Embodiments of this disclosure relate to acoustic wave devices, structures and methods for reducing the sizes of same, and the suppression of spurious signals in same.
Acoustic wave devices, for example, surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices may be utilized as components of filters in radio frequency electronic systems. For instance, filters in a radio frequency front-end of a mobile phone can include acoustic wave filters. Two acoustic wave filters can be arranged as a duplexer.
In accordance with one aspect, there is provided a surface acoustic wave (SAW) resonator. The SAW resonator comprises a plurality of interdigital transducer (IDT) electrodes disposed on a multilayer piezoelectric substrate including a layer of piezoelectric material having a lower surface bonded to an upper surface of a layer of a dielectric material, the dielectric material having a lower surface bonded to an upper surface of a carrier substrate, the plurality of IDT electrodes including an upper layer and a lower layer, the upper layer formed of a material having a higher conductivity than the lower layer, the lower layer formed of a material having a higher density than the upper layer to provide for reduction in size of the SAW resonator.
In some embodiments, the upper layer of the IDT electrodes includes aluminum.
In some embodiments, the lower layer of the IDT electrodes includes one or more of molybdenum, tungsten, copper, gold, silver, platinum, ruthenium, or iridium.
In some embodiments, the layer of piezoelectric material has a thickness of between about 0.1λ and about 1λ, λ being the wavelength of a main acoustic wave generated in the SAW resonator during operation. The layer of dielectric material may have a thickness of between about 0.01λ and about 1λ. The upper layer of the plurality of IDT electrodes may have thickness of between about 0.04λ and about 0.1λ. The lower layer of the plurality of IDT electrodes may have thickness of between about 0.02λ and about 0.08λ.
In some embodiments, the SAW resonator further comprises a reflector electrodes disposed on each side of the IDT electrodes, the reflector electrodes including an upper layer and a lower layer, the upper layer formed of the material having the higher conductivity than the lower layer, the lower layer formed of the material having the higher density than the upper layer.
In some embodiments, a composition of the IDT electrodes and reflector electrodes provides for a width of the SAW resonator in a propagation direction of a main acoustic wave generated in the SAW resonator during operation to be reduced by about 30% relative to substantially similar SAW resonator with IDT electrodes and reflector electrodes consisting of aluminum.
In some embodiments, the SAW resonator of further comprises a layer of dielectric disposed on an upper surface of the IDT electrodes and piezoelectric substrate. The layer of dielectric may include a layer of silicon dioxide, a layer of silicon oxynitride on the layer of silicon dioxide, and a layer of silicon nitride on the layer of silicon oxynitride.
In some embodiments, the layer of dielectric material is a continuous layer. The layer of dielectric material may be bonded to the lower surface of the layer of piezoelectric material beneath an entirety of the SAW resonator.
In some embodiments, the carrier substrate is formed of a material having a lower coefficient of thermal expansion than the piezoelectric material.
In some embodiments, the carrier substrate is formed of a material having a higher thermal conductivity than the piezoelectric material.
In some embodiments, the carrier substrate is formed of a material selected from the group consisting of silicon, aluminum nitride, silicon nitride, magnesium oxide spinel, magnesium oxide crystal, and sapphire.
In some embodiments, the upper layer of the plurality of IDT electrodes material is thicker than the lower layer of the plurality of IDT electrodes.
In some embodiments, a thickness of the dielectric material is less than a wavelength of a main acoustic wave generated in the SAW resonator during operation.
In some embodiments, an acoustic velocity of a main acoustic wave generated in the SAW resonator during operation is less than about 3000 m/s.
In accordance with another aspect, there is provided a radio frequency filter. The radio frequency filter includes at least one surface acoustic wave resonator comprising a plurality of interdigital transducer (IDT) electrodes disposed on a multilayer piezoelectric substrate including a layer of piezoelectric material having a lower surface bonded to an upper surface of a layer of a dielectric material, the dielectric material having a lower surface bonded to an upper surface of a carrier substrate, the plurality of IDT electrodes including an upper layer and a lower layer, the upper layer formed of a material having a higher conductivity than the lower layer, the lower layer formed of a material having a higher density than the upper layer to provide for reduction in size of the SAW resonator.
