Multilayer panel for soundproofing aircraft interiors

Information

  • Patent Grant
  • 10011087
  • Patent Number
    10,011,087
  • Date Filed
    Sunday, July 17, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
Panel for soundproofing aircraft interiors comprising a first and a second layer and an intermediate layer of damping material placed between the first and second layer along a neutral axis of the soundproofing panel. The first and the second layer each comprising a structural layer and a surface layer placed on the opposite side to the intermediate layer and connected thereto, adhering continuously by means of an adhesive layer, the intermediate layer extends for the entire area of the panel and is connected to the structural layers of the first and second layer. The intermediate layer comprises a polymer foam material having a uniform thickness less than 2 mm and weight of less than 1.2 kg/m2.
Description

The present invention relates to a multilayer panel, in particular a multilayer panel for soundproofing aircraft interiors.


BACKGROUND

There are two main sources of aircraft noise: the propulsion system and aerodynamic stresses.


To reduce the aerodynamic noise, barrier materials and/or absorption materials are normally used. To reduce the noise caused by vibrations induced by the propulsion system vibration isolating devices and damping materials are typically used.


A typical example of a soundproofing panel for interiors (FIG. 1) comprises, in this order from the inside out, a structural sandwich consisting of a honeycomb panel sandwiched between two layers of epoxy prepreg, a layer of damping material, a sound-absorbing layer and a barrier layer.


In this type of panel the incident pressure wave causes a flexural stress in the structural sandwich which translates into flexural stresses concentrated at the interface between the structural sandwich and the damping layer.


The attenuation of the sound pressure wave is entrusted solely to the type of damping material used, the design parameters of which consist of the weight and the damping coefficient.


Prior examples of multilayer soundproofing panels are described in US2009/0230729A1 and US2002/0070077A1.


SUMMARY

The purpose of the present invention is to make a multilayer panel having improved soundproofing properties compared to the prior art and which is at the same time lightweight and easy to make.


The aforesaid purpose is achieved by a multilayer panel as presently described and obtained according to the method herein disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, a preferred embodiment will be described below by way of a non-limiting example and with reference to the appended drawings, wherein:



FIG. 1 is a schematic cross-section showing a soundproofed panel according to the prior art;



FIG. 2 is a schematic cross-section showing a soundproofed panel according to the invention in an undeformed condition; and



FIG. 3 is a schematic section showing a soundproofed panel according to the invention in a condition of dynamic deformation.





DETAILED DESCRIPTION


FIG. 2 is a diagram of a soundproofing multilayer panel 10 according to the invention.


The soundproofing panel 10 essentially comprises a first layer 11 and a second layer 12 suitable to face towards the outside and towards the inside respectively, of an aircraft cabin, hereinafter referred to for brevity as “outer layer 11” and “inner layer 12” and an intermediate layer 16 of damping material.


The outer layer 11 and the inner layer 12 each comprise a structural layer 14 preferably consisting of a honeycomb structure or rigid foam and a single covering surface 13 in prepreg placed on the opposite side to the intermediate layer 16.


For example the honeycomb structure may be in aramid material, with hexagonal cells of 3.2 mm in size and wall thickness of about 0.051 mm, a transversal thickness of 3.18 mm and a density of 48 kg/m3. One example of a utilizable honeycomb structure consists of that marketed by the Hexcel Corporation, code no. HRH-10-1/8-3.0.


For example the layer 13 may consist of a carbon fiber fabric impregnated with epoxy resin with a cross-linking temperature of 130° C., weight equal to 0.7 kg/m2 and a thickness between 0.4 and 0.5 mm, preferably of 0.45 mm. An example of a utilizable prepreg material is the material marketed by the Hexcel Corporation, code no. M26\45%\G1070\1100.


The intermediate layer 16 is made of polymeric material having a weight of less than 1.2 kg/m2 and a thickness preferably less than 2 mm. The intermediate layer 16 has a uniform thickness and extends continuously along the entire area of the panel 10.


