in
A junction may be installed at the intersection of main wellbore 114a and lateral wellbore 114b in order to seal and maintain pressure in main wellbore 114a and lateral wellbore 114b.
At various times during production and/or maintenance operations within multilateral wellbore 114, a branch of multilateral wellbore 114 (e.g., main wellbore 114a or lateral wellbore 114b) may be temporarily isolated from pressure and/or debris caused by operations in another branch of multilateral wellbore 114. Examples of such operations include, but are not limited to, gravel packing, fracture packing, acid stimulation, conventional fracture treatments, or cementing a casing or liner, or other similar operations. As shown in
Isolation sleeve 302 may be inserted into junction 206 and may contact deflector 304 such that isolation sleeve is deflected into lateral leg 212 of junction 206. Isolation sleeve 302 may engage with liner 208 and with either lateral leg 212 of junction 206 or sealing sleeve 305 to form a fluid and pressure tight seal, thereby isolating main wellbore 114a from pressure experienced in lateral wellbore 114b and from fluid and debris circulating in lateral wellbore 114b. Isolation sleeve 302 may include two sets of seals—uphole seals 306 and downhole seals 308. Uphole seals 306 may be disposed on the uphole end of isolation sleeve 302 and may engage with liner 208 to form a fluid and pressure tight seal. Although two uphole seals 306 are depicted for illustrative purposes, any number of uphole seals 306 may be used. In some embodiments, uphole seals 306 may be a molded seal made of an elastomeric material. The elastomeric material may be compounds including, but not limited to, natural rubber, nitrile rubber, hydrogenated nitrile, urethane, polyurethane, fluorocarbon, perfluorocarbon, propylene, neoprene, hydrin, etc. In other embodiments, uphole seals 306 may be a metal sealing mechanism, including but not limited to metallic c-seals, spring energized seals, e-seals, lip seals, boss seals, and o-seals.
Downhole seals 308 may be disposed on the downhole end of isolation sleeve 302 and may engage with lateral leg 212 of junction 206 to form a fluid and pressure tight seal. For example, downhole seals 308 may engage with polished inner surface 310 of lateral leg 212 of junction 206 (shown in
Although
Isolation sleeve 302 may be inserted into junction 206 and may contact deflector 402. When isolation sleeve 302 contacts deflector 402 it may be deflected into lateral leg 212 of junction 206. Isolation sleeve 402 may engage with both liner 208 and lateral leg 212 of junction 206 to form a fluid and pressure tight seal, thereby isolating main wellbore 114a from pressure experienced in lateral wellbore 114b and from fluid and debris circulating in lateral wellbore 114b. As discussed above with respect to
Plug 406 may be mechanically removed from deflector 402 and extracted from the wellbore with isolation sleeve 302. For example, plug 406 may be removed from deflector 402 using a retrieval tool inserted into the wellbore following or in conjunction with the extraction of isolation sleeve 302. As another example, plug 406 may be coupled to isolation sleeve 302 via cable 408 such that extraction of isolation sleeve 302 causes plug 406 to be removed from deflector 402.
Alternatively, plug 406 may be degradable and may be removed from deflector 402 using a chemical reaction that causes plug 406 to degrade. Once the chemical reaction causing plug 406 to degrade has been triggered, the reaction may continue until plug 406 breaks down into pieces or dissolves into particles small enough that they do not impede the flow of fluids through channel 404 extending through deflector 402. When plug 406 has degraded to this point, fluids may flow into and out of main wellbore 114a via channel 404. The features of a degradable plug are discussed in more detail with respect to
To avoid removing plug 406 altogether (either mechanically or via chemical reaction), plug 406 may include a flapper or valve that may be triggered to open to permit fluid flow into and out of main wellbore 114a to resume. As an example, plug 406 may include a flapper or valve that may be triggered to open at a particular pressure or temperature. As another example, plug 406 may include a flapper or valve that may be triggered to open after a predetermined time in operation. As yet another example, plug 406 may be configured to receive a signal that triggers a flapper or valve included in plug 406 to open upon receipt of the signal. The signal may include an electromagnetic signal, an acoustic signal, a pressure pulse or pressure sequence, or an RFID signal. As still another example, plug 406 may be triggered to open by contact with a mechanical tool inserted into wellbore 114, such as a shifting tool.