In accordance with another aspect, there is provided an electronics module. The electronics module has at least one radio frequency filter including at least one surface acoustic wave resonator comprising a plurality of interdigital transducer (IDT) electrodes disposed on a multilayer piezoelectric substrate including a layer of piezoelectric material having a lower surface bonded to an upper surface of a layer of a dielectric material, the dielectric material having a lower surface bonded to an upper surface of a carrier substrate, the plurality of IDT electrodes including an upper layer and a lower layer, the upper layer formed of a material having a higher conductivity than the lower layer, the lower layer formed of a material having a higher density than the upper layer to provide for reduction in size of the SAW resonator.
In accordance with another aspect, there is provided an electronic device with an electronics module having at least one radio frequency filter including at least one surface acoustic wave resonator comprising a plurality of interdigital transducer (IDT) electrodes disposed on a multilayer piezoelectric substrate including a layer of piezoelectric material having a lower surface bonded to an upper surface of a layer of a dielectric material, the dielectric material having a lower surface bonded to an upper surface of a carrier substrate, the plurality of IDT electrodes including an upper layer and a lower layer, the upper layer formed of a material having a higher conductivity than the lower layer, the lower layer formed of a material having a higher density than the upper layer to provide for reduction in size of the SAW resonator.
Embodiments of this disclosure will now be described, by way of non-limiting example, with reference to the accompanying drawings.
The following description of certain embodiments presents various descriptions of specific embodiments. However, the innovations described herein can be embodied in a multitude of different ways, for example, as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals can indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
Acoustic wave resonator 10 is formed on a piezoelectric substrate, for example, a lithium tantalate (LiTaO3) or lithium niobate (LiNbO3) substrate 12 and includes Interdigital Transducer (IDT) electrodes 14 and reflector electrodes 16. In use, the IDT electrodes 14 excite a main acoustic wave having a wavelength λ along a surface of the piezoelectric substrate 12. The reflector electrodes 16 sandwich the IDT electrodes 14 and reflect the main acoustic wave back and forth through the IDT electrodes 14. The main acoustic wave of the device travels perpendicular to the lengthwise direction of the IDT electrodes.
The IDT electrodes 14 include a first bus bar electrode 18A and a second bus bar electrode 18B facing first bus bar electrode 18A. The bus bar electrodes 18A, 18B may be referred to herein and labelled in the figures as busbar electrodes 18. The IDT electrodes 14 further include first electrode fingers 20A extending from the first bus bar electrode 18A toward the second bus bar electrode 18B, and second electrode fingers 20B extending from the second bus bar electrode 18B toward the first bus bar electrode 18A.
The reflector electrodes 16 (also referred to as reflector gratings) each include a first reflector bus bar electrode 24A and a second reflector bus bar electrode 24B (collectively referred to herein as reflector bus bar electrodes 24) and reflector fingers 26 extending between and electrically coupling the first bus bar electrode 24A and the second bus bar electrode 24B.
In other embodiments disclosed herein, as illustrated in
It should be appreciated that the acoustic wave resonators 10 illustrated in
The carrier substrate 34 may be formed of a material having a lower coefficient of linear expansion and/or a higher thermal conductivity and/or a higher toughness or mechanical strength than the piezoelectric substrate 12. The carrier substrate 34 may both increase the mechanical robustness of the piezoelectric substrate during fabrication of SAW resonators on the substrate and increase manufacturing yield as well as reduce the amount by which operating parameters of the SAW resonators formed on the piezoelectric substrate change with temperature during operation.
As discussed above, one example of a material that may be utilized for the carrier substrate 34 may be silicon (Si). The silicon may be provided in the form of a wafer that is bonded to the lower surface of a wafer of piezoelectric material opposite the upper surface of the wafer of piezoelectric material upon which features of SAW resonators, such as IDT electrodes and reflector electrodes, as well as other circuitry, for example, conductive traces, passive devices, etc., may be formed. The silicon may be bonded to the piezoelectric material via a thin layer of dielectric 32, such as silicon dioxide as illustrated in
The silicon layer may be a continuous layer. The silicon layer may be present on the lower surface of the piezoelectric material layer under all areas where SAW resonators and/or additional circuitry is formed on the piezoelectric material layer.
