1. Field of the Invention
The present invention relates to a multilayer material having two bearing cover layers and an amorphous coating substance between the cover layers, wherein at least one of the two cover layers is at an at least translucent, oriented plastic film, and wherein the coating substance contains an adhesive. The invention further relates to methods for producing such a multilayer material and printing stock produced therewith.
2. Description of the Prior Art
Multilayer materials of the described type are known for example in the form of composite films. In the context of producing such composite films, the term laminating is also used. A typical characteristic of these multilayer materials is that the amorphous coating layer that contains the adhesive, and which usually consists entirely of the adhesive, forms a very thin film that does not substantially contribute to the overall thickness of the multilayer material relative to the covering layers. Accordingly, the properties of the material are determined almost exclusively by the cover layers. The only function served by the coating or adhesive substance is that of bonding the cover layers. The quantity of adhesive is minimized as a cost factor to the extent possible.
In DE 199 60 411, a dispersion adhesive is used as the adhesive for bonding plastic films to produce composite films, and a certain barrier effect is afforded by the adhesive at the same time. After it has been applied and allowed to dry, the adhesive is sticky, which is also necessary for the subsequent lamination. This is referred to as dry lamination. Finally, the adhesive must cure for several days to reach the desired strength.
The use of aqueous dispersions as the hot seal coating is known from EP 0 798 357. A first substrate is coated with this hot seal coating, after which the coating is dried. Accordingly, the coating is not sticky at room temperature. This is important to enable the coated substrates to be stacked without sticking together before they are bonded with an additional substrate. To bond them with an additional substrate, the coated substrates are pressed against it and heat is applied for thermal activation of the hot seal coating. This technique is used in particular in food packaging products, in which case a cover foil is sealed onto the rim of a cup made from deep-drawn plastic film. Here too, the layer thicknesses of the hot seal coating are generally intentionally thin.
A relatively thick multilayer material known from U.S. Pat. No. 6,699,629 B1 is intended to function as a carrier for printed images and combines light weight with the other properties typical for this purpose in terms of stiffness, flatness, smoothness, brilliance, whiteness and opacity. It has a closed cell foam core consisting of a polymer material to which hollow microspheres may be added. For the cover layers, plies of paper or plastic film, preferably biaxially oriented plastic films, are used. In one embodiment, they are laminated on the foam core with the aid of an adhesive. It may be assumed that here too as little adhesive as possible is used.
In other embodiments, one of the cover layers is produced together with the foam core in a single work step, by coextrusion from different materials or by extrusion of the same material, in which case the material is prevented from expanding on one side. The other cover layer is then laminated onto the foam core by using an adhesive.
A form is known from WO 98/26938 in which a card is incorporated in a sheet of paper, the card being produced by congruent punch lines made from opposite sides. The card is attached by an intermediate layer that is not separated by the punch lines and which may be a partial layer of the sheet of paper or a structurally independent layer that is glued to the paper layer. The intention is that it should be possible to detach the card by separating the intermediate layer between the two punch lines. However, it has been found that the forces necessary for this cannot be easily controlled. If they are too great, the card cannot always be detached without destroying it. If they are too weak, there is a risk that the card may be detached from the form too soon, and problems may arise particularly during its passage through the printers.
In the case of forms with integrated cards, attachments are often present on a primary carrier as reinforcement and/or plastification for the cards, or as carrier layers therefor. The primary carrier is usually in the form of a sheet of A4- or letter-size paper. In order to ensure that the overall design of the form is not too thick, too stiff or too heavy, and for reasons of cost, these attachments are usually smaller in terms of area than the primary carrier, and are only locally present in the area of the cards. As a consequence, they result in local thickening, which in turn causes the stack become slanted. This slanting of the stack causes problems in sheetfed printers, as the magazines for these printers can also only be partly filled.
Monolayer thick films having thicknesses of 125 μm or 175 μm for example are also used in the production of cards or similar, particularly if this is required for high stiffness and/or resistance to moisture or similar threats. However, thick foils of such kind, particularly those made from polyester, are relatively expensive and are not always available on the market in sufficient quantities.
