This disclosure relates to various microwave energy interactive structures, packages, or constructs for heating, browning, and/or crisping a food item in a microwave oven.
It is known to use a susceptor in food packages for microwavable food items to provide heating, browning, and/or crisping of the surface of the food item. A susceptor is a thin layer of microwave energy interactive material (generally less than about 100 angstroms in thickness, for example, from about 60 to about 100 angstroms in thickness, and having an optical density of from about 0.15 to about 0.35, for example, about 0.17 to about 0.28) that tends to absorb at least a portion of impinging microwave energy and convert it to thermal energy (i.e., heat), which may be transferred to the food item.
In some instances, it may be desirable to provide varying amounts of heating, browning, and/or crisping in particular areas of the food item. For example, a user may perceive that certain portions of a food item should have a first level of heating, browning, and/or crisping, while other areas should have a second level of heating, browning, and/or crisping. Thus, there is a need for susceptor structures, packages, or other constructs that are capable of providing targeted levels of heating, browning, and/or crisping of the food item in one or more desired areas.
This disclosure relates generally to various microwave energy interactive structures that may be used to form microwave heating packages or other constructs that enhance the heating, browning, and/or crisping of a food item in a microwave oven. The structures include one or more susceptors in a superposed configuration to define different heating regions that control the degree of heating, browning, and/or crisping of the food item in the respective area. For example, where a greater degree of heating, browning, and/or crisping is desired, a greater number of superposed susceptor layers may be used. Conversely, where less heating, browning, and/or crisping is desired, a fewer number of superposed susceptor layers may be used. In some examples, the arrangement of heating regions may be used to simulate the appearance of food items prepared using other conventional heating apparatuses, for example, grills or skillets. In other examples, the arrangement of heating regions may be used to impart a logo, a graphic, product information, or any other indicia to the surface of the food item.
The structure, package, or other construct may be used to prepare various food items in a microwave oven, for example, sandwiches, savory or sweet pastries, breaded food items, or any other food item that desirably is heated, browned, and/or crisped. The construct may be formed at least partially from a disposable material, for example, paper or paperboard.
Additional aspects, features, and advantages of the present invention will become apparent from the following description and accompanying figures.
The description refers to the accompanying drawings in which like reference characters refer to like parts throughout the several views, and in which:
The present invention may be illustrated further by referring to the figures. For purposes of simplicity, like numerals may be used to describe like features. It will be understood that where a plurality of similar features are depicted, not all of such features necessarily are labeled on each figure. It also will be understood that various components used to form the microwave energy interactive structures may be interchanged. Thus, while only certain combinations are illustrated herein, numerous other combinations and configurations are contemplated by this disclosure.
The construct 100 and its various features generally have a first dimension, for example, a length, extending in a first direction, for example, a longitudinal direction, D1, and a second dimension, for example, a width, extending in a second direction, for example, a transverse direction, D2. It will be understood that such designations are made only for convenience and do not necessarily refer to or limit the manner in which the construct is manufactured. In some embodiments, the construct 100 may be symmetric or nearly symmetric about a transverse centerline CT and/or along a longitudinal centerline CL.
The construct 100 includes a first plurality of heating areas, zones, or regions 102 and a second plurality of heating areas, zones, or regions 104 (only some of each of which are labeled) generally extending in the first direction D1 along the length of the construct 100 in an alternating configuration. In this example, the second dimension D2a of each heating region of the first plurality of heating regions 102 is generally less than the second dimension D2b of each heating region of the second plurality of heating regions 104. However, any of the various heating regions may have any desired configuration and/or relative dimensions. The second heating regions 104 are adapted to provide a greater degree of heating, browning, and/or crisping than the first heating regions 102, as will be explained below.