Silicon has mechanical and thermal properties that may benefit SAW resonator structures when bonded to the piezoelectric substrate of the SAW resonator structures as illustrated in
In another embodiment illustrated in
The effect of the thickness of the electrode layers 14A, 14B on the acoustic velocity of a main acoustic wave generated by the IDT electrodes 14 and passing through an example of a SAW resonator as disclosed herein is illustrated in
In some embodiments, as illustrated in
The SiO2 layer 44 may have a negative temperature coefficient of frequency, which helps to offset the positive temperature coefficient of frequency of the piezoelectric substrate 12 and reduce the change in frequency response of the SAW device with changes in temperature. A SAW device with a layer of SiO2 over the IDT electrodes may thus be referred to as a temperature-compensated SAW device, or TCSAW.
IDT electrodes having a multilayer structure with an upper layer 14A of a highly conductive material such as Al and a denser lower layer 14B formed of, for example, W may exhibit a higher reflectivity to acoustic waves in an acoustic wave device (e.g., a SAW resonator) than IDT electrodes formed of only a single layer of Al. Accordingly, if the multilayer structure of the IDT electrodes as described above were also used in the fingers 26 of reflector electrodes 16 which sandwich the IDT electrodes 14, for example, as illustrated in
A simulation was performed to determine the effect of changing the reflector electrodes of a SAW device from having only a single 0.08λ thick layer of Al (baseline structure) to having a multilayer structure including a 0.08λ thick upper layer of Al and a 0.04λ thick lower layer of W (proposed structure). The aperture of the modeled SAW device was 75λ across. The results of this simulation are illustrated in
The combination of the reduction in IDT electrode pitch to achieve a given λ in a SAW device and the achievable reduction in reflector electrode fingers when switching from Al-only IDT and reflector electrodes to IDT and reflector electrodes including un upper layer of a high conductivity material such as Al and a lower layer of a dense material such as W may provide for an overall shrinking of the SAW device while maintaining the same λ and Q factor. As illustrated in
Simulations were performed to compare the performance of a filter having an upstream SAW resonator 50 and a downstream dual-mode SAW (DMS) resonator 55 having the topology illustrated in
Simulations were performed with a SAW resonator modeled as illustrated in
Simulations were performed with a SAW resonator modeled as illustrated in
Simulations were performed with a SAW resonator modeled as illustrated in
Further simulations were performed to determine the effect of cut angle of the piezoelectric material on K2. As can be seen in the chart of
In some embodiments, multiple SAW resonators as disclosed herein may be combined into a filter, for example, an RF ladder filter schematically illustrated in
Examples of the SAW devices, e.g., SAW resonators discussed herein can be implemented in a variety of packaged modules. Some example packaged modules will now be discussed in which any suitable principles and advantages of the SAW devices discussed herein can be implemented.
As discussed above, surface acoustic wave resonators can be used in surface acoustic wave (SAW) RF filters. In turn, a SAW RF filter using one or more surface acoustic wave elements may be incorporated into and packaged as a module that may ultimately be used in an electronic device, such as a wireless communications device, for example.
Various examples and embodiments of the SAW filter 300 can be used in a wide variety of electronic devices. For example, the SAW filter 300 can be used in an antenna duplexer, which itself can be incorporated into a variety of electronic devices, such as RF front-end modules and communication devices.
Referring to
The antenna duplexer 410 may include one or more transmission filters 412 connected between the input node 404 and the common node 402, and one or more reception filters 414 connected between the common node 402 and the output node 406. The passband(s) of the transmission filter(s) are different from the passband(s) of the reception filters. Examples of the SAW filter 300 can be used to form the transmission filter(s) 412 and/or the reception filter(s) 414. An inductor or other matching component 420 may be connected at the common node 402.
