The invention relates to a multilayer, plate-shaped composite material for producing cookware suitable for induction stoves by deformation, a round blank made of the composite material, a cookware blank produced or producible from the composite material or the round blank as well as cookware produced or producible from the composite material, the round blank or the cookware blank according to the preambles of the independent patent claims.
In the large scale industrial production of high quality cookware suitable for induction stoves it is nowadays common to produce cookware blanks by deep drawing of round blanks of multi layer metallic composite material and then to further process them by post processing and the mounting of handle elements into ready-to-be-sold cookware. Thereby the composite material of which the round blank is made comprises a core of aluminum or copper and at least one outer layer of ferritic stainless steel, which forms, after the deep drawing of the round blank, the outer side of the cookware blank produced in such a way and which serves during cooking on the induction stove for the generation of the cooking heat. However, this outer layer has the disadvantage that the application of a coating, for example an anti-adhesive coating of Teflon, is difficult regarding the process technique and is costly such that the design possibilities regarding the outer surface of the cookware are limited and this cookware is practically completely produced with stainless steel outer surfaces.
Hence, there is the problem to provide a multilayer, plate-shaped composite material, a composite material round blank, a cookware blank as well as an article of cookware, which do not have the disadvantages of the state of the art or which avoid these at least partially.
This problem is solved by the multilayer, plate-shaped composite material, the round blank, the cookware blank as well as the article of cookware according to the independent claims.
Accordingly, a first aspect of the invention concerns a plate-shaped composite material of several metal layers, which is deep drawable in such a way that round blanks, i.e. circular or oval plates, of this composite material can be formed by plastic deformation without destroying of individual layers, e.g. by deep drawing, stretch-forming or compression-molding, into induction stove suitable cookware blanks with a bottom area and a wall area enclosing this bottom area. Thereby the composite material comprises two metallic outer layers and at least one metallic core layer arranged between the outer layers, wherein at least one of the two outer layers, the according to the claims first outer layer, is formed of aluminum or an aluminum alloy and the core layer adjacent to said first outer layer, the according to the claims first core layer, is formed of a ferromagnetic metal or a ferromagnetic metal alloy. The composite material constructed in such a way can be provided with a coating, e.g. of Teflon, with a decorative coating or with a hard ionization on the outer layer consisting of aluminum or an aluminum alloy in a regarding the technique of the process simple and cost-efficient way, which is preferably done yet before the deforming, e.g. by deep drawing, e.g. after the punching out of the round blank from a composite material plate. By this it is made possible to produce high quality cookware suitable for induction stoves with a desired coating at relatively low cost.
In a preferred embodiment of the composite material the according to the claims second outer surface is made of a ferritic or austenitic stainless steel.
In a further preferred embodiment of the composite material the according to the claims first outer layer of aluminum or an aluminum alloy has a thickness of less than 100 μm, preferably of less than 40 μm, and more preferably of less than 20 μm, such that an as minor as possible shielding of the according to the claims first core layer of ferromagnetic material regarding the inductive field created by the inductive stove results.
If the second outer layer of the composite material is also of aluminum or an aluminum alloy, both outer surfaces can be provided with a coating in a simple and cost efficient way. Thereby, it is preferred if both outer layers are identical regarding material and/or layer thickness, since by this the bimetal-effect and therewith the shape distortion of the bottom of cookware made of this composite material can be reduced.
The according to the claims first core layer, which is directly adjacent to the according to the claims first metallic outer layer, consists preferably of a stainless steel alloy, of a non-stainless steel alloy or of nickel or of a nickel alloy, wherein the first and the last variant have the advantage that a subsequent uncovering of this first core layer in the area of the bottom of a cookware blank made from this material for an improving of the induction field penetration, for example by removing the according to the claims first outer layer by chemical processes, e.g. etching, or mechanical processes, in particular cutting, e.g. turning, is possible without resulting later in corrosion problems.
In a further preferred embodiment the composite material comprises adjacent to the according to the claims first core layer at least a second core layer, which has a higher heat conductivity than the first core layer and which is preferably of copper or aluminum or an alloy of one of these metals. By this, a composite material can be provided which supports a uniform heat distribution.
Regarding this matter, it is preferred if between the first core layer and the second outer layer a further core layer is arranged, which has a higher stability than the second core layer, and in particular that this further core layer is made of titanium, stainless steel or steel. By this, a composite material results with very high mechanical stability.
Preferably between the first core layer and the second outer layer a composite of several further core layers of different alloys of the same metal is arranged, namely preferably of different aluminum alloys or of pure aluminum and aluminum alloys. By this, the deep drawing quality of the composite material can be improved and in particular the formation of a so called “orange-peel skin” during the deep drawing, which would have to be removed consecutively by laborious mechanical post processing, can be prevented.
Regarding this matter, it is an advantage, if the composite of further core layers has an odd number of layers, e.g. if it is three-, five-, seven- or nine-layered, and preferably has in addition, when starting from a middle layer, a symmetrical layer arrangement regarding the material of the alloy and/or the thickness of the layer, since in such a way a structure results which is as uniform as possible and which causes when heated practically no bimetal effect.
If the composite material comprises two preferably identical composites of several further core layers made of different alloys of the same metal, namely preferably of different aluminum alloys or of pure aluminum and aluminum alloys, and arranged between these a further core layer of an other metal or an alloy of an other metal, optimum properties regarding deep drawing behaviour, stability and heat conductivity of the composite material can be achieved.
In yet another preferred embodiment the composite material has, when starting from a middle core layer, a symmetrical or laterally reversed build-up regarding the layers of material and/or the thickness of the layers, such that practically no bimetal effect results during heating or cooling and a bulging of the bottoms of cookware made of this composite material during the cooking is avoided as far as possible.
Regarding this matter, the middle core layer has preferably a higher stability than a core layer adjacent to it and is in particular formed of steel, stainless steel or titanium or an alloy thereof, since by this the mechanical stability can be significantly improved.
In yet an other preferred embodiment the composite material comprises on the according to the claims first outer layer or on both outer layers a coating, e.g. of Teflon, whereby the deep drawing is made easier and a subsequent coating of a cookware blank made from this composite material can be omitted.
A second aspect of the invention concerns a round blank made of the composite material according to the first aspect of the invention, of which cookware blanks according to the invention can be produced by deep drawing. The round blank can be provided with a coating, e.g. an anti-adhesive coating of Teflon, on one or both sides, wherein the coating can also have been applied after the punching out of the round blank from a composite material plate according to the invention. Such round blanks can be automatically coated and deep drawn in today known industrial large-scale plants for production of coated aluminum cookware, such that relatively small production costs and a flexible production result.
A third aspect of the invention concerns a cookware blank producible or produced of the composite material according to the first aspect of the invention or the round blank according to the second aspect of the invention. The cookware blank comprises a bottom part and a wall area surrounding the bottom part and may be provided on its inner side and/or on its outer side with a coating, in particular with an anti-adhesive coating, e.g. of Teflon. Such cookware blanks can be produced in a cost efficient manner by plastic deformation, preferably deep drawing, of the composite material according to the invention and result, after final processing, e.g. turning off the end faces and affixing of handle elements, is performed, in cookware according to the invention of high quality suitable for induction stoves, which constitute a fourth and last aspect of the invention.
Further embodiments, advantages and applications of the invention become apparent from the dependent claims and from the following description making reference to the annexed figures, wherein:
While in the present application preferred embodiments of the invention are described, it is to be distinctly understood that the invention is not limited thereto and may also be embodied in other ways within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH04/00539 | 8/26/2004 | WO | 2/26/2007 |