Although
Isolation sleeve 302 may engage with both liner 208 and main leg 210 of junction 206 to form a fluid and pressure tight seal, thereby isolating lateral wellbore 114b from pressure experienced in main wellbore 114a and from fluid and debris circulating in main wellbore 114a. Specifically, uphole seals 306 may engage with liner 208 to form a fluid and pressure tight seal and downhole seals 308 may engage with a polished inner surface of main leg 210 of junction 206 to form a fluid and pressure tight seal. The seal formed between deflector 402 and lateral leg 212 of junction 206 may permit isolation of lateral wellbore 114b even if uphole seals 306 and downhole seals 308 of isolation sleeve 302 fail to form or maintain a fluid and pressure tight seal with liner 208 and main leg 210 of junction 206. Isolation sleeve 302 may be extracted from the wellbore, and plug 406 may be removed from deflector 402 (either mechanical or via a chemical or electrochemical reaction) or a valve included in plug 406 may be opened to permit fluid flow into and out of lateral wellbore 114b to resume.
Although
Plug 406 may also be formed from the metal or alloy imbedded with small particles (e.g., particulates, powders, flakes, fibers, and the like) of a non-reactive material. The non-reactive material may be selected such that it remains structurally intact even when exposed to the corrosive or acidic fluid for a duration of time sufficient to degrade the metal or alloy into pieces or particles small enough that they do not impede the flow of fluids through channel 404 of deflector 402 (shown in
Plug 406 may also be formed from the metal or alloy imbedded with small particles (e.g., particulates, powders, flakes, fibers, and the like) to form a galvanic cell. The composition of the particles may be selected such that the metal from which the particles are formed has a different galvanic potential than the metal or alloy in which the particles are imbedded. Contact between the particles and the metal or alloy in which they are imbedded may trigger microgalvanic corrosion that causes plug 406 to degrade. Exemplary compositions from which the particles may be formed include steel, aluminum alloy, zinc, magnesium, and combinations thereof.
Plug 406 may also be formed from an anodic material imbedded with small particles of a cathodic material. The anodic and cathodic materials may be selected such that plug 406 begins to degrade upon exposure to an electrolytic fluid, which may also be referred to as a brine, due to an electrochemical reaction that causes the plug to corrode. Exemplary compositions from which the anodic material may be formed include one of magnesium, aluminum, and combinations thereof. Exemplary compositions from which the cathodic material may be formed include one of iron, nickel, and combinations thereof. The anodic and cathodic materials may be selected such that plug 406 is degraded sufficiently within a predetermined time of first exposure to the electrolytic fluid to form pieces or particles small enough that they do not impede the flow of fluids through channel 404 of deflector 402 (shown in
Plug 406 may include a coating to temporarily protect the metal or alloy from exposure to the corrosive, acidic, or electrolytic fluid. As an example, plug 406 may be coated with a material that melts when a threshold temperature is reached in main leg 210 of junction 206 (shown in
Core 504 may be formed of a degradable composition including a metal or alloy that is reactive under defined conditions. The composition of core 504 may be selected such that core 504 begins to degrade within a predetermined time of first exposure to a corrosive or acidic fluid due to reaction of the metal or alloy from which core 504 is formed with the corrosive or acidic fluid. The composition of core 504 may be selected such that core 504 degrades sufficiently to form pieces or particles small enough that they do not impede the flow of production fluids through channel 506. The corrosive or acidic fluid may already be present within the wellbore during operation or may be injected into the wellbore to trigger a chemical reaction that causes core 504 to degrade. The corrosive or acidic fluid may include fluids formed of a solution including but not limited to hydrochloric acid (HCl), formic acid (HCOOH), acetic acid (CH3COOH), or hydrofluoric acid (HF). Exemplary compositions from which core 504 may be formed include compositions in which the metal or alloy is selected from one of calcium, magnesium, aluminum, and combinations thereof.