The object of the invention is to suggest a multilayer material of the type described in the introduction that has practical advantages over the known materials. In particular, the material is intended also to be usable as a substitute for monolayer thick films.
This object is solved with a multilayer material according to the present invention and is correspondingly characterized in that the overall thickness thereof is 100-800 μm, that at least 30% of this overall thickness is constituted by the amorphous coating substance, and that the adhesive contained in the coating substance is able to be activated at least once by heat and pressure but is not sticky at room temperature.
The multilayer material according to the invention is usable as a substitute for monolayer thick films due to its similar properties in use and overall thickness.
In that the coating substance constitutes at least 30% of the overall thickness, it is possible to use relatively thin cover layers. In particular, the plastic film used may be a plastic film that is at least translucent, oriented and having a thickness in the range from 12-75 μm. In this thickness range, the selection of commercially available plastic films is large, and because of the large quantities in which such films are manufactured and consumed, their price is also relatively low. This may make even mean that they are less expensive than monolayer films of corresponding thickness despite the additional processing steps required to produce the multilayer material according to the invention.
The layer thicknesses of these adhesives created particularly for laminating adhesives in composite films according to the prior art, such as are described in DE 199 60 411 A1 are also thin, being only a few μm thick, because they cure relatively slowly. In the case of the composite film described in DE 199 60 411 A1, curing takes at least several days. If the layer thickness of an adhesive of this kind were increased significantly, the composite material could not be rolled up immediately after lamination. The pressure exerted on the composite material on the roll would cause an effect known as telescoping of the material. The present invention avoids this problem by the use of the adhesive in the amorphous coating substance that is able to be activated at least once with heat and pressure. This adhesive will be referred to in the following as thermally activated adhesive. This class of adhesives also includes those referred to as hot seal coatings. Thermally activated adhesives feature extremely high immediate strengths, almost equal to their final strengths. By virtue of this property of the material, the multilayer material is able to be rolled up immediately or even forwarded directly for further processing as it is being produced despite the great layer thickness of the amorphous coating substance.
Many thermally activatable adhesives are commercially available. The basic properties that are of primary importance for the purposes of the invention are good adhesion on one of the two cover layers by coating, and adhesive strength with the opposite cover layer under pressure and heat, or also with a corresponding coating thereon.
The adhesive contained in the coating substance is based for example on acrylate, polyurethane, polyester, epoxy resin, ethylene vinyl acetate, ethylethylene acrylate, or combinations thereof.
It is important that the thermally activated adhesive is not sticky at room temperature, so that the borders or cutting edges of the multilayer material according to the invention cannot adhere to other objects or to the material itself on the roll or in a stack. This also prevents adhesive from seeping out at the edges.
To ensure the multilayer material is able to withstand thermal loads, such as occur for example during printing in a laser printer, the activation temperature of the thermally activated adhesive should be higher than 80° C., and preferably even higher than 100° C.
One of the two cover layers of the multilayer material according to the invention is an at least translucent, oriented plastic film. A plastic film is at least translucent if it is transparent, though the transparency does not need to be especially clear. The plastic film may be a polyester film, a polypropylene film, a polycarbonate film or a polyamide film, for example. In particular, it might also be a film produced from different materials by coextrusion.
The other cover layer may be a film of the same kind, or a metal film, or a paper layer. Because the plastic film is oriented before it is incorporated in the multilayer material, its dimensional stability (tear strength and stretch resistance) at room temperature as well as under thermal load is increased.
At least one of the cover layers, preferably the one on the outside, may be provided with a print layer and/or a heat reflecting layer and/or be constructed as a membrane.
The two cover layers together preferably represent not more than 150 of the overall thickness.
The coating substance also preferably joins the two cover layers to one another directly. A functional layer may be present between the two cover layers, preferably between two plies of the coating substance, but possibly additionally covering a partial area thereof.
The coating substance may preferably be made less dense, stiffer, more opaque, whiter, more or less thermally insulating and/or electrically conductive or flame retardant, have stronger or weaker antibacterial properties, contain, absorb or emit more or less liquids or fragrances, and/or be made more or less chemically reactive by adding at least one substance to the adhesive.
