The present invention relates to disk drives and suspensions for disk drives. In particular, the invention is a dual stage actuation (DSA) suspension having a multilayered motor.
Dual stage actuation (DSA) disk drive head suspensions and disk drives incorporating DSA suspensions are generally known and commercially available. For example, DSA suspensions having an actuation structure on the baseplate or other mounting portion of the suspension, i.e., proximal to the spring or hinge region of the suspension, are described in U.S. Patent Publication No. 2010/0067151 to Okawara, U.S. Patent Publication No. 2012/0002329 to Shum, U.S. Patent Publication No. 2011/0242708 to Fuchino, and U.S. Pat. No. 5,714,444 to Imamura. DSA suspensions having actuation structures located on the loadbeam or gimbal portions of the suspension, i.e., distal to the spring or hinge region, are also known and disclosed, for example, in U.S. Pat. No. 5,657,188 to Jurgenson, U.S. Pat. No. 7,256,968 to Krinke, and U.S. Patent Publication No. 2008/0144225 to Yao. Co-located gimbal-based DSA suspensions are disclosed U.S. Pat. No. 8,681,456 to Miller, U.S. Pat. No. 8,891,206 to Miller, and U.S. Patent Publication No. 2014/0098440 to Miller. Each of the above-identified patents and patent applications is incorporated herein by reference in its entirety for all purposes.
There remains a continuing need for improved performance of DSA suspensions.
Various embodiments concern a gimbaled flexure having a dual stage actuation structure. The flexure comprises a gimbal on which a motor is mounted. The motor comprises a first and second terminals and a plurality of actuator layers formed from a piezoelectric material. The plurality of actuator layers comprise serially stacked first, second, and third actuator layers. The plurality of actuator layers are respectively poled and connected to the first and second terminals such that both of the first and second actuator layers expand while the third actuator layer contracts in response to application of a signal across the first and second terminals. The differential motion of the plurality of layers in the motor cause the motor to curl about the contracting third actuator layer. The curling motion causes a portion of the flexure to preferentially curl.
Various embodiments concern a suspension structure comprising a flexure comprising a gimbal and a motor mounted on the gimbal. The motor comprises a first and second terminals, a plurality of actuator layers, and a plurality of conductive layers. The plurality of actuator layers are formed from a piezoelectric material. The plurality of actuator layers comprise a first actuator layer, a second actuator layer, and a third actuator layer. The plurality of conductive layers comprise a first conductive layer disposed along a top side of the first actuator layer, a second conductive layer between and in contact with the first actuator layer and the middle actuator layer, a third conductive layer between and in contact with the second actuator layer and the third actuator layer, and a fourth conductive layer disposed along a bottom side of the third actuator layer. The first and third conductive layers are directly connected to the second terminal and the second and fourth conductive layers are directly connected to the first terminal. The first and second layers are both poled in a first orientation and the third layer is poled in a second orientation different from the first orientation. The plurality of actuator layers are respectively poled and connected to the first and second terminals such that both of the first and second actuator layers one of expand or contract while the third actuator layer the other of expands or contracts in response to application of a signal having a first polarity across the first and second terminals, and further both of the second and third actuator layers one of expand or contract while the first actuator layer the other of expands or contracts in response to application of the signal having a second polarity that is different from the first polarity across the first and second terminals.
Various embodiments concern a suspension structure comprising a flexure and a motor mounted on the flexure. The motor comprises a first terminal, a second terminal, a first actuator layer, and a second actuator layer. Each of the first and second actuator layers are formed from piezoelectric material. The first and second actuator layers together comprise the only piezoelectric material of the motor. The first and second actuator layers are adjacent to one another. The pair of actuator layers are respectively poled and connected to the first and second terminals such that the first actuator layer one of expands or contracts while the second actuator layer the other of expands or contracts in response to application of a signal having a first polarity across the first and second terminals. The first and second actuator layers can be poled in the same orientation. The motor can comprise a first conductor layer, a second conductive layer, and a third conductive layer that are interleaved with the first and second actuator layers.
Further features and modifications of the various embodiments are further discussed herein and shown in the drawings. While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of this disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While multiple embodiments are disclosed, still other embodiments within the scope of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The flexure 4 is composed of several layers, as is known in the art. The flexure 4 includes a stainless steel layer 24. The stainless steel layer 24 can serve as a structural backbone to the flexure 4. Metals other than stainless steel can be used. The stainless steel layer 24 can include spring arms 30. The stainless steel layer 24 can further include a tongue 20. The tongue 20 can be supported by the spring arms 30. For example, struts formed from the stainless steel layer 24 can bridge between the pair of spring arms 30 and the tongue 20 located there between.
The flexure 4 includes a trace portion 26. The trace portion 26 can be located partially on the stainless steel layer 24 and can extend off of the stainless steel layer 24 at various locations, such as in a flying lead segment. The trace portion 26 can comprise a plurality of traces 28 insulated by one or more dielectric layers 25. The traces 28 can be formed from copper or another conductive material. The dielectric layers 25 can be formed from polyimide or another polymer. The traces 28 can electrically connect proximally with control circuitry of a disk drive as in known in the art. The traces 28 can electrically connect distally to various components, such as the motor 22. The slider 18 can be electrically connected with one or more of the traces 28 for transmitting read and write signal along the suspension 2.
The connectors 34 attach the motor 22 to the flexure 4. Specifically, the pair of connectors 34 connect the lateral ends of the motor 22 to terminal pads 32 respectively located on the pair of spring arms 30. Lateral, as used herein, refers to the left and/or right directions orthogonal to the longitudinal axis of the suspension 2. The terminal pads 32 can be formed from metal (e.g., copper) and are exposed though the dielectric layer 25 of the flexure 4 to provide access for connectors 34 to make electrical connections with the traces 28. The connectors 34 can connect with respective anode and cathode terminals of the motor 22. Connectors 34 also mechanically support the motor 22 on the flexure 4. The connectors 34 can comprise solder, conductive epoxy (e.g., silver filled), or other material for forming an electrode connection.
In
The motor 22 is comprised of multiple layers. The motor 22 includes a piezoelectric material 58. The piezoelectric material 58 can comprise lead titanate or various other materials that exhibit piezoelectric movement when subjected to an electric potential. The piezoelectric material 58 is divided into a plurality of piezoelectric material layers. The plurality of piezoelectric material layers includes a first actuator layer 71, a second actuator layer 72, and a third actuator layer 73. The plurality of piezoelectric layers are in a stacked (e.g., overlapping) arrangement. For example, the first actuator layer 71 is adjacent to the second actuator layer 72 and the second actuator layer 72 is adjacent to the third actuator layer 73. In some embodiments, the motor 22 can be limited to the first, second, and third actuator layers 71-73 and may not include any more actuator layers formed from piezoelectric material 58. Various other embodiments can include more than three actuator layers, such as four, five, or more actuator layers.