Core 504 may also be formed from the metal or alloy imbedded with small particles (e.g., particulates, powders, flakes, fibers, and the like) of a non-reactive material. The non-reactive material may be selected such that it remains structurally intact even when exposed to the corrosive or acidic fluid for a duration of time sufficient to degrade the metal or alloy into pieces or particles small enough that they do not impede the flow of production fluids through channel 506. When the metal or alloy degrades, the small particles of the non-reactive material may remain. The particle size of the non-reactive material may be selected such that the particles are small enough that they do not impede the flow of production fluids through channel 506. The non-reactive material may be selected from one of lithium, bismuth, calcium, magnesium, and aluminum (including aluminum alloys) if not already selected as the reactive metal or alloy, and combinations thereof.
Core 504 may also be formed from the metal or alloy imbedded with small particles (e.g., particulates, powders, flakes, fibers, and the like) to form a galvanic cell. The composition of the particles may be selected such that the metal from which the particles are formed has a different galvanic potential than the metal or alloy in which the particles are imbedded. Contact between the particles and the metal or alloy in which they are imbedded may trigger microgalvanic corrosion that causes core 504 to degrade. Exemplary compositions from which the particles may be formed include steel, aluminum alloy, zinc, magnesium, and combinations thereof.
Core 504 may also be formed from an anodic material imbedded with small particles of a cathodic material. The anodic and cathodic materials may be selected such that core 504 begins to degrade upon exposure to an electrolytic fluid, which may also be referred to as a brine, due to an electrochemical reaction that causes the plug to corrode. Exemplary compositions from which the anodic material may be formed include one of magnesium, aluminum, and combinations thereof. Exemplary compositions from which the cathodic material may be formed include one of iron, nickel, and combinations thereof. The anodic and cathodic materials may be selected such that core 504 is degraded sufficiently within a predetermined time of first exposure to the electrolytic fluid to form pieces or particles small enough that they do not impede the flow of production fluids through channel 506. The electrolytic fluid may already be present within the wellbore during operation or may be injected into the wellbore to trigger an electrochemical reaction that causes core 504 to degrade.
Core 504 may include a coating to temporarily protect the metal or alloy from exposure to the corrosive, acidic, or electrolytic fluid. As an example, core 504 may be coated with a material that melts when a threshold temperature is reached in main leg 210 of junction 206 (shown in
Shell 508 may be formed of a non-reactive material. The non-reactive material may be selected such that it remains structurally intact even when exposed to the corrosive or acidic fluid for a duration of time sufficient to degrade the metal or alloy from which core 504 is formed into pieces or particles small enough that they do not impede the flow of production fluids through channel 506 of plug 406.
Plug 406 may further include rupture disk 518 that temporarily protects core 504 from degradation until rupture disk 518 is compromised allowing the corrosive, acidic, or electrolytic fluid to contact the metal or alloy. Rupture disk 518 may be formed of a material that fractures when exposed to a threshold pressure. The threshold pressure may be a pressure greater than a pressure that occurs during operation of the wellbore. The pressure in the wellbore may be manipulated such that it exceeds the threshold pressure, causing rupture disk 518 to fracture. Alternatively, rupture disk 518 may include an actuator that causes rupture disk 518 to fracture. When rupture disk 518 fractures, the surface of core 504 may be exposed to the corrosive, acidic, or electrolytic fluid circulating in or injected into the wellbore. As discussed above with respect to
As discussed above with respect to
Plug 406 may further include a pair or rupture disks 518 separated from one another such that fluid reservoir 520 is formed within channel 506 in the space separating rupture disks 518. Rupture disks may temporarily protect core 504 from degradation until rupture disks 518 are compromised allowing a corrosive, acidic, or electrolytic fluid disposed in fluid reservoir 520 to contact the metal or alloy. Rupture disks 518 may be formed of a material that fractures when exposed to a threshold pressure. The threshold pressure may be a pressure greater than a pressure that occurs during operation of the wellbore. The pressure in the wellbore may be manipulated such that it exceeds the threshold pressure, causing rupture disks 518 to fracture. Alternatively, rupture disks 518 may include an actuator that causes rupture disks 518 to fracture. When rupture disks 518 fracture, the surface of core 504 may be exposed to the corrosive, acidic, or electrolytic fluid disposed in fluid reservoir 520. As discussed above with respect to
As discussed above with respect to
At step 620, a deflector may be positioned within a junction. As discussed above with respect to
As discussed above with respect to
At step 630, an isolation sleeve may be positioned in the junction. When the isolation sleeve enters the junction, it may contact the deflector and be deflected away from the leg of the junction corresponding to the wellbore to be isolated. For example, as shown in
The uphole and downhole ends of the isolation sleeve may form fluid and pressure tight seals that prevent the flow of fluids into or out of the wellbore to be isolated. As discussed above with respect to
Steps 620 and 630 may take place before or after the junction is lowered into the wellbore. For example, as discussed above, the deflector and the isolation sleeve may be pre-installed in the junction before the junction has been lowered into the wellbore or may be installed in the junction after the junction has been lowered into the wellbore and positioned at the intersection of the main wellbore and the lateral wellbore.