The coating substance may contain 25-69% by weight, preferably 39-56% by weight adhesive and 31-75% by weight, preferably 44-61% by weight admixtures to the adhesive relative to its dry weight.
The admixtures to the adhesive comprise mainly bulking agents, particularly carbonates such as calcium carbonate, oxides such as titanium dioxide and zinc oxide, silicates such as kaolin and talc, sulfates such as barium sulfate, fibers such as glass fiber and/or lightweight fillers such as hollow microspheres made of glass or plastic. The latter serve to lower the density of the coating substance and thus also to reduce the overall weight of the multilayer material.
If the coating substance has a tear strength at room temperature not exceeding 25% of the average tear strength of the cover layers, but preferably a tear strength of 2.5-4.5 N/mm2, the multilayer material according to the invention is particularly suitable for use for printing stock with an integrated punched part as described in the claims. Such a printing stock, in which the integrated punched part is created by at least partially congruent indentations in the multilayer material that cut through the two cover layers completely but cut the coating substance only partially, leaving a remaining thickness of 25 μm, and which is kept attached to the surrounding material by the remaining thickness in the bond, is also an object of the present invention.
If the multilayer material according to the invention is separable in itself, it is particularly suitable for use for a printing stock comprising at least two flat partial print stock items joined in coplanar manner as described below. Such printing stock, in which the multilayer material is less thick along a border strip than over the remaining area thereof, in which the other partial print stock item is less thick along a border strip than over the remaining area thereof, and in which the multilayer material and the other partial print stock item are adjoined to one another along the their respective border strips, is a further object of the present invention.
The bending stiffness at room temperature of the multilayer material according to the invention is preferably also equal to at least 70% of the bending stiffness that would be exhibited by one of the two cover layers, preferably the plastic film, if it had the same overall thickness. In this case, the multilayer material is particularly suitable for use as a substitute for a monolayer film having the same overall thickness.
The amorphous coating substance that contains the thermally activated adhesive may be produced and processed in three different systems within the scope of the invention: as a liquid or paste-like coating substance on an aqueous base, as a liquid or paste-like coating substance on a solvent-containing base, or as an extrudable coating substance.
A preferred method for producing the multilayer material according to the invention is indicated hereinafter. According to this, both cover layers are unrolled from a roll as continuous webs. The amorphous coating substance is then applied in liquid or paste form to at least one of the two running cover layer webs and is then dried out with the aid of heating. Drying causes the coating substance to solidify. Alternatively, it may be applied hot as extrudate, in which case drying is not necessary.
In the dried state, the coating substance and the adhesive contained therein is not sticky at room temperature. It does not become sticky until the thermally activated adhesive contained therein is heated up to its activation temperature. When the adhesive is in the activated state, the two cover layers are bonded to one another by the application of pressure. Upon cooling to below the activation temperature, the adhesive and therewith also the coating agent overall reaches sufficient strength within a very short period, so that the multilayer material according to the invention may be wound onto a roll or otherwise processed further almost immediately after the two cover layers have bonded with one another. Further processing may take the form of coating, cutting into narrow rolls or cutting to size, stamping or printing.
Bonding of the two cover layers preferably proceeds while the coating substance is still hot from the drying or extrusion process. This then advantageously reduces the quantity of heat required to activate the adhesive and the time required therefor. If the coating substance is extruded, additional activation may possibly be entirely dispensed with.
One ply of the coating substance is preferably applied to each of the two cover layers, also preferably directly. The immediate advantage of this is that each application is less thick and is able to be dried more quickly and more effectively in the aqueous and solvent-containing systems. In this way, a good bond is already created between the plies of the coating substance and the cover layers even during drying, and the activation of the adhesive then essentially serves only to bond the two plies of the coating substance to one another subsequently.
In the following, the invention will be explained in greater detail with reference to exemplary embodiments thereof and in conjunction with the drawing. In the drawing:
The figures are diagrammatic, and particularly the layer thicknesses are highly exaggerated.