The motor 22 further comprises a plurality of conductive layers interleaved with the plurality of piezoelectric material layers. The plurality of conductive layers includes a first conductive layer 75 that defines the top side 36 of the motor 22. The plurality of conductive layers further comprises a second conductive layer 76, a third conductive layer 77, and a fourth conductive layer 78. The fourth conductive layer 78 defines the bottom side 38 of the motor 22. The top side of the first conductive layer 75 can be exposed on the top side 36 of the motor 22. In the arrangement of
In the embodiment of
The plurality of conductive layers can be formed from conductive metal, such as gold or copper. The first terminal 50 can comprise the second and the fourth conductive layers 76, 78 as well as the first end cap 54. More specifically, the second and the fourth conductive layers 76, 78 can be connected to, or continuous with, the first end cap 54. The first and the third conductive layers 75, 77 are not directly connected (mechanically and electrically) to the first terminal 50. The second terminal 52 can comprise the first and the third conductive layers 75, 77 as well as the second end cap 56. While the first and third conductive layers 75, 77 are not directly connected to each other, these elements may be directly electrically connected to each other by the connector 34, such that a signal applied to the second terminal 52 is equally applied to each of the first and third conductive layers 75, 77. In alternative embodiments, the first and the third conductive layers 75, 77 can be directly connected to each other by the second end cap 56 extending along the second end side 48, such as by being continuous with each of the first and the third conductive layers 75, 77, similarly to how the first end cap 54 is attached to the second and fourth conductive layers 76, 78. The second and the fourth conductive layers 76, 78 are not directly connected (mechanically and electrically) to the second terminal 52. The first terminal 50 is not directly electrically connected to the second terminal 52. A differential signal applied across the first and second terminals 50, 52 causes current to flow through the piezoelectric material 58. The first, second, and third actuator layers 71-73 are electrically in parallel between the first and second terminals 50, 52 such that, in some configurations, approximately equal electric potentials will be developed in the first, second, and third actuator layers 71-73 and approximately equal levels of current will flow through the first, second, and third actuator layers 71-73. The differential signal causes an electric potential to be developed between the first conductive layer 75 and the second conductive layer 76, thereby causing current to flow between the first conductive layer 75 and the second conductive layer 76, through the first actuator layer 71 therebetween. The differential signal causes an electric potential to be developed between the second conductive layer 76 and the third conductive layer 77 thereby causing current to flow between the second conductive layer 76 and the third conductive layer 77, through the second actuator layer 72 therebetween. The differential signal causes an electric potential to be developed between the third conductive layer 77 and the fourth conductive layer 78 thereby causing current to flow between the third conductive layer 77 and the fourth conductive layer 78, through the third actuator layer 73 therebetween. This flow of current through the piezoelectric material 58 causes the first, second, and third actuator layers 71-73 to expand and contract, as further discussed herein.
The piezoelectric material 58 does not expand or contract in all dimensions equally upon application of the electrical signal. Rather, each layer of the first, second, and third actuator layers 71-73 has a particular dipole direction of the crystalline structure, the polarization of the signal and the dipole direction determining whether each actuator layer expands or contracts, as further discussed herein.
The piezoelectric material 58 has a crystalline structure which causes the material to change dimension most dramatically along one direction upon application of a differential signal across the first and second terminals 50, 52. Each cell of the crystalline structure functions as a dipole due to a charge imbalance across the cell. The orientations of the dipoles of the cells are generally random in untreated piezoelectric material 58. However, a processing step, called poling, can be performed on the piezoelectric material 58 during fabrication of the motor 22 to pole the dipoles in one desired orientation. During poling, untreated piezoelectric material 58 is subjected to a strong electric field that permanently reorientates most or all dipoles of the cells in a general or specific direction of the field. The process of poling can be performed layer-by-layer such that each of the first, second, and third actuator layers 71-73 (and other layers as provided) can be poled in a particular direction which may not be the same direction as the poling direction of the other layers. The direction along which the dipoles of a layer generally align is the poling direction. After the process of poling is complete, subsequent application of a differential signal (e.g., having a substantially lower strength than the electrical field used to pole the layers) causes more of the dipoles to reorientate along the poling direction and/or to causes the dipoles to more precisely align along the poling direction.
As such, each of the first, second, and third actuator layers 71-73 can have a similar or different dipole orientation with respect to the other layers. The poling direction, and the polarity of the signal across the layer relative to the poling direction, determines whether the layer expands or contracts in response to the differential signal. The arrows of
As indicated by the arrows, the first and second actuator layers 71, 72 are poled in the same direction while the third actuator layer 73 is poled in a different direction (e.g., opposite the poling direction of the first and second actuator layers 71, 72). In this way, the dipole orientations of the crystalline structure of the first and second actuator layers 71, 72, are the same, which is in a different direction as the dipole orientation of the crystalline structure of the third actuator layer 73.
The relative poling of the first, second, and third actuator layers 71-73, and the arrangement of the first, second, third, and fourth conductive layers 75-78 alternatingly connecting to the first and second terminals 50, 52, causes the motor 22 to curl, as shown in
The second and third actuator layers 72, 73, will expand or contract together while the first actuator layer 71 will the other of expand or contract in synchrony with the second and third actuator layers 72, 73. More broadly, a pair of adjacent actuator layers will expand or contract together while an additional actuator layer, that is adjacent to one layer of the pair, will the other of expand or contract in opposite synchrony with the pair of adjacent actuator layers. The pair of adjacent second and third actuator layers 72, 73 expanding or contracting together drives the general longitudinal expansion or contraction of the motor 22, and thereby the deflection of the tongue 20 and slider 18. The expansion or contraction of the first actuator layer 71, opposite the motion of the pair of adjacent second and third actuator layers 72, 73, causes a disparity in motion within the motor 22. As shown in
It is noted that the poling directions of the first, second, and third actuator layers 71-73 are examples, and that other poling directions can be used for the various layers. For example, the poling directions of the first, second, and third actuator layers 71-73 can be reversed relative to what is shown in
In performance testing conducted by the inventors, a three layer motor similar to that shown in
While three layer motors have been demonstrated herein in various embodiments, it is noted that various other embodiments can include a greater number of layers. Such motors can still exhibit the differential expanding/contracting motion as well as a greater number of expanding or contracting layers (e.g., three expanding layers and one or two contracting layers, which can be reversed to three contracting layers and one or two expanding layers). Furthermore, such motors can also include a pair of actuator layers that are adjacent to one another and that expand or contract together while another actuator layer, adjacent to one layer of the pair of actuator layers, expands while the pair of actuator layers contracts. For example, a top actuation layer can be added to the embodiment of
The first terminal 150 can be electrically connected to one side of a circuit of a flexure while the second terminal 152 can be connected to the other side of the circuit, such that an electrical potential can be applied across the motor 122, causing current to flow through the motor 122. It will be understood that the first terminal 150 and the second terminal 152 can each reversibly serve as either an anode or a cathode.
The motor 122 includes piezoelectric material 158. The piezoelectric material 158 can be similar to any piezoelectric material referenced herein. The piezoelectric material 158 includes only two piezoelectric layers. The piezoelectric material 158 includes a top actuator layer 171 and a bottom actuator layer 172. The motor 122 does not include any other piezoelectric layers. It is noted that the first and second actuator layers 171, 172 can be considered first and second actuator layers, respectively.
The motor 122 comprises a plurality of conductive layers. The plurality of conductive layers comprise a top conductive layer 175, a middle conductive layer 176, and a bottom conductive layer 177. The top conductive layer 175, the middle conductive layer 176, and the bottom conductive layer 177 can be considered first, second, and third conductive layers, respectively. The top conductive layer 175 defines the top side 136 of the motor 122. The bottom conductive layer 177 defines the bottom side 138 of the motor 122. The middle conductive layer 176 is sandwiched between the first and second actuator layers 171, 172. The top, middle, and bottom conductive layers 175-177 are in a stacked and interleaved arrangement with the first and second actuator layers 171, 172. A top side of the top conductive layer 175 can be exposed on the top side 136 of the motor 122. The bottom side of the top conductive layer 175 contacts the top side of the top actuator layer 171. A bottom side of the top actuator layer 171 contacts a top side of the middle conductive layer 176. A bottom side of the middle conductive layer 176 contacts a top side of the bottom actuator layer 172. A bottom side of the bottom actuator layer 172 contacts a top side of the bottom conductive layer 177. A bottom side of the bottom conductive layer 177 can be exposed on the bottom side 138 of the motor 122. The top, middle, and bottom conductive layers 175-177 can be similar to any conductive layer discussed herein, such as by being formed from a metal such as copper or gold. The first terminal 150 can be directly connected, or continuous, with the middle conductive layer 176.