At step 640, a determination may be made regarding whether to resume fluid flow in the isolated wellbore. If it is determined not to resume fluid flow in the isolated wellbore and thus to continue isolation of the isolated wellbore, the method may end. If it is determined to resume fluid flow in the isolated wellbore, the method may proceed to step 650.
At step 650, a determination may be made regarding whether the deflector includes a plug. If the deflector does not include a plug, the method may proceed to step 660. At step 660, the isolation sleeve and the deflector may be extracted from the wellbore. When the isolation sleeve and the deflector have been extracted, the method may proceed to step 680 and fluid flow in the previously isolated wellbore may resume.
If the deflector does include a plug, the method may proceed to step 670. At step 670, the isolation sleeve may be extracted from the wellbore and the plug may be removed from the deflector. As discussed above with respect to
Alternatively, the plug may be degradable and may be removed from the deflector by a chemical reaction that causes the plug to degrade. For example, as discussed above with respect to
As discussed above with respect to
Modifications, additions, or omissions may be made to method 600 without departing from the scope of the present disclosure. For example, the order of the steps may be performed in a different manner than that described and some steps may be performed at the same time. Additionally, each individual step may include additional steps without departing from the scope of the present disclosure.
Embodiments disclosed herein include:
A. A wellbore isolation system that includes a junction positioned at an intersection of a first wellbore and a second wellbore, and a deflector disposed in the junction such that a path into the first leg of the junction is obstructed and engaged with the first leg of the junction to form a fluid and pressure tight seal. The junction includes a first leg extending downhole into the first wellbore, and a second leg extending downhole into the second wellbore. The deflector includes a channel extending axially through the deflector, and a degradable plug disposed in the channel and engaged with the channel to prevent fluid flow through the channel.
B. A method of temporarily isolating a wellbore that includes positioning a junction at an intersection of a first wellbore and a second wellbore, and positioning a deflector in the junction such that a path into the first leg of the junction is obstructed and the deflector engages the first leg of the junction to form a fluid and pressure tight seal. The junction includes a first leg extending downhole into the first wellbore, and a second leg extending downhole into the second wellbore. The deflector includes a channel extending axially through the deflector, and a degradable plug disposed in the channel and engaged with the channel to prevent fluid flow through the channel.
Each of embodiments A and B may have one or more of the following additional elements in any combination: Element 1: an isolation sleeve extending into the second leg of the junction and preventing fluid flow into and out of the first wellbore. Element 2: the uphole end of the isolation sleeve engages with a liner disposed uphole from the junction to form a fluid and pressure tight seal, and the downhole end of the isolation sleeve engages with the second leg of the junction to form a fluid and pressure tight seal. Element 3: the uphole end of the isolation sleeve engages with a liner disposed uphole from the junction to form a fluid and pressure tight seal, and the downhole end of the isolation sleeve engages with a sealing sleeve of the deflector extending downhole into the second leg of the junction to form a fluid and pressure tight seal. Element 4: wherein the degradable plug is formed of a composition that degrades within a predetermined time of exposure to a particular fluid. Element 5: wherein the degradable plug includes a degradable plug formed of a composition that degrades within a predetermined time of exposure to a particular fluid, and a coating formed around the plug that temporarily protects the plug from exposure to the particular fluid. Element 6: wherein the degradable plug includes a first composition imbedded with particles of a second composition to form a galvanic cell. Element 7: wherein the degradable plug includes a shell including a channel extending there through, and a degradable core disposed within the channel and formed of a composition that degrades within a predetermined time of exposure to a particular fluid. Element 8: wherein the degradable plug includes a shell including a channel extending there through, a degradable core disposed within the shell and formed of a composition that degrades within the annulus within a predetermined time of first exposure to a particular fluid, and a rupture disk that temporarily protects the degradable core from exposure to the particular fluid, the rupture disk formed of a material that fractures when exposed to a threshold pressure. Element 9: wherein the first wellbore is a main wellbore, and the second wellbore is a lateral wellbore that intersects with the main wellbore. Element 10: wherein the second wellbore is a main wellbore, and the first wellbore is a lateral wellbore that intersects with the main wellbore.