As shown schematically in
In the illustrated example, the construct 100 includes a first layer 106 and a second layer 108 that include microwave energy interactive material (shown schematically with stippling throughout the drawings). The first microwave energy interactive layer 106 includes a plurality of microwave energy interactive areas 110 and a plurality of areas 112 that are microwave energy transparent or inactive. Each microwave energy interactive area 110 comprises a microwave energy interactive material 110 operative as a susceptor 110 for converting at least a portion of impinging microwave energy into thermal energy, while the microwave energy transparent areas 112 generally allow microwave energy to be transmitted through the layer. Thus, in some instances, layer 106 may be characterized as a susceptor or susceptor layer that includes (and sometimes circumscribes or surrounds) microwave energy transparent areas 112, a patterned susceptor or susceptor layer, a discontinuous susceptor or susceptor layer, or a partial susceptor or susceptor layer.
Each microwave energy transparent area 112 may be a void formed, for example, by removing microwave energy interactive material chemically or otherwise, or by forming the structure without microwave energy interactive material in the respective area, or may be a portion of the structure formed with a microwave energy interactive material that has been deactivated chemically, mechanically, or otherwise, as will be discussed further below.
In this example, the microwave energy interactive areas 110 and microwave energy transparent areas 112 are arranged in an alternating configuration, with the microwave energy interactive areas 110 having a second dimension D2b that is greater than the second dimension D2a of microwave energy transparent areas 112. For example, the microwave energy interactive areas 110 may have a second dimension D2b of from about 0.25 to about 0.75 inches, for example, about 0.50 inches, while the microwave energy transparent areas 112 may have a second dimension D2a of from about 0.10 to about 0.40 inches, for example, about 0.25 inches. It will be appreciated that these dimensions correspond respectively to the dimensions D2b, D2a of heating regions 104, 102 shown in
The second microwave energy interactive layer 108 comprises a substantially continuous layer of microwave energy interactive material 108 operative as a susceptor, such that the microwave energy interactive layer 108 may be referred to, for example, as a susceptor, a susceptor layer, or a substantially continuous susceptor. As is evident in
If desired, either microwave energy interactive layer 106, 108 may be supported on a polymer film or other microwave energy transparent substrate for ease of handling and/or to prevent contact between the microwave energy interactive material and the food item. In this example, the first microwave energy interactive layer 106 is supported on a first polymer film 114 layer to define a first, patterned, discontinuous, or partial susceptor film 116. Likewise, the second microwave energy interactive layer 108 may be supported on a second polymer film 118 to define a second, substantially continuous susceptor film 120.
One or both susceptor films 116, 120 may be joined adhesively or otherwise to a support layer, for example, a paper layer, paperboard layer, or another polymer film layer, to impart dimensional stability to the construct 100. In this example, each susceptor film 116, 120 is joined to a respective support layer 122, 124, and the support layers are joined to each other adhesively or otherwise, such that the exposed surfaces of the polymer film layers 114, 118 define outermost and opposite surfaces 126, 128 of the construct 100. However, other numbers and combinations of layers are contemplated. In some cases, the layers of the structure may be rearranged without altering the heating, browning, and/or crisping capabilities of the structure. Further, it will be noted that not all of such layers may be necessary for a particular microwave heating application. For example, in another embodiment (not shown), support layer 122 or 124 may be omitted and the susceptor films 116, 120 may be joined to opposite sides of the same support layer, such that there is only one support layer.
To use the construct 100 according to one exemplary method, the food item may be placed on a food-contacting surface (e.g., surface 126 or 128) of the construct 100. In one particular example, the food item may be a sandwich that has been separated into two sections, each including a piece of bread and one or more toppings in an “open face” configuration. In another example, both the bread and the “filling” of a sandwich may be desirably browned and/or crisped. The filling, for example, a breaded meat item, may be placed on one part of the construct, while the bread may be placed on the other, for example. If desired, the user may be instructed to invert or “flip” one or both items during heating to brown and/or crisp the opposite side of the respective item. Additionally or alternatively, where the sandwich includes two pieces of bread (i.e., the sandwich is a double faced sandwich), the user may be instructed to replace the browned and/or crisped bread with the other piece, so that both pieces may be browned and/or crisped. Numerous other possibilities are contemplated.