As shown in
The arrows of
The poling of the first and second actuator layers 171, 172, and the arrangement of the top, middle, and bottom conductive layers 175-177 alternatingly connecting to the first and second terminals 150, 152, causes the motor 122 to curl upon activation. The first and second actuator layers 171, 172 are adjacent to one another while the top, middle, and bottom conductive layers 175-177 alternate in polarity such that when a differential signal is applied across the motor 122, each of the first and second actuator layers 171, 172 will experience the signal at different polarities with respect to their poled orientations (even though both of the first and second actuator layers 171, 172 are poled in the same direction). The result is that one of the first and second actuator layers 171, 172 expand while the other of the first and second actuator layers 171, 172 will contract in response to the same signal applied across the motor 122. Reversal of the signal polarity will likewise cause the expansion and contraction movements of the first and second actuator layers 171, 172 to reverse. Therefore, the only two actuator layers of the motor 122 will oppositely expand and contract in synchrony upon electrical activation. The expanding actuator layer will have a tendency to curl around the contracting actuator layer, as demonstrated herein in other embodiments.
In an alternative configuration of the embodiment of
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. For example, although described in connection with certain co-located DSA structures, motors and associated features described herein can be used in connection with other DSA structures, including other co-located DSA structures and/or non-co-located DSA structures, such as with baseplate 6 or loadbeam 8 mounted motors.
This application is a continuation of U.S. patent application Ser. No. 14/579,063 filed Dec. 22, 2014, entitled MULTILAYER DISK DRIVE MOTORS HAVING OUT-OF-PLANE BENDING, which is incorporated herein by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3320556 | Schneider | May 1967 | A |
3582575 | Scofield | Jun 1971 | A |
3862522 | Mednick | Jan 1975 | A |
3877120 | Hikota et al. | Apr 1975 | A |
3910339 | Kramer | Oct 1975 | A |
4014257 | Bettenhausen | Mar 1977 | A |
4168214 | Fletcher et al. | Sep 1979 | A |
4181554 | Rich | Jan 1980 | A |
4299130 | Koneval | Nov 1981 | A |
4418239 | Larson et al. | Nov 1983 | A |
4422906 | Kobayashi | Dec 1983 | A |
4659438 | Kuhn et al. | Apr 1987 | A |
4916798 | Ballast | Apr 1990 | A |
5140288 | Grunwell | Aug 1992 | A |
5189779 | Fishel et al. | Mar 1993 | A |
5212847 | Melcher et al. | May 1993 | A |
5275076 | Greenwalt | Jan 1994 | A |
5320272 | Melton et al. | Jun 1994 | A |
5321568 | Hatam-Tabrizi | Jun 1994 | A |
5333085 | Prentice et al. | Jul 1994 | A |
5427848 | Baer et al. | Jun 1995 | A |
5459921 | Hudson et al. | Oct 1995 | A |
5485053 | Baz | Jan 1996 | A |
5491597 | Bennin et al. | Feb 1996 | A |
5521778 | Boutaghou et al. | May 1996 | A |
5526208 | Hatch et al. | Jun 1996 | A |
5598307 | Bennin | Jan 1997 | A |
5608590 | Ziegler et al. | Mar 1997 | A |
5608591 | Klaassen et al. | Mar 1997 | A |
5631786 | Erpelding | May 1997 | A |
5636089 | Jurgenson et al. | Jun 1997 | A |
5651723 | Bjornard et al. | Jul 1997 | A |
5657186 | Kudo et al. | Aug 1997 | A |
5657188 | Jurgenson et al. | Aug 1997 | A |
5666241 | Summers | Sep 1997 | A |
5666717 | Matsumoto et al. | Sep 1997 | A |
5694270 | Sone et al. | Dec 1997 | A |
5712749 | Gustafson | Jan 1998 | A |
5714444 | Yokouchi et al. | Feb 1998 | A |
5717547 | Young | Feb 1998 | A |
5722142 | Myers | Mar 1998 | A |
5734526 | Symons | Mar 1998 | A |
5737152 | Balakrishnan | Apr 1998 | A |
5754368 | Shiraishi et al. | May 1998 | A |
5764444 | Imamura et al. | Jun 1998 | A |
5773889 | Love et al. | Jun 1998 | A |
5790347 | Girard | Aug 1998 | A |
5795435 | Waters et al. | Aug 1998 | A |
5796552 | Akin, Jr. et al. | Aug 1998 | A |
5805382 | Lee et al. | Sep 1998 | A |
5812344 | Balakrishnan | Sep 1998 | A |
5818662 | Shum | Oct 1998 | A |
5857257 | Inaba | Jan 1999 | A |
5862010 | Simmons et al. | Jan 1999 | A |
5862015 | Evans et al. | Jan 1999 | A |
5889137 | Hutchings et al. | Mar 1999 | A |
5892637 | Brooks, Jr. et al. | Apr 1999 | A |
5893201 | Myers | Apr 1999 | A |
5898541 | Boutaghou | Apr 1999 | A |
5898544 | Krinke et al. | Apr 1999 | A |
5914834 | Gustafson | Jun 1999 | A |
5921131 | Stange | Jul 1999 | A |
5922000 | Chodorow | Jul 1999 | A |
5924187 | Matz | Jul 1999 | A |
5929390 | Naito et al. | Jul 1999 | A |
5956212 | Zhu | Sep 1999 | A |
5973882 | Tangren | Oct 1999 | A |
5973884 | Hagen | Oct 1999 | A |
5986853 | Simmons et al. | Nov 1999 | A |
5995328 | Balakrishnan | Nov 1999 | A |
5995329 | Shiraishi et al. | Nov 1999 | A |
6011671 | Masse et al. | Jan 2000 | A |
6029334 | Hartley | Feb 2000 | A |
6038102 | Balakrishnan et al. | Mar 2000 | A |
6046887 | Uozumi et al. | Apr 2000 | A |
6055132 | Arya et al. | Apr 2000 | A |
6063228 | Sasaki et al. | May 2000 | A |
6075676 | Hiraoka et al. | Jun 2000 | A |
6078470 | Danielson et al. | Jun 2000 | A |
6085456 | Battaglia | Jul 2000 | A |
6095023 | Harada et al. | Aug 2000 | A |
6108175 | Hawwa et al. | Aug 2000 | A |
6115221 | Utsunomiya | Sep 2000 | A |
6118637 | Wright | Sep 2000 | A |
6144531 | Sawai | Nov 2000 | A |
6146813 | Girard et al. | Nov 2000 | A |
6156982 | Dawson | Dec 2000 | A |
6157522 | Murphy et al. | Dec 2000 | A |
6172853 | Davis et al. | Jan 2001 | B1 |
6181520 | Fukuda | Jan 2001 | B1 |
6195227 | Fan et al. | Feb 2001 | B1 |
6215622 | Ruiz et al. | Apr 2001 | B1 |
6215629 | Kant et al. | Apr 2001 | B1 |
6229673 | Shinohara et al. | May 2001 | B1 |