Element 11: inserting an isolation sleeve into the junction such that it contacts the deflector and it deflected into the second leg of the junction, and positioning the isolation sleeve in the second leg of the junction to prevent fluid flow into or out of the first wellbore. Element 12: wherein positioning the isolation sleeve in the second leg of the junction to prevent fluid flow into or out of the first wellbore includes engaging an uphole end of the isolation sleeve with a liner disposed uphole from the intersection of the first wellbore and the second wellbore to form a fluid and pressure tight seal, and engaging a downhole end of the isolation sleeve with the second leg of the junction to form a fluid and pressure tight seal. Element 13: wherein positioning the isolation sleeve in the second leg of the junction to prevent fluid flow into or out of the first wellbore includes engaging an uphole end of the isolation sleeve with a liner disposed uphole from the junction to form a fluid and pressure tight seal, and engaging a downhole end of the isolation sleeve with a sealing sleeve of the deflector extending downhole into the second leg of the junction to form a fluid and pressure tight seal. Element 14: extracting the isolation sleeve to allow fluid flow into or out of the first wellbore. Element 15: removing the degradable plug from the deflector by triggering a chemical reaction that causes the degradable plug to degrade to a point that fluid flow through the channel is permitted.
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
This application is a U.S. Continuation Patent Application of U.S. patent application Ser. No. 15/034,472 filed May 4, 2016, which is a U.S. National Stage Application of International Application No. PCT/US2014/072504 filed Dec. 29, 2014, which designates the United States.
Number | Name | Date | Kind |
---|---|---|---|
4807704 | Hsu et al. | Feb 1989 | A |
5311936 | McNair et al. | May 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5322127 | McNair et al. | Jun 1994 | A |
5353876 | Curington et al. | Oct 1994 | A |
5388648 | Jordan | Feb 1995 | A |
5427177 | Jordan et al. | Jun 1995 | A |
5488989 | Leising et al. | Feb 1996 | A |
5520252 | McNair | May 1996 | A |
5526880 | Jordan | Jun 1996 | A |
5607017 | Owens et al. | Mar 1997 | A |
5715891 | Graham | Feb 1998 | A |
5875847 | Forsyth | Mar 1999 | A |
5944108 | Baugh | Aug 1999 | A |
5992524 | Graham | Nov 1999 | A |
6012526 | Jennings et al. | Jan 2000 | A |
6026903 | Shy et al. | Feb 2000 | A |
6047774 | Allen | Apr 2000 | A |
6053254 | Gano | Apr 2000 | A |
6145593 | Henning | Nov 2000 | A |
6209644 | Brunet | Apr 2001 | B1 |
6241021 | Bowling | Jun 2001 | B1 |
6244337 | Cumming et al. | Jun 2001 | B1 |
6457525 | Scott | Oct 2002 | B1 |
6464001 | Braithwaite et al. | Oct 2002 | B1 |
6494264 | Pringle et al. | Dec 2002 | B2 |
6533040 | Gondouin | Mar 2003 | B2 |
6561277 | Algeroy et al. | May 2003 | B2 |
6712144 | Buytaert | Mar 2004 | B2 |
6712148 | Fipke et al. | Mar 2004 | B2 |
6732802 | Smith | May 2004 | B2 |
6786283 | Freeman et al. | Sep 2004 | B2 |
6830106 | Cavender | Dec 2004 | B2 |
6848504 | Brunet et al. | Feb 2005 | B2 |
6915847 | Brockman | Jul 2005 | B2 |
6994165 | Roane et al. | Feb 2006 | B2 |
7090022 | Smith et al. | Aug 2006 | B2 |
7131493 | Eoff et al. | Nov 2006 | B2 |
7207390 | Pratt | Apr 2007 | B1 |