The front-end module 400 further includes a transmitter circuit 432 connected to the input node 404 of the duplexer 410 and a receiver circuit 434 connected to the output node 406 of the duplexer 410. The transmitter circuit 432 can generate signals for transmission via the antenna 510, and the receiver circuit 434 can receive and process signals received via the antenna 510. In some embodiments, the receiver and transmitter circuits are implemented as separate components, as shown in
The front-end module 400 includes a transceiver 430 that is configured to generate signals for transmission or to process received signals. The transceiver 430 can include the transmitter circuit 432, which can be connected to the input node 404 of the duplexer 410, and the receiver circuit 434, which can be connected to the output node 406 of the duplexer 410, as shown in the example of
Signals generated for transmission by the transmitter circuit 432 are received by a power amplifier (PA) module 450, which amplifies the generated signals from the transceiver 430. The power amplifier module 450 can include one or more power amplifiers. The power amplifier module 450 can be used to amplify a wide variety of RF or other frequency-band transmission signals. For example, the power amplifier module 450 can receive an enable signal that can be used to pulse the output of the power amplifier to aid in transmitting a wireless local area network (WLAN) signal or any other suitable pulsed signal. The power amplifier module 450 can be configured to amplify any of a variety of types of signal, including, for example, a Global System for Mobile (GSM) signal, a code division multiple access (CDMA) signal, a W-CDMA signal, a Long-Term Evolution (LTE) signal, or an EDGE signal. In certain embodiments, the power amplifier module 450 and associated components including switches and the like can be fabricated on gallium arsenide (GaAs) substrates using, for example, high-electron mobility transistors (pHEMT) or insulated-gate bipolar transistors (BiFET), or on a Silicon substrate using complementary metal-oxide semiconductor (CMOS) field effect transistors.
Still referring to
The wireless device 500 of
Aspects of this disclosure can be implemented in various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products such as packaged radio frequency modules, uplink wireless communication devices, wireless communication infrastructure, electronic test equipment, etc. Examples of the electronic devices can include, but are not limited to, a mobile phone such as a smart phone, a wearable computing device such as a smart watch or an ear piece, a telephone, a television, a computer monitor, a computer, a modem, a hand-held computer, a laptop computer, a tablet computer, a microwave, a refrigerator, a vehicular electronics system such as an automotive electronics system, a stereo system, a digital music player, a radio, a camera such as a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi-functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” “include,” “including” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these blocks may be implemented in a variety of different ways. Any suitable combination of the elements and acts of the various embodiments described above can be combined to provide further embodiments. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/939,202, titled “MULTILAYER PIEZOELECTRIC SUBSTRATE WITH HIGH DENSITY ELECTRODE,” filed Nov. 22, 2019, incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5646584 | Kondratyev | Jul 1997 | A |
7230512 | Carpenter et al. | Jun 2007 | B1 |
9438201 | Hori et al. | Sep 2016 | B2 |
20140339957 | Tajima et al. | Nov 2014 | A1 |
20170063332 | Gilbert et al. | Mar 2017 | A1 |
20170214386 | Kido | Jul 2017 | A1 |
20170222618 | Inoue et al. | Aug 2017 | A1 |
20170250669 | Kuroyanagi et al. | Aug 2017 | A1 |
20170272051 | Kurihara et al. | Sep 2017 | A1 |
20170273183 | Kawasaki et al. | Sep 2017 | A1 |
20170288629 | Bhattacharjee et al. | Oct 2017 | A1 |
20170359048 | Yasuda | Dec 2017 | A1 |
20180013404 | Kawasaki et al. | Jan 2018 | A1 |
20180316329 | Guenard et al. | Nov 2018 | A1 |
20180367119 | Lee | Dec 2018 | A1 |
20190288661 | Akiyama et al. | Sep 2019 | A1 |
20200067482 | Maki et al. | Feb 2020 | A1 |
20200366270 | Matsuoka | Nov 2020 | A1 |
20210058057 | Goto et al. | Feb 2021 | A1 |
20220014175 | Nagatomo | Jan 2022 | A1 |
20220077840 | Caron | Mar 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20210159886 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62939202 | Nov 2019 | US |