6233124 | Budde et al. | May 2001 | B1 |
6239953 | Mei | May 2001 | B1 |
6246546 | Tangren | Jun 2001 | B1 |
6246552 | Soeno | Jun 2001 | B1 |
6249404 | Doundakov et al. | Jun 2001 | B1 |
6262868 | Arya et al. | Jul 2001 | B1 |
6275358 | Balakrishnan et al. | Aug 2001 | B1 |
6278587 | Mei | Aug 2001 | B1 |
6282062 | Shiraishi | Aug 2001 | B1 |
6289564 | Novotny | Sep 2001 | B1 |
6295185 | Stefansky | Sep 2001 | B1 |
6297936 | Kant | Oct 2001 | B1 |
6300846 | Brunker | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6308483 | Romine | Oct 2001 | B1 |
6320730 | Stefansky et al. | Nov 2001 | B1 |
6330132 | Honda | Dec 2001 | B1 |
6349017 | Schott | Feb 2002 | B1 |
6366431 | Tsuchiya et al. | Apr 2002 | B1 |
6376964 | Young | Apr 2002 | B1 |
6380483 | Blake | Apr 2002 | B1 |
6381821 | Panyon et al. | May 2002 | B1 |
6387111 | Barber | May 2002 | B1 |
6396667 | Zhang et al. | May 2002 | B1 |
6399899 | Ohkawa et al. | Jun 2002 | B1 |
6400532 | Mei | Jun 2002 | B1 |
6404594 | Maruyama et al. | Jun 2002 | B1 |
6407481 | Takeuchi et al. | Jun 2002 | B1 |
6424500 | Coon et al. | Jul 2002 | B1 |
6445546 | Coon | Sep 2002 | B1 |
6459549 | Tsuchiya et al. | Oct 2002 | B1 |
6480359 | Dunn et al. | Nov 2002 | B1 |
6487045 | Yanagisawa | Nov 2002 | B1 |
6490228 | Killam | Dec 2002 | B2 |
6493190 | Coon | Dec 2002 | B1 |
6493192 | Crane et al. | Dec 2002 | B2 |
6498704 | Chessman et al. | Dec 2002 | B1 |
6501625 | Boismier | Dec 2002 | B1 |
6539609 | Palmer et al. | Apr 2003 | B2 |
6549376 | Scura et al. | Apr 2003 | B1 |
6549736 | Miyabe et al. | Apr 2003 | B2 |
6563676 | Chew et al. | May 2003 | B1 |
6581262 | Myers | Jun 2003 | B1 |
6596184 | Shum et al. | Jul 2003 | B1 |
6597541 | Nishida et al. | Jul 2003 | B2 |
6600631 | Berding et al. | Jul 2003 | B1 |
6621653 | Schirle | Sep 2003 | B1 |
6621658 | Nashif | Sep 2003 | B1 |
6636388 | Stefansaky | Oct 2003 | B2 |
6639761 | Boutaghou et al. | Oct 2003 | B1 |
6647621 | Roen et al. | Nov 2003 | B1 |
6653763 | Wang | Nov 2003 | B2 |
6661617 | Hipwell, Jr. et al. | Dec 2003 | B1 |
6661618 | Fujiwara et al. | Dec 2003 | B2 |
6704157 | Himes et al. | Mar 2004 | B2 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6704165 | Kube et al. | Mar 2004 | B2 |
6711930 | Thom et al. | Mar 2004 | B2 |
6714384 | Himes et al. | Mar 2004 | B2 |
6714385 | Even et al. | Mar 2004 | B1 |
6724580 | Irie | Apr 2004 | B2 |
6728057 | Putnam | Apr 2004 | B2 |
6728077 | Murphy | Apr 2004 | B1 |
6731472 | Okamoto et al. | May 2004 | B2 |
6735052 | Dunn et al. | May 2004 | B2 |
6735055 | Crane et al. | May 2004 | B1 |
6737931 | Amparan et al. | May 2004 | B2 |
6738225 | Summers et al. | May 2004 | B1 |
6741424 | Danielson et al. | May 2004 | B1 |
6751062 | Kasajima et al. | Jun 2004 | B2 |
6752661 | Gu et al. | Jun 2004 | B2 |
6760182 | Bement et al. | Jul 2004 | B2 |
6760194 | Shiraishi et al. | Jul 2004 | B2 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762913 | Even et al. | Jul 2004 | B1 |
6765761 | Arya | Jul 2004 | B2 |
6771466 | Kasajima et al. | Aug 2004 | B2 |
6771467 | Kasajima et al. | Aug 2004 | B2 |
6789593 | Aono et al. | Sep 2004 | B1 |
6791802 | Watanabe et al. | Sep 2004 | B2 |
6796018 | Thonton | Sep 2004 | B1 |
6797888 | Ookawa et al. | Sep 2004 | B2 |
6798597 | Aram et al. | Sep 2004 | B1 |
6801402 | Subrahmanyam et al. | Oct 2004 | B1 |
6802496 | Preta | Oct 2004 | B1 |
6831539 | Hipwell, Jr. et al. | Dec 2004 | B1 |
6833978 | Shum et al. | Dec 2004 | B2 |
6839204 | Shiraishi et al. | Jan 2005 | B2 |
6841737 | Komatsubara et al. | Jan 2005 | B2 |
6856075 | Houk et al. | Feb 2005 | B1 |
6859345 | Boutaghou | Feb 2005 | B2 |
6870091 | Seidler | Mar 2005 | B2 |
6882506 | Yamaoka et al. | Apr 2005 | B2 |
6891700 | Shiraishi et al. | May 2005 | B2 |
6898042 | Subrahmanyan | May 2005 | B2 |
6900967 | Coon et al. | May 2005 | B1 |
6922305 | Price | Jul 2005 | B2 |
6934127 | Yao et al. | Aug 2005 | B2 |
6942817 | Yagi et al. | Sep 2005 | B2 |
6943991 | Yao et al. | Sep 2005 | B2 |
6950288 | Yao et al. | Sep 2005 | B2 |
6961221 | Niu | Nov 2005 | B1 |
6963471 | Arai et al. | Nov 2005 | B2 |
6975488 | Kulangara et al. | Dec 2005 | B1 |
6977790 | Chen et al. | Dec 2005 | B1 |
7006333 | Summers | Feb 2006 | B1 |
7016159 | Bjorstrom et al. | Mar 2006 | B1 |
7020949 | Muramatsu et al. | Apr 2006 | B2 |
7023667 | Shum | Apr 2006 | B2 |
7050267 | Koh et al. | May 2006 | B2 |
7057857 | Niu et al. | Jun 2006 | B1 |
7064928 | Fu et al. | Jun 2006 | B2 |
7068473 | O'Neill | Jun 2006 | B2 |
7079357 | Kulangara et al. | Jul 2006 | B1 |
7082670 | Boismier et al. | Aug 2006 | B2 |
7092215 | Someya et al. | Aug 2006 | B2 |
7099115 | Yao | Aug 2006 | B2 |
7099117 | Subrahmanyam et al. | Aug 2006 | B1 |
7129418 | Aonuma et al. | Oct 2006 | B2 |
7130159 | Shimizu et al. | Oct 2006 | B2 |
7132607 | Yoshimi et al. | Nov 2006 | B2 |
7142395 | Swanson et al. | Nov 2006 | B2 |
7144687 | Fujisaki et al. | Dec 2006 | B2 |
7158348 | Erpelding et al. | Jan 2007 | B2 |
7159300 | Yao et al. | Jan 2007 | B2 |
7161765 | Ichikawa et al. | Jan 2007 | B2 |
7161767 | Hernandez et al. | Jan 2007 | B2 |
7177119 | Bennin et al. | Feb 2007 | B1 |
7185409 | Myers | Mar 2007 | B1 |
7218481 | Bennin et al. | May 2007 | B1 |
7256968 | Krinke | Aug 2007 | B1 |
7271958 | Yoon et al. | Sep 2007 | B2 |
7283331 | Oh et al. | Oct 2007 | B2 |
7288590 | Lechat et al. | Oct 2007 | B2 |
7292413 | Coon | Nov 2007 | B1 |
7307817 | Mei | Dec 2007 | B1 |
7322241 | Kai | Jan 2008 | B2 |
7336436 | Sharma et al. | Feb 2008 | B2 |
7336444 | Kido et al. | Feb 2008 | B2 |
7338693 | Shikano et al. | Mar 2008 | B2 |
7342750 | Yang et al. | Mar 2008 | B2 |
7345851 | Hirano et al. | Mar 2008 | B2 |
7375930 | Yang | May 2008 | B2 |
7379274 | Yao et al. | May 2008 | B2 |