8127856 | Nish et al. | Mar 2012 | B1 |
8220554 | Jordan et al. | Jul 2012 | B2 |
8397819 | Tunget | Mar 2013 | B2 |
8485259 | Sponchia et al. | Jul 2013 | B2 |
8490697 | Garcia et al. | Jul 2013 | B2 |
8528633 | Agrawal et al. | Sep 2013 | B2 |
8573295 | Johnson et al. | Nov 2013 | B2 |
8714874 | Tunget | May 2014 | B2 |
8727028 | Johnson | May 2014 | B2 |
9200482 | Steele | Dec 2015 | B2 |
10196880 | Steele et al. | Feb 2019 | B2 |
10655433 | Hepburn | May 2020 | B2 |
20040003925 | Desai | Jan 2004 | A1 |
20050269084 | Klimack et al. | Dec 2005 | A1 |
20070181224 | Marya et al. | Aug 2007 | A1 |
20080135249 | Fripp et al. | Jun 2008 | A1 |
20110048743 | Stafford et al. | Mar 2011 | A1 |
20120305266 | Steele | Dec 2012 | A1 |
20130043127 | Graham et al. | Feb 2013 | A1 |
20130186626 | Aitken et al. | Jul 2013 | A1 |
20140102716 | Benson et al. | Apr 2014 | A1 |
20140116728 | Zhou | May 2014 | A1 |
20140124214 | Mailand et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2233227 | Jun 2006 | CA |
2000-026501 | May 2000 | WO |
2002-048504 | Jun 2002 | WO |
2011-071691 | Jun 2011 | WO |
2011-071901 | Jun 2011 | WO |
2012-166400 | Dec 2012 | WO |
2013-044300 | Apr 2013 | WO |
Entry |
---|
“Cellulose Nanocrystals Are A Possible ‘Green’ Wonder Material,” downloaded from http://www.redorbit.com/news/science/1113029897/cellulose-nanocrystals-possible-green-wonder-material-1217/; 4 pages, Dec. 17, 2013. |
Baker Hughes, FracPoint Ball-activated Multistage Fracturing Systems, downloaded from http://www.bakerhughes.com/products-and-services/completions/well-completions/multistage-hydraulic-fracturing/fracpoint-multistage-fracturing-system; 13 pages, 2012. |
Halliburton Brochure, Mirage Disappearing Plug, downloaded from http://www.halliburton.com/public/cps/contents/Books_and_Catalogs/web/CPSCatalog/06_Packers.pdf, p. 6-82; 1 page, 2015. |
Halliburton Brochure, Multilateral Solutions, downloaded from http://www.halliburton.com/public/cps/contents/Books_and_Catalogs/web/CPSCatalog/02_Multilateral%20Solutions.pdf, pp. 2-1 to 2-6; 6 pages, 2015. |
International Search Report and Written Opinion, Application No. PCT/US2014/072502; 16 pages, dated Sep. 17, 2015. |
International Search Report and Written Opinion, Application No. PCT/US2014/072504, 16 pages, dated Sep. 18, 2015. |
J. Fraija et al., “New Aspects of Multilateral Well Construction,” Oilfield Review, Autumn 2002; 18 pages, 2002. |
J. Oberklrcher, “New system reduces multllateral completlon tlme,” Dnlllng Contractor, Nov./Dec. 2000; 2 pages. |
S. Bosworth et al., “Key Issues in Multilateral Technology,” Oilfield Review, Winter 1998; 15 pages. |
Schlumberger, ELEMENTAL Degradable Technology, downloaded from http://www.slb.com/services/completions/multistage_stimulation_systems/continuous_pumping_stimulation/elemental.aspx; 2 pages, 2015. |
Office Action for Canadian Patent Application No. 2967560, dated Apr. 12, 2018, 3 pages. |
Office Action for Saudi Arabian Patent Application No. GC 2015-30417, dated Mar. 25, 2018; 4 pages. |
Office Action for Australian Patent Application No. 2014415640 dated May 9, 2018; 3 pages. |
Combined Search and Examination Report of Great Britain Patent Application No. GB2016670.8, dated Nov. 12, 2020; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200270970 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15034472 | US | |
Child | 16870231 | US |