Multilayer material 1 of
Total thickness D of the multilayer material of
As was described previously, coating substance 30 contains a thermally activated adhesive and admixtures to the adhesive. The adhesive is manufactured for example with a base of acrylate, polyurethane, polyester, epoxy resin, ethylene vinyl acetate (EVA) and/or ethylethylene acrylate (EAA). It is not sticky at room temperature, but is activated by heating above room temperature and applying pressure. It constitutes between 25-69% by weight, preferably 39-56% by weight of the dry weight of coating substance 30. Correspondingly, the fraction of admixtures is from 31-75% by weight, preferably 44-61% by weight, and is thus relatively high, which is not usual for laminating adhesives. The admixtures reduce the adhesive strength of the overall mixture of coating substance 30. The adhesive strength may be adjusted to a certain degree by appropriate selection of the adhesive and the proportion of admixtures. If the adhesive strength is kept quite low, it is possible to lend the multilayer material a property of inherent separability, which may be advantageous in certain applications, as will be explained with reference to
The admixtures are at least mostly particulate bulking agents, and in this context carbonates such as calcium carbonate, oxides such as titanium dioxide and zinc oxide, silicates such as kaolin and talc, sulfates such as barium sulfate, fibers such as glass fibers and/or lightweight fillers such as hollow glass or plastic microspheres are particularly practical. The bulking agents are finely distributed in the adhesive, and the adhesive forms a matrix of sorts for the bulking agents. The bulking agents add to the volume of coating substance 30 and are responsible for the opacity thereof indicated above. A bright white may be achieved by the addition of titanium dioxide. Lightweight fillers such as the hollow microspheres add increase the volume considerably without significantly increasing the weight. In this way, the coating substance helps to keep the density of the multilayer material advantageously low. The bending stiffness of the multilayer material and/or the tear strength of coating substance 30 may also be varied and adjusted by appropriate selection of the bulking agents.
The first component listed in each of the following examples is used as the adhesive.
A. Aqueous Coating Substances (with at Most a Small Fraction of Solvent<5%)
Component #7 is purely aqueous on a carboxy-modified acrylate base and adheres well to various cover layers. A degree of crosslinking is achieved even without the addition of a crosslinking agent, creating increased chemical stability and mechanical strength. Overall density is relatively high at 1.46, and is therefore not very economical for most applications.
Component #4 comprises hollow glass microbeads. This component is responsible for lowering the overall density to a more economical value of 0.89. Component #8 is used as an aqueous polyurethane hot sealing coating to bond the cover layers.
In this cast, component #9 serves as the adhesive.
Component #1 is a hot sealable coating agent that adheres to and seals polyester cover layers particularly effectively. Component #5 improves opacity and thermal resistance better than component #3, but yields poorer results regarding optical properties. Overall density of is again relatively high at 1.37.
In this example, the addition of the glass microbeads in component #4 serves to lower the overall density and at the same time increase opacity and stiffness. Component #1a is used as the adhesive with better adhesion and sealing on oriented polypropylene film.
In this example, component #10 (Amplify EA 100 ethylene ethyl acrylate (EEA)) provides good adhesion for a very wide range of cover layers. Component #6 was developed especially for extrusion and provides good opacity and UV stability. Component #5 serves as the bulking agent and enhances opacity and thermal stability.
However, the overall density of 1.47 is not economically advantageous.
The addition of glass microspheres (4) having diameters in the range of 45 μm and a density of 0.22 results in a density almost half of that of example C.a. In addition, this addition also increases bending stiffness and improves opacity. In this case, component #11 is an extrusion lamination adhesive with an EVA base and adheres to many cover layers.
Components dissolved in organic solvents and any other additives may be added before the application, either in batches or by inline, continuous feed, and then homogenized.