7382582 | Cuevas | Jun 2008 | B1 |
7384531 | Peltoma et al. | Jun 2008 | B1 |
7385788 | Kubota et al. | Jun 2008 | B2 |
7388733 | Swanson et al. | Jun 2008 | B2 |
7391594 | Fu et al. | Jun 2008 | B2 |
7403357 | Williams | Jul 2008 | B1 |
7408745 | Yao et al. | Aug 2008 | B2 |
7417830 | Kulangara | Aug 2008 | B1 |
7420778 | Sassine et al. | Sep 2008 | B2 |
7459835 | Mei | Dec 2008 | B1 |
7460337 | Mei | Dec 2008 | B1 |
7466520 | White et al. | Dec 2008 | B2 |
7499246 | Nakagawa | Mar 2009 | B2 |
7509859 | Kai | Mar 2009 | B2 |
7518830 | Panchal et al. | Apr 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7595965 | Kulangara et al. | Sep 2009 | B1 |
RE40975 | Evans et al. | Nov 2009 | E |
7625654 | Vyas et al. | Dec 2009 | B2 |
7629539 | Ishii et al. | Dec 2009 | B2 |
7636222 | Dobosz et al. | Dec 2009 | B1 |
7643252 | Arai et al. | Jan 2010 | B2 |
7649254 | Graydon et al. | Jan 2010 | B2 |
7663841 | Budde et al. | Feb 2010 | B2 |
7667921 | Satoh et al. | Feb 2010 | B2 |
7675713 | Ogawa et al. | Mar 2010 | B2 |
7688552 | Yao et al. | Mar 2010 | B2 |
7692899 | Arai et al. | Apr 2010 | B2 |
7697237 | Danielson | Apr 2010 | B1 |
7701673 | Wang et al. | Apr 2010 | B2 |
7701674 | Arai | Apr 2010 | B2 |
7710687 | Carlson et al. | May 2010 | B1 |
7710688 | Hentges et al. | May 2010 | B1 |
7719798 | Yao | May 2010 | B2 |
7724476 | Bjorstrom et al. | May 2010 | B1 |
7724478 | Deguchi et al. | May 2010 | B2 |
7751153 | Kulangara et al. | Jul 2010 | B1 |
7768746 | Yao et al. | Aug 2010 | B2 |
7782572 | Pro | Aug 2010 | B2 |
7804663 | Hirano et al. | Sep 2010 | B2 |
7813083 | Guo et al. | Oct 2010 | B2 |
7813084 | Hentges | Oct 2010 | B1 |
7821742 | Mei | Oct 2010 | B1 |
7826177 | Zhang et al. | Nov 2010 | B1 |
7832082 | Hentges et al. | Nov 2010 | B1 |
7835113 | Douglas | Nov 2010 | B1 |
7872344 | Fjelstad et al. | Jan 2011 | B2 |
7875804 | Tronnes et al. | Jan 2011 | B1 |
7902639 | Garrou et al. | Mar 2011 | B2 |
7914926 | Kimura et al. | Mar 2011 | B2 |
7923644 | Ishii et al. | Apr 2011 | B2 |
7924530 | Chocholaty | Apr 2011 | B1 |
7929252 | Hentges et al. | Apr 2011 | B1 |
7946010 | Myers et al. | May 2011 | B1 |
7983008 | Liao et al. | Jul 2011 | B2 |
7986494 | Pro | Jul 2011 | B2 |
8004798 | Dunn | Aug 2011 | B1 |
8072708 | Horiuchi | Dec 2011 | B2 |
8085508 | Hatch | Dec 2011 | B2 |
8089728 | Yao et al. | Jan 2012 | B2 |
8120878 | Drape et al. | Feb 2012 | B1 |
8125736 | Nojima et al. | Feb 2012 | B2 |
8125741 | Shelor | Feb 2012 | B2 |
8144430 | Hentges et al. | Mar 2012 | B2 |
8144436 | Iriuchijima et al. | Mar 2012 | B2 |
8149542 | Ando et al. | Apr 2012 | B2 |
8149545 | Chai | Apr 2012 | B1 |
8151440 | Tsutsumi et al. | Apr 2012 | B2 |
8154827 | Contreras et al. | Apr 2012 | B2 |
8157947 | Kim | Apr 2012 | B2 |
8161626 | Ikeji | Apr 2012 | B2 |
8169746 | Rice et al. | May 2012 | B1 |
8174797 | Iriuchijima | May 2012 | B2 |
8189281 | Alex et al. | May 2012 | B2 |
8189301 | Schreiber | May 2012 | B2 |
8194359 | Yao et al. | Jun 2012 | B2 |
8199441 | Nojima | Jun 2012 | B2 |
8199442 | Okawara et al. | Jun 2012 | B2 |
8228642 | Hahn et al. | Jul 2012 | B1 |
8233240 | Contreras et al. | Jul 2012 | B2 |
8248731 | Fuchino | Aug 2012 | B2 |
8248734 | Fuchino | Aug 2012 | B2 |
8248735 | Fujimoto et al. | Aug 2012 | B2 |
8248736 | Hanya et al. | Aug 2012 | B2 |
8254062 | Greminger | Aug 2012 | B2 |
8259416 | Davis et al. | Sep 2012 | B1 |
8264797 | Emley | Sep 2012 | B2 |
8284524 | Meyer | Oct 2012 | B2 |
8289652 | Zambri et al. | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8295012 | Tian et al. | Oct 2012 | B1 |
8296929 | Hentges et al. | Oct 2012 | B2 |
8300362 | Virmani et al. | Oct 2012 | B2 |
8300363 | Arai et al. | Oct 2012 | B2 |
8305712 | Contreras et al. | Nov 2012 | B2 |
8310790 | Fanslau, Jr. | Nov 2012 | B1 |
8331061 | Hanya et al. | Dec 2012 | B2 |
8339748 | Shum et al. | Dec 2012 | B2 |
8351160 | Fujimoto | Jan 2013 | B2 |
8363361 | Hanya et al. | Jan 2013 | B2 |
8369046 | Nojima | Feb 2013 | B2 |
8379349 | Pro et al. | Feb 2013 | B1 |
8405933 | Soga | Mar 2013 | B2 |
8405934 | Fuchino | Mar 2013 | B2 |
8446694 | Tian | May 2013 | B1 |
8456780 | Ruiz | Jun 2013 | B1 |
8498082 | Padeski et al. | Jul 2013 | B1 |
8503133 | Arai et al. | Aug 2013 | B2 |
8508888 | Ohsawa | Aug 2013 | B2 |
8526142 | Dejkoonmak et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8553364 | Schreiber et al. | Oct 2013 | B1 |
8559137 | Imuta | Oct 2013 | B2 |
8582243 | Feng et al. | Nov 2013 | B2 |
8593764 | Tian | Nov 2013 | B1 |
8630067 | Ando et al. | Jan 2014 | B2 |
8634166 | Ohnuki et al. | Jan 2014 | B2 |
8665565 | Pro et al. | Mar 2014 | B2 |
8665567 | Shum et al. | Mar 2014 | B2 |
8675314 | Bjorstrom | Mar 2014 | B1 |
8681456 | Miller et al. | Mar 2014 | B1 |
8717712 | Bennin et al. | May 2014 | B1 |
8741195 | Kurihara et al. | Jun 2014 | B2 |
8780503 | Wright et al. | Jul 2014 | B2 |
8792214 | Bjorstrom et al. | Jul 2014 | B1 |
8834660 | Scheele et al. | Sep 2014 | B1 |
8885297 | Bjorstrom et al. | Nov 2014 | B1 |
8891206 | Miller | Nov 2014 | B2 |
8896968 | Miller et al. | Nov 2014 | B2 |
8896969 | Miller et al. | Nov 2014 | B1 |
8896970 | Miller et al. | Nov 2014 | B1 |
9007726 | Bennin et al. | Apr 2015 | B2 |
9036302 | Bjorstrom et al. | May 2015 | B2 |
9070392 | Bjorstrom | Jun 2015 | B1 |
9093117 | Tobias | Jul 2015 | B2 |
9117468 | Zhang et al. | Aug 2015 | B1 |
9147413 | Miller et al. | Sep 2015 | B2 |
9240203 | Miller et al. | Jan 2016 | B2 |
9245555 | Bennin et al. | Jan 2016 | B2 |
9257139 | Miller | Feb 2016 | B2 |
9296188 | Cray et al. | Mar 2016 | B1 |
9318136 | Bjorstrom et al. | Apr 2016 | B1 |
9330697 | Miller et al. | May 2016 | B2 |
20010001937 | Benes et al. | May 2001 | A1 |