The intermediate layer 16 is conveniently composed of a silicone rubber closed-cell sponge, 1.6 mm thick. An example of a utilizable sponge is the material according to the standard AMS3195. Alternatively the intermediate layer 16 could consist of a neoprene rubber sponge.


The structural layers 14 are attached to the intermediate layer 16 by means of respective adhesive layers 15 conveniently consisting of an epoxy adhesive with a thickness between 0.1 and 0.3 mm and preferably 0.2 mm, and weight of approximately 0.1 kg/m2. An example of a utilizable adhesive consists of the material marketed by 3M, Minnesota Mining Mfg Co., code AF163-2 k. 06.


The intermediate layer 16 extends along the neutral axis N of the cross-section of the panel 10 for the entire area thereof. The term neutral axis N means the locus of the points in which the normal tension resulting from a bending load is zero.


Preferably the neutral axis N is contained inside the intermediate layer 16. In the case in which the two layers 11 and 12 are the same as each other, the neutral axis N extends along the centerline of the intermediate layer 16.


The soundproofing panel 10 described weighs less than 3.5 kg/m2, preferably about 3.5 km/m2 and is about 10 mm; moreover it is non-flammable according to the standards of the field of aeronautic.


The functioning of the soundproofing panel 10 is as follows.


In the case of a static load the intermediate layer 16 bears the shear forces favouring the transfer of the load between the layers 11, 12 and simultaneously absorbing the normal load deriving from bending, acting as a stabilising element between the two layers 11, 12. In this case the design variables are the transverse elasticity modulus and the shear modulus of the damping material.


In case of a cyclic load (sound pressure waves S) the intermediate layer absorbs the flexural load 16 exercised by the wave on the outer layer 11 preventing the total transfer to the inner layer 12 by dissipation. In this case the design variable is the damping coefficient of the damping material.


The positioning of the intermediate layer 16 at the neutral axis N and continuously in adherence to the structural layers 14 satisfies both the loading conditions described above.


As shown in FIG. 3, the intermediate layer 16 permits an uncoupling of the layer 11, exposed to noise, and the layer 12 facing the inside of the cabin. The bending of the inner layer 12 sheet is less than that of the outer layer 11, so that the pressure waves are transmitted inside in an attenuated manner.


The production of the multilayer panel comprises the steps of:


(i) Preparing the intermediate layer 16 in damping material by exfoliation and chemical activation using acetone;


(ii) Composition of the panel by placing one on top of the other in succession: a first surface layer 13, a first structural layer 14, a first adhesive layer 15, the intermediate layer 16, a second adhesive layer 15, a second structural layer 14 and a second surface layer 13;


(iii) Rolling the multilayer panel 10; and


(iv) Making a heat treatment comprising heating at a temperature increasing by 2°-3° per minute up to about 130°, a maintenance step of constant temperature for 75-120 minutes at a pressure of 0.3 MPa and then a cooling down step to 60° with a temperature gradient of 2°-3° per minute.


During the rolling and the heat treatment, the surface layers 16 join with the respective structural layers 14 and the adhesive layer 15 structurally joins the intermediate layer 16 to the structural layers 14.


From the above the advantages of the multilayer soundproofing panel 10 according to the invention are clear.


Since the damping layer 16 is located along the neutral axis N of the damping panel 1 and is connected continuously to the structural layers 14, the intermediate layer 16 transmits only the shear force between the structural layers 14 ensuring sound attenuation.


The use of two layers 11, 12 each provided with a single covering layer, and an intermediate layer 16 of limited thickness makes it possible to obtain a multilayer panel 1 with excellent soundproofing properties but weighing less than the panels of the prior art, and therefore particularly suitable for aircraft applications, also thanks to its non-flammability.


Moreover, the production method of the multilayer panel is a quick, simple and clean process that does not involve moulding steps.


Lastly, it is clear that modifications and variations may be made to the soundproofing panel 10 while remaining within the scope of the appended claims.