The two plies 30.1 and 30.2 of the coating substance are dried in drying units at 13 and 23 by the application of heat (for example with hot air). If the coating substance is a water-based substance, the water is evaporated, if the coating substance has a solvent-containing base, the solvent is evaporated. Then, the two cover layers coated in this way are brought into contact with one another and pressed together by a heated roller 14 and a counter roller 24. The heat applied via roller 14 activates the adhesive contained in the two plies 30.1 and 30.2 of the coating substance, so that both plies are joined in a mutual bond and stick to one another. The layer of coating substance 30 having thickness d3 as shown in
The distance between drying units 12 and 22 and roller pair 14, 24 is selected with consideration for the running speeds of the two cover layer webs such that they and particularly the two plies 30.1 and 30.2 of the coating substance are still hot when they are brought into contact with one another, so that only a little additional heat has to be applied in addition to the heat generated by rollers 14, 24 in order to activate the adhesive in the coating substance, thus saving energy. On the other hand, the distance between rollers 14, 24 and roller 40 must be of such a size that the adhesive in the coating substance has sufficient time to cool down to below its activation temperature and thus solidify again before it reaches roll 40, so that the multilayer material is strong enough to enable it to be wound up. This distance may be reduced if chill rollers 15, 25 are used.
Coating substance 30 might also be applied only to one side in the method of
Besides additional substances for coloring, mechanical and optical properties and similar, and other functional additives, the extrudable coating substance used for the method according to
Extrusion lamination offers the following advantages:
In comparison, extrusion lamination systems with one or two oppositely arranged dies (in order to coat 2 cover layers) are more expensive than systems that process aqueous or solvent-containing liquids. Given approximately the same widths and speeds, extrusion lamination is therefore better suited to manufacturing larger quantities. For smaller quantities, liquid coating is more economical.
With the methods of
The remaining thickness of coating substance 30 may be severed along punch lines 52/53 by exerting pressure on card 51 and card 51 may be detached from printing stock 50.
The force necessary in order to detach card 51 from printing stock 50 should be as low as possible, but at the same time sufficient to ensure that card 51 does not become prematurely detached from printing stock 50 before it is intentionally separated when printing stock 50 is in proper use. In particular, the printing stock should be capable of being handled and/or processed mechanically and particularly of being printed in sheetfed printers with roller rerouters without card 51 becoming detached. If both cover layers 10 and 20 are fully cut through by cutting lines 52 and 53, the retaining force for card 51 is determined solely by the remaining thickness in coating substance 30 referred to earlier. The respectively appropriate retaining forces may thus be adjusted by selecting the composition of the coating substance and particularly by setting a suitable tear strength thereof including the “tear propagation resistance” to the desired value with sufficient precision. Coating substance 30 should also “stretch” as little as possible when the card is detached, so that the detached card has a smooth outer border above all defined by the cut borders of the two cover layers 10, 20.
In general, a length-related retaining force along the two congruent punch lines 52/53 of 1N/cm-3 N/cm is favorable. A value in this range is easily achievable with coating substance 30 according to the invention, even if the thickness of the coating substance is 75 μm or even up to 450 μm as in the example presented earlier. With a layer made from a plastic film of polyester, such as is preferably used for at least one of the two cover layers 10 or 20, or also with a paper layer, the remaining thickness necessary to achieve a comparable retaining force would be at least an order of magnitude smaller and would only be a few μm, and the retaining force would depend critically on the remaining thickness. Due to the limitations of the technology, it is not possible to punch and leave such small remaining thicknesses with the necessary degree of accuracy. When punching simultaneously, there would also be the danger that the opposing punch blades would collide and damage one another irreparably. All this is avoided with the coating substance according to the invention. Punching may be carried out on both sides with a single punching unit by passing the multilayer material between two magnetic cylinders having two identical but inverted sheet steel punch plates. Then, symmetrical punching must be assured by adapting the heights of the plate bases for forced centering of the multilayer material to avoid punched indentations of different depths. This is particularly important if the cover layers on either side are different and thus have different punch resistances. However, on a modern system it is possible to process first just one side on a punching unit and then the other side on a following punching unit with sufficient register accuracy in a single pass with the aid of a web traction adjustment with edge control of the material web, or simply with register control of the punch lines. Laser cut indentations are also possible, with even more accurate depth adjustment than with mechanical tools and punch units. Large remaining thicknesses of at least 25 μm are possible with the coating substance according to the invention, and the remaining thickness in question only has to be accurate to a tolerance of +/−25%, which is well within the usual tolerance range for standard commercially available punching equipment. Position tolerances for the two punch lines 52 and 53 relative to one another are also possible for the same reasons, that is to say they do not need to be exactly congruent, although of course that is preferable.