20010012181 | Inoue et al. | Aug 2001 | A1 |
20010013993 | Coon | Aug 2001 | A1 |
20010030838 | Takadera et al. | Oct 2001 | A1 |
20010043443 | Okamoto et al. | Nov 2001 | A1 |
20020012194 | Inagaki et al. | Jan 2002 | A1 |
20020075606 | Nishida et al. | Jun 2002 | A1 |
20020118492 | Watanabe et al. | Aug 2002 | A1 |
20020149888 | Motonishi et al. | Oct 2002 | A1 |
20020159845 | Mikell | Oct 2002 | A1 |
20020168897 | Chang | Nov 2002 | A1 |
20020176209 | Schulz et al. | Nov 2002 | A1 |
20020178778 | Thom et al. | Dec 2002 | A1 |
20030011118 | Kasajima et al. | Jan 2003 | A1 |
20030011936 | Himes et al. | Jan 2003 | A1 |
20030051890 | Marshall | Mar 2003 | A1 |
20030053258 | Dunn et al. | Mar 2003 | A1 |
20030089520 | Ooyabu et al. | May 2003 | A1 |
20030135985 | Yao et al. | Jul 2003 | A1 |
20030174445 | Luo | Sep 2003 | A1 |
20030202293 | Nakamura et al. | Oct 2003 | A1 |
20030210499 | Arya | Nov 2003 | A1 |
20040007322 | Lechat et al. | Jan 2004 | A1 |
20040008449 | Girard | Jan 2004 | A1 |
20040027727 | Shimizu et al. | Feb 2004 | A1 |
20040027728 | Coffey et al. | Feb 2004 | A1 |
20040032093 | Razavi | Feb 2004 | A1 |
20040070884 | Someya et al. | Apr 2004 | A1 |
20040084198 | Seidler | May 2004 | A1 |
20040125508 | Yang et al. | Jul 2004 | A1 |
20040181932 | Yao et al. | Sep 2004 | A1 |
20040207957 | Kasajima et al. | Oct 2004 | A1 |
20040221447 | Ishii et al. | Nov 2004 | A1 |
20040250952 | Lechat et al. | Dec 2004 | A1 |
20040264056 | Jang et al. | Dec 2004 | A1 |
20050045914 | Agranat et al. | Mar 2005 | A1 |
20050060864 | Nikolaidis et al. | Mar 2005 | A1 |
20050061542 | Aonuma et al. | Mar 2005 | A1 |
20050063097 | Maruyama et al. | Mar 2005 | A1 |
20050101983 | Loshakove et al. | May 2005 | A1 |
20050105217 | Kwon et al. | May 2005 | A1 |
20050117257 | Thaveeprungsriporn et al. | Jun 2005 | A1 |
20050180053 | Dovek et al. | Aug 2005 | A1 |
20050254175 | Swanson et al. | Nov 2005 | A1 |
20050280944 | Yang et al. | Dec 2005 | A1 |
20060044698 | Hirano et al. | Mar 2006 | A1 |
20060077594 | White et al. | Apr 2006 | A1 |
20060181812 | Kwon et al. | Aug 2006 | A1 |
20060193086 | Zhu et al. | Aug 2006 | A1 |
20060209465 | Takikawa et al. | Sep 2006 | A1 |
20060238924 | Gatzen | Oct 2006 | A1 |
20060248702 | Nikolaidis et al. | Nov 2006 | A1 |
20060274452 | Arya | Dec 2006 | A1 |
20060274453 | Arya | Dec 2006 | A1 |
20060279880 | Boutaghou et al. | Dec 2006 | A1 |
20070005072 | Castillo et al. | Jan 2007 | A1 |
20070041123 | Swanson et al. | Feb 2007 | A1 |
20070133128 | Arai | Jun 2007 | A1 |
20070153430 | Park et al. | Jul 2007 | A1 |
20070223146 | Yao et al. | Sep 2007 | A1 |
20070227769 | Brodsky et al. | Oct 2007 | A1 |
20070253176 | Ishii et al. | Nov 2007 | A1 |
20080024928 | Yang | Jan 2008 | A1 |
20080024933 | Yao et al. | Jan 2008 | A1 |
20080071302 | Castillo et al. | Mar 2008 | A1 |
20080084638 | Bonin | Apr 2008 | A1 |
20080124842 | Wang et al. | May 2008 | A1 |
20080144225 | Yao et al. | Jun 2008 | A1 |
20080192384 | Danielson et al. | Aug 2008 | A1 |
20080198511 | Hirano et al. | Aug 2008 | A1 |
20080229842 | Ohtsuka et al. | Sep 2008 | A1 |
20080247131 | Hitomi et al. | Oct 2008 | A1 |
20080251201 | Sikkel et al. | Oct 2008 | A1 |
20080264557 | Kim | Oct 2008 | A1 |
20080272122 | Son | Nov 2008 | A1 |
20080273266 | Pro | Nov 2008 | A1 |
20080273269 | Pro | Nov 2008 | A1 |
20090027807 | Yao et al. | Jan 2009 | A1 |
20090080117 | Shimizu et al. | Mar 2009 | A1 |
20090135523 | Nishiyama et al. | May 2009 | A1 |
20090147407 | Huang et al. | Jun 2009 | A1 |
20090168249 | McCaslin et al. | Jul 2009 | A1 |
20090176120 | Wang | Jul 2009 | A1 |
20090183359 | Tsutsumi et al. | Jul 2009 | A1 |
20090190263 | Miura et al. | Jul 2009 | A1 |
20090244786 | Hatch | Oct 2009 | A1 |
20090284870 | Nojima | Nov 2009 | A1 |
20090294740 | Kurtz et al. | Dec 2009 | A1 |
20100007993 | Contreras et al. | Jan 2010 | A1 |
20100067151 | Okaware et al. | Mar 2010 | A1 |
20100073825 | Okawara | Mar 2010 | A1 |
20100097726 | Greminger et al. | Apr 2010 | A1 |
20100142081 | Funabashi et al. | Jun 2010 | A1 |
20100143743 | Yamasaki et al. | Jun 2010 | A1 |
20100165515 | Ando | Jul 2010 | A1 |
20100165516 | Fuchino | Jul 2010 | A1 |
20100177445 | Fuchino | Jul 2010 | A1 |
20100195251 | Nojima et al. | Aug 2010 | A1 |
20100195252 | Kashima | Aug 2010 | A1 |
20100208390 | Hanya et al. | Aug 2010 | A1 |
20100208425 | Rapisarda | Aug 2010 | A1 |
20100220414 | Klarqvist et al. | Sep 2010 | A1 |
20100246071 | Nojima | Sep 2010 | A1 |
20100271735 | Schreiber | Oct 2010 | A1 |
20100277834 | Nojima | Nov 2010 | A1 |
20100290158 | Hanya et al. | Nov 2010 | A1 |
20110013319 | Soga et al. | Jan 2011 | A1 |
20110058281 | Arai et al. | Mar 2011 | A1 |
20110058282 | Fujimoto et al. | Mar 2011 | A1 |
20110096438 | Takada et al. | Apr 2011 | A1 |
20110096440 | Greminger | Apr 2011 | A1 |
20110123145 | Nishio | May 2011 | A1 |
20110141624 | Fuchino et al. | Jun 2011 | A1 |
20110141626 | Contreras et al. | Jun 2011 | A1 |
20110159767 | Sakurai et al. | Jun 2011 | A1 |
20110228425 | Liu et al. | Sep 2011 | A1 |
20110242708 | Fuchino | Oct 2011 | A1 |
20110279929 | Kin | Nov 2011 | A1 |
20110299197 | Eguchi | Dec 2011 | A1 |
20110299288 | Rapisarda | Dec 2011 | A1 |
20120000376 | Kurihara et al. | Jan 2012 | A1 |
20120002329 | Shum et al. | Jan 2012 | A1 |
20120081813 | Ezawa et al. | Apr 2012 | A1 |
20120081815 | Arai et al. | Apr 2012 | A1 |
20120087041 | Ohsawa | Apr 2012 | A1 |
20120099226 | Zambri et al. | Apr 2012 | A1 |
20120113547 | Sugimoto | May 2012 | A1 |
20120180956 | Kim | Jul 2012 | A1 |
20120248759 | Feith | Oct 2012 | A1 |
20120276232 | Marczyk et al. | Nov 2012 | A1 |
20120279757 | Ishii et al. | Nov 2012 | A1 |
20120281316 | Fujimoto et al. | Nov 2012 | A1 |