Claims
  • 1. A panel for soundproofing aircraft interiors comprising a first and a second layer andan intermediate layer of damping material placed between said first and second layer along a neutral axis (N) of said soundproofing panelwherein said first and second layer each comprise a structural layer and each comprise a single surface layer placed on the opposite side to the intermediate layer and connected thereto, adhered continuously by an adhesive layer, said intermediate layer extending for the entire area of the panel and being connected to said structural layers of said first and second layer, said intermediate layer comprising a polymer foam material with uniform thickness less than 2 millimeter (mm) and weight less than 1.2 kg/m2 andwherein said soundproofing panel weighs less than 3.5 kg/m2.
  • 2. The panel of claim 1, wherein said neutral axis (N) coincides with a centerline of said intermediate layer.
  • 3. The panel of claim 1, wherein said polymeric material is a silicone rubber.
  • 4. The panel of claim 1, wherein said polymeric material is a neoprene rubber.
  • 5. The panel of claim 1, wherein said structural layer has a honeycomb structure.
  • 6. The panel of claim 1, wherein said structural layer is a rigid foam.
  • 7. The panel of claim 1, wherein said surface layer is a prepeg.
  • 8. The panel of claim 7, wherein the prepreg is a carbon fiber fabric impregnated with epoxy resin.
  • 9. The panel of claim 1, wherein said adhesive is epoxy.
  • 10. The panel of claim 1, wherein said structural layer is a rigid foam or aramid material with hexagonal cells; the single surface is a carbon fiber fabric impregnated with epoxy resin; and the intermediate layer is a silicone or neoprene rubber.
  • 11. The panel of claim 1, wherein said panel has a thickness of 10 mm.
Priority Claims (1)
Number Date Country Kind
102015000035599 Jul 2015 IT national
US Referenced Citations (35)
Number Name Date Kind
3525663 Hale Aug 1970 A
4384634 Shuttleworth May 1983 A
4848514 Snyder Jul 1989 A
5175401 Arcas et al. Dec 1992 A
5240221 Thomasen Aug 1993 A
5460865 Tsotsis Oct 1995 A
5518796 Tsotsis May 1996 A
6177173 Nelson Jan 2001 B1
6179086 Bansemir Jan 2001 B1
6183837 Kim Feb 2001 B1
6224020 Hopkins May 2001 B1
6520134 Plunkett Feb 2003 B1
6676199 Buisson Jan 2004 B2
8127889 Mathur Mar 2012 B1
8196704 Chiou Jun 2012 B2
8336804 Hoetzeldt Dec 2012 B2
8424251 Tinianov Apr 2013 B2
8453793 Franzoi Jun 2013 B1
8474574 Kobayashi Jul 2013 B1
8499887 Gleine Aug 2013 B2
8590272 Thomas Nov 2013 B2
8770343 Mathur Jul 2014 B2
9085894 Eckman Jul 2015 B2
9688050 Carlson Jun 2017 B2
20020070077 Porte et al. Jun 2002 A1
20060059828 Stevenson Mar 2006 A1
20080164093 Hirai Jul 2008 A1
20090159363 Weber Jun 2009 A1
20090230729 Lusk Sep 2009 A1
20100170746 Restuccia et al. Jul 2010 A1
20120153242 Le Bonte Jun 2012 A1
20120177877 Lebail et al. Jul 2012 A1
20130264147 Sugimoto et al. Oct 2013 A1
20140216847 Blinkhorn et al. Aug 2014 A1
20170136325 Fox May 2017 A1
Foreign Referenced Citations (3)
Number Date Country
0146521 Sep 2003 EP
2939406 Jun 2010 FR
03076232 Sep 2003 WO
Non-Patent Literature Citations (4)
Entry
Italian Patent Office; Search Report for Italian Patent Application No. 102015000035599 dated Apr. 5, 2016, 8 Pages.
EPO; European Search Report for Application No. 16179786.5 dated Dec. 7, 2016; 8 pages.
EPO; European Search Report for European Application No. 16179786.5 dated Mar. 21, 2017, 18 pages.
“Hysol Surface Preparation Guide” dated Sep. 30, 2013, Henkel Corporation, 11 pages.
Related Publications (1)
Number Date Country
20170015081 A1 Jan 2017 US