Upon sufficient exposure to microwave energy, the susceptors 108, 110 convert at least a portion of the impinging microwave energy to thermal energy, which then can be transferred to the surface of the adjacent food item to enhance browning and/or crisping. Less heat may be generated in the first heating region 102, where only susceptor 108 is present, while more heat may be generated in the second heating region 104, where both susceptors 108, 110 are present. As a result, the food item may be browned and/or crisped less in the areas adjacent to the first heating region, and the food item may be browned and/or crisped more in the areas adjacent to the second region. The overall pattern of browning and/or crisping may resemble grill marks, such that the lighter and darker areas resemble the markings that may be obtained by heating a food item on a grill.
When the heating cycle is complete, the food item may be assembled if needed or desired. For example, where the food item is an open faced sandwich, the components of the sandwich may be stacked on top of one another in a facing relationship to form a double faced sandwich.
The blank 212 (and therefore construct 200) includes a first plurality of heating regions 216 and a second plurality of heating regions 218 (only some of each of which are labeled) generally extending obliquely and alternately across the panels 202a, 202b, 204 (or major panels 202, 204 of construct 200). Panels 206, 208 also include the second heating region 218. The second heating regions 218 are operative for generating more thermal energy than the first heating regions 216, as will be explained further below.
As shown schematically in cross-sectional view in
The second microwave energy interactive layer 222 comprises a substantially continuous layer of microwave energy interactive material operative as a susceptor (shown schematically with stippling in
When the blank 212 is formed into the construct 200, the major panels 202, 204 include the first and second heating regions 216, 218, while the minor panels 206, 208 include only the second heating region 218. Thus, the areas of the food item adjacent to the major panels 202, 204 will be subject to two different levels of heating, browning, and/or crisping, while the sides of the food item adjacent to panels 206, 208 will be subject to a uniform level of heating, browning, and/or crisping. As such, the resulting pattern of browning and/or crisping on the upper and lower surface of the food item may generally resemble oblique grill marks, while the sides of the food item may be browned and/or crisped in a substantially continuous manner.
Numerous other microwave heating constructs are encompassed by the disclosure. For example,
Likewise,
Any of such structures may be formed from various materials, provided that the materials are substantially resistant to softening, scorching, combusting, or degrading at typical microwave oven heating temperatures, for example, at from about 250° F. to about 425° F. The materials may include microwave energy interactive materials, for example, those used to form susceptors and other microwave energy interactive elements, and microwave energy transparent or inactive materials, for example, those used to form the remainder of the construct.
The microwave energy interactive material may be an electroconductive or semiconductive material, for example, a vacuum deposited metal or metal alloy, or a metallic ink, an organic ink, an inorganic ink, a metallic paste, an organic paste, an inorganic paste, or any combination thereof. Examples of metals and metal alloys that may be suitable include, but are not limited to, aluminum, chromium, copper, inconel alloys (nickel-chromium-molybdenum alloy with niobium), iron, magnesium, nickel, stainless steel, tin, titanium, tungsten, and any combination or alloy thereof.
Alternatively, the microwave energy interactive material may comprise a metal oxide, for example, oxides of aluminum, iron, and tin, optionally used in conjunction with an electrically conductive material. Another metal oxide that may be suitable is indium tin oxide (ITO). ITO has a more uniform crystal structure and, therefore, is clear at most coating thicknesses.
Alternatively still, the microwave energy interactive material may comprise a suitable electroconductive, semiconductive, or non-conductive artificial dielectric or ferroelectric. Artificial dielectrics comprise conductive, subdivided material in a polymeric or other suitable matrix or binder, and may include flakes of an electroconductive metal, for example, aluminum.
In other embodiments, the microwave energy interactive material may be carbon-based, for example, as disclosed in U.S. Pat. Nos. 4,943,456, 5,002,826, 5,118,747, and 5,410,135.
In still other embodiments, the microwave energy interactive material may interact with the magnetic portion of the electromagnetic energy in the microwave oven. Correctly chosen materials of this type can self-limit based on the loss of interaction when the Curie temperature of the material is reached. An example of such an interactive coating is described in U.S. Pat. No. 4,283,427.
While susceptors are described in detail herein, it will be appreciated that the construct may include other microwave energy interactive elements.