20120285306 | Weibelt | Nov 2012 | A1 |
20130020112 | Ohsawa | Jan 2013 | A1 |
20130021698 | Greminger et al. | Jan 2013 | A1 |
20130047807 | Sotokawa et al. | Feb 2013 | A1 |
20130055561 | Tsutsumi et al. | Mar 2013 | A1 |
20130107488 | Arai | May 2013 | A1 |
20130176646 | Arai | Jul 2013 | A1 |
20130242434 | Bjorstrom | Sep 2013 | A1 |
20130242436 | Yonekura et al. | Sep 2013 | A1 |
20130248231 | Tobias | Sep 2013 | A1 |
20130265674 | Fanslau | Oct 2013 | A1 |
20130279042 | Xiong et al. | Oct 2013 | A1 |
20140022670 | Takikawa et al. | Jan 2014 | A1 |
20140022671 | Takikawa et al. | Jan 2014 | A1 |
20140022674 | Takikawa | Jan 2014 | A1 |
20140022675 | Hanya et al. | Jan 2014 | A1 |
20140063660 | Bjorstrom et al. | Mar 2014 | A1 |
20140078621 | Miller et al. | Mar 2014 | A1 |
20140085754 | Hanya et al. | Mar 2014 | A1 |
20140085755 | Hanya et al. | Mar 2014 | A1 |
20140098440 | Miller et al. | Apr 2014 | A1 |
20140146649 | Bennin et al. | May 2014 | A1 |
20140168821 | Miller | Jun 2014 | A1 |
20140198412 | Miller et al. | Jul 2014 | A1 |
20140216221 | Mashima | Aug 2014 | A1 |
20140362475 | Bjorstrom et al. | Dec 2014 | A1 |
20140362476 | Miller et al. | Dec 2014 | A1 |
20150016235 | Bennin et al. | Jan 2015 | A1 |
20150055254 | Bjorstrom et al. | Feb 2015 | A1 |
20150055255 | Bennin et al. | Feb 2015 | A1 |
20150055256 | Miller | Feb 2015 | A1 |
20150062758 | Miller et al. | Mar 2015 | A1 |
20150162033 | Miller et al. | Jun 2015 | A1 |
20150194170 | Roen | Jul 2015 | A1 |
20150194176 | Scheele et al. | Jul 2015 | A1 |
20150356987 | Bennin et al. | Dec 2015 | A1 |
20160171995 | Bjorstrom | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
0591954 | Apr 1994 | EP |
0834867 | May 2007 | EP |
9198825 | Jul 1997 | JP |
10003632 | Jan 1998 | JP |
2001057039 | Feb 2001 | JP |
2001202731 | Jul 2001 | JP |
2001307442 | Nov 2001 | JP |
2002050140 | Feb 2002 | JP |
2002170607 | Jun 2002 | JP |
2003223771 | Aug 2003 | JP |
2003234549 | Aug 2003 | JP |
2004039056 | Feb 2004 | JP |
2004300489 | Oct 2004 | JP |
2005209336 | Aug 2005 | JP |
2007115864 | May 2007 | JP |
2008276927 | Nov 2008 | JP |
2015130221 | Jul 2015 | JP |
2015130225 | Jul 2015 | JP |
WO9820485 | May 1998 | WO |
2014021440 | Feb 2014 | WO |
WO2014190001 | Nov 2014 | WO |
2015009733 | Jan 2015 | WO |
2015027034 | Feb 2015 | WO |
Entry |
---|
U.S. Appl. No. 13/955,204 to Bjorstrom, Jacob D. et al., entitled Damped Dual Stage Actuation Disk Drive Suspensions, filed Jul. 31, 2013. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Mar. 24, 2014, 7 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Oct. 29, 2013, 9 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 7, 2014, 6 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on May 6, 2014, 5 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Apr. 18, 2014 to Non-Final Office Action issued on Mar. 24, 2014, 9 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Nov. 19, 2013 to Non-Final Office Action issued on Oct. 29, 2013, 11 pages. |
U.S. Appl. No. 13/972,137 to Bjorstrom, Jacob D. et al., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Offset Motors, filed Aug. 21, 2013. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued Nov. 5, 2013. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 17, 2014, 5 pages. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Response filed Dec. 2, 2013 to Non-Final Office Action issued Nov. 5, 2013, 12 pages. |
U.S. Appl. No. 14/026,427 to Miller, Mark k, entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Sep. 13, 2013. |
U.S. Appl. No. 14/044,238 to Miller, Mark A., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stifeners, filed Oct. 2, 2013. |
U.S. Appl. No. 14/044,238 to Miller, Mark A., Non-Final Office Action issued on Feb. 6, 2014, 9 pages. |
U.S. Appl. No. 14/044,238, to Miller, Mark A., Response filed Apr. 22, 2014 to Non-Final Office Action issued on Feb. 6, 2014, 11 pages. |
U.S. Appl. No. 14/050,660 to Miller, Mark A. et al., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Dampers, filed Oct. 10, 2013. |
U.S. Appl. No. 14/050,660, to Miller, Mark A. et al., Non-Final Office Action issued on Mar. 31, 2014, 9 pages. |
U.S. Appl. No. 14/146,760 to Roen, Michael E. entitled Balanced Multi-Trace Transmission in a Hard Disk Drive Flexure, filed Jan. 3, 2014, 32 pages. |
U.S. Appl. No. 14/215,663 to Bjorstrom, Jacob D., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Offset Motors, filed Mar. 17, 2014. |
U.S. Appl. No. 14/270,070 to Bennin, Jeffry S. et al., entitled Disk Drive Suspension Assembly Having a Partially Flangeless Load Point Dimple, filed May 5, 2014. |
U.S. Appl. No. 14/335,967 to Bjorstrom, Jacob D. et al., entitled Electrical Contacts to Motors in Dual Stage Actuated Suspensions, filed Jul. 21, 2014. |
U.S. Appl. No. 14/467,543 to Bjorstrom, Jacob D. et al., entitled Damped Dual Stage Actuation Disk Drive Suspensions, filed Aug. 25, 2014. |
U.S. Appl. No. 14/467,582 to Miller, Mark A. et al., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Dampers, filed Aug. 25, 2014. |
Yoon, Wonseok et al., “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells”, The Journal of Power Sources, vol. 179, No. 1, Apr. 15, 2008, pp. 265-273. |
International Search Report and Written Opinion issued in PCT/US2013/059702, dated Mar. 28, 2014, 9 pages. |
“Calculating VLSI Wiring Capacitance”, Jun. 1990, IBM Technical Disclosure Bulletin, vol. 33, Issue No. 1A, 2 pages. |
3M Ultra—pure Viscoelastic Damping Polymer 242NRO1, Technical Data, Mar. 2012, 4 pages. |
Cheng, Yang-Tse, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Electrical Contacts, 1996, Joint with the 18th International Conference on Electrical Contacts, Proceedings of the Forty-Second IEEE Holm Conference, Sep. 16-20, 1996 (abstract only). |