The “grip” of printing stock 50 overall and of card 51 is determined mainly by overall thickness D and the bending stiffness of the multilayer material used. As was mentioned previously, bending stiffness may be varied and adjusted to the desired value depending on the choice of composition of coating substance 30. For printing stocks with integrated cards as well as for the cards themselves, a bending stiffness is generally adequate if it is approximately equivalent to 70% of the bending stiffness of an oriented plastic film having the same overall thickness D from a material such as is used for at least one of the two cover layers 10 or 20. In particular, a multilayer material with bending stiffness in the range from 70% of the bending stiffness of a 175 μm thick standard commercial oriented polyester monolayer film. Such a polyester film has a bending stiffness between 0.04 N/25 mm and 0.05 N/25 mm, measured as the horizontal tensile force that must be exerted to bend a vertically clamped test part with a free end of 25×25 mm through 30°.
To ensure that detachment takes place along the boundary surface between plies 30.1 and 30.2, this separation value must be lower than the separation value for the two plies relative to their respective cover layers 10 and 20. If plies 30.1. and 30.2 have each been applied on cover layers 10 and 20 as shown in
The structure illustrated in
b shows paper sheet 66, whose thickness is reduced along a border strip thereof 67, wherein this has been effected by tearing off a strip 68 corresponding to a partial layer of the sheet of paper. The paper tear is indicated by a zigzag line on the tear surfaces. The width of border strip 67 corresponds to that of border strip 62 and is equal to 5-7 mm for example.
c shows section 61 of the multilayer material and paper sheet 66 along the border strip 62 and 67 with mutual overlapping thereof essentially coplanar with one another and attached to printing stock 60, which may form a sheet in a standard size such as A4 or Letter format. In this case the bond is an adhesive bond, wherein coating substance ply 30.1 is used as the adhesive.
The use of this existing ply to bond the two partial print stock items 61, 66 is possible if the thermally activated adhesive contained in the coating substance is activatable more than just once by the application of heat and pressure. A first activation of this adhesive was “used up” as described previously when the multilayer material was manufactured. However, most thermally activated adhesives, including those described in the preceding examples, have this property, that is to say they are capable of repeated activation.
The use of coating substance ply 30.1 as the adhesive means that the application of an additional adhesive to bond the two partial print stock items 61, 66 may advantageously be omitted. The adhesive contained in coating substance ply 30.1 only needs to be heated while the two border strips 62, 67 are pressed together. Activation of coating substance 30.1 preferably takes place in the border strip through hot air jets directly before the pressing step. Heated friction or rotating contact elements are also possible, as are even newer technologies such as contactless high frequency fields of ultrasonic sonotrodes. Accordingly, more expensive heating rollers are not required. Thus, the existing cold pressing rollers such as would be necessary if an additional adhesive were used are sufficient. Except for additional adhesive, this also obviates the need for an application mechanism for such an additional adhesive.
With printing stock 60 shown in
The production of the two partial print stock items 61 and 66, the removal of border strips 63 and 67, their mutual bonding to form printing stock 60 and/or the punching of cards 51 and 65 preferably take place in an endless continuous web process, like the production of the multilayer material according to the invention. These may be carried out in the same pass and also printed and/or separated into single sheets by cutting to size. In this context, punching, printing and separating must take place in the register.
Instead of tearing off a strip such as strip 68 in
However, the existing devices with magnetic and counter cylinder could also be used for strip-like compression of continuous paper webs by even independently adopting these inventive steps, either singly or in any combination thereof:
The production of printing stock 60 as shown in
In the case of the multilayer material of
In the case of the multilayer material of
In the case of multilayer material of
As has been indicated, the multilayer material according to the invention is preferably produced and processed in a continuous process, in which for example punch elements are operated in the cycle by a punching tool to produce punched parts such as card 65 in printing stock 60 shown in
Having described the invention, it will be apparent to those skilled in the art that alterations and modifications may be made without departing from the spirit and scope of the invention limited only by the appended claims.