Fu, Yao, “Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator”, a thesis submitted to Industrial Research Institute Swinbume (IRIS), Swinburne University of Technology, Hawthorn, Victoria , Australia, Dec. 2005. |
Harris, N.R. et al., “A Multilayer Thick-film PZT Actuator for MEMs Applications”, Sensors and Actuators A: Physical, vol. 132, No. 1, Nov. 8, 2006, pp. 311-316. |
Hentges, Reed T. et al., “Exploring Low Loss Suspension Interconnects for High Data Rates in Hard Disk Drives”, IEEE Transactions on Magnetics, vol. 44, No. 1, Jan. 2008, pp. 169-174. |
International Preliminary Examination Report issued in PCT/US2013/075320, completed Jun. 23, 2015, 7 pages. |
International Preliminary Report on Patentability issued in PCT/US2013/052885, completed Mar. 3, 2015, 10 pages. |
International Preliminary Report on Patentability issued in PCT/US2013/059702, completed Mar. 17, 2015, 6 pages. |
International Preliminary Report on Patentability issued in PCT/US2014/038894, mailed Dec. 3, 2015, 6 pages. |
International Preliminary Report on Patentability issued in PCT/US2014/046714, mailed Jan. 28, 2016, 8 pages. |
International Preliminary Report on Patentability issued in PCT/US2014/047356, mailed Feb. 4, 2016, 9 pages. |
International Preliminary Report on Patentability issued in PCT/US2014/052042, mailed Mar. 3, 2016, 7 pages. |
International Search Report and Written Opinion issued in PCT/US13/75320, mailed May 20, 2014, 10 pages. |
International Search Report and Written Opinion issued in PCT/US2013/031484, mailed May 30, 2013, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2013/033341, mailed Jun. 14, 2013, 9 pages. |
International Search Report and Written Opinion issued in PCT/US2013/052885, mailed Feb. 7, 2014, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2013/052885, mailed Feb. 7, 2014, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2013/064314, dated Apr. 18, 2014, 10 pages. |
International Search Report and Written Opinion issued in PCT/US2014/046714, mailed Jul. 15, 2014, 26 pages. |
International Search Report and Written Opinion issued in PCT/US2014/052042, mailed Mar. 13, 2015, 10 pages. |
Jing, Yang, “Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, vol. 51, No. 11, Nov. 2004, pp. 1470-1476 (abstract only). |
Kon, Stanley et al., “Piezoresistive and Piezoelectric Mems Strain Sensors for Vibration Detection”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, Proc. of SPIE vol. 6529. |
Lengert, David et al., “Design of suspension-based and collocated dual stage actuated suspensions”, Microsyst Technol (2012) 18:1615-1622. |
Li, Longqiu et al., “An experimental study of the dimple-gimbal interface in a hard disk drive”, Microsyst Technol (2011) 17:863-868. |
Pichonat, Tristan et al., “Recent developments in Mems-based miniature fuel cells”, Microsyst Technol (2007) 13:1671-1678. |
Pozar, David M. Microwave Engineering, 4th Edition, copyright 2012 by John Wiley & Sons, Inc., pp. 422-426. |
Raeymaekers, B. et al., “Investigation of fretting wear at the dimple/gimbal interface in a hard disk drive suspension”, Wear, vol. 268, Issues 11-12, May 12, 2010, pp. 1347-1353. |
Raeymaekers, Bart et al., “Fretting Wear Between a Hollow Sphere and Flat Surface”, Proceedings of the STLE/ASME International Joint Tribology Conference, Oct. 19-21, 2009, Memphis, TN USA, 4 pages. |
Rajagopal, Indira et al., “Gold Plating of Critical Components for Space Applications: Challenges and Solutions”, Gold Bull., 1992, 25(2), pp. 55-66. |
U.S. Appl. No. 13/365,443 to Miller, Mark A., entitled Elongated Trace Tethers for Disk Drive Head Suspension Flexures, filed Feb. 3, 2012. |
U.S. Appl. No. 13/690,883 to Tobias, Kyle T. et al., entitled Microstructure Patterned Surfaces for Integrated Lead Head Suspensions, filed Nov. 30, 2012. |
U.S. Appl. No. 13/827,622 to Bjorstrom, Jacob D. et al., entitled Mid-Loadbeam Dual Stage Actuated (DSA) Disk Drive Head Suspension, filed Mar. 14, 2013. |
U.S. Appl. No. 14/056,481 entitled Two-Motor Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stiffeners, filed Oct. 17, 2013. |
U.S. Appl. No. 14/103,955 to Bjorstrom, Jacob D. et al., entitled Electrical Contacts to Motors in Dual Stage Actuated Suspensions, filed Dec. 12, 2013. |
U.S. Appl. No. 14/141,617 to Bennin, Jeffry S. et al., entitled Disk Drive Suspension Assembly Having a Partially Flangeless Load Point Dimple, filed Dec. 27, 2013, 53 pages. |
U.S. Appl. No. 14/145,515 to Miller, Mark A. et al., entitled Balanced Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Dec. 31, 2013, 39 pages. |
U.S. Appl. No. 14/163,279 to Roen, Michael E. entitled Stepped Impedance Flexure Design in a Hard Disk Drive, filed Jan. 24, 2014. |
U.S. Appl. No. 14/216,288 to Miller, Mark A. et al., entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspension, filed Mar. 17, 2014, 84 pages. |
U.S. Appl. No. 61/396,239 entitled Low Resistance Ground Joints for Dual Stage Actuation Disk Drive Suspensions, filed May 24, 2010, 16 pages. |
U.S. Appl. No. 13/114,212, filed May 24, 2011, (23 pages). |
U.S. Appl. No. 61/396,239, filed May 24,2010, (16 pages). |
U.S. Appl. No. 13/972,137, filed Aug. 21, 2013. |
U.S. Appl. No. 14/026,427, filed Sep. 13, 2013. |
U.S. Appl. No. 14/050,660, filed Oct. 10, 2013. |
U.S. Appl. No. 14/216,288, filed Sep. 14, 2012. |
U.S. Appl. No. 14/467,582, filed Oct. 10, 2012. |
U.S. Appl. No. 14/572,263, filed Dec. 16, 2014. |
U.S. Appl. No. 14/579,063, filed Dec. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20160196843 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14579063 | Dec 2014 | US |
Child | 15071762 | US |