By way of example, the construct may include a foil or high optical density evaporated material having a thickness sufficient to reflect a substantial portion of impinging microwave energy. Such elements typically are formed from a conductive, reflective metal or metal alloy, for example, aluminum, copper, or stainless steel, in the form of a solid “patch” generally having a thickness of from about 0.000285 inches to about 0.005 inches, for example, from about 0.0003 inches to about 0.003 inches. Other such elements may have a thickness of from about 0.00035 inches to about 0.002 inches, for example, 0.0016 inches.
In some cases, microwave energy reflecting (or reflective) elements may be used as shielding elements where the food item is prone to scorching or drying out during heating. In other cases, smaller microwave energy reflecting elements may be used to diffuse or lessen the intensity of microwave energy. One example of a material utilizing such microwave energy reflecting elements is commercially available from Graphic Packaging International, Inc. (Marietta, Ga.) under the trade name MicroRite® packaging material. In other examples, a plurality of microwave energy reflecting elements may be arranged to form a microwave energy distributing element to direct microwave energy to specific areas of the food item. If desired, the loops may be of a length that causes microwave energy to resonate, thereby enhancing the distribution effect. Microwave energy distributing elements are described in U.S. Pat. Nos. 6,204,492, 6,433,322, 6,552,315, and 6,677,563, each of which is incorporated by reference in its entirety.
In still another example, the construct may include a microwave energy interactive insulating material. Examples of such materials are provided in U.S. Pat. No. 7,019,271, U.S. Pat. No. 7,351,942, and U.S. Patent Application Publication No. 2008/0078759 A1, published Apr. 3, 2008, each of which is incorporated by reference herein in its entirety.
As discussed above, any of the numerous microwave energy interactive elements (e.g., susceptors, foils, and so on) described herein or contemplated hereby may be substantially continuous, that is, without substantial breaks or interruptions, or may be discontinuous, for example, by including one or more breaks or apertures that transmit microwave energy. The breaks or apertures may extend through the entire structure, or only through one or more layers. The number, shape, size, and positioning of such breaks or apertures may vary for a particular application depending on the type of construct being formed, the food item to be heated therein or thereon, the desired degree of heating, browning, and/or crisping, whether direct exposure to microwave energy is needed or desired to attain uniform heating of the food item, the need for regulating the change in temperature of the food item through direct heating, and whether and to what extent there is a need for venting.
By way of illustration, a microwave energy interactive element (e.g., a susceptor 108, 110, 222, 224) may include one or more transparent areas (e.g., microwave energy transparent areas 112, 226) to provide dielectric heating of the food item. However, where the microwave energy interactive element comprises a susceptor, such apertures decrease the total microwave energy interactive area, and therefore, decrease the amount of microwave energy interactive material available for heating, browning, and/or crisping the surface of the food item. Thus, the relative amounts of microwave energy interactive areas and microwave energy transparent areas must be balanced to attain the desired overall heating characteristics for the particular food item.
In some embodiments, one or more portions of the susceptor may be designed to be microwave energy inactive to ensure that the microwave energy is focused efficiently on the areas to be heated, browned, and/or crisped, rather than being lost to portions of the food item not intended to be browned and/or crisped or to the heating environment.
In other embodiments, it may be beneficial to create one or more discontinuities or inactive regions to prevent overheating or charring of the food item and/or the construct including the susceptor. By way of example, the susceptor may incorporate one or more “fuse” elements that limit the propagation of cracks in the susceptor structure, and thereby control overheating, in areas of the susceptor structure where heat transfer to the food is low and the susceptor might tend to become too hot. The size and shape of the fuses may be varied as needed. Examples of susceptors including such fuses are provided, for example, in U.S. Pat. No. 5,412,187, U.S. Pat. No. 5,530,231, U.S. Patent Application Publication No. US 2008/0035634A1, published Feb. 14, 2008, and PCT Application Publication No. WO 2007/127371, published Nov. 8, 2007, each of which is incorporated by reference herein in its entirety.
In the case of a susceptor, any of such discontinuities or apertures may comprise a physical aperture or void in one or more layers or materials used to form the structure or construct, or may be a non-physical “aperture” (e.g., microwave energy transparent areas 112, 226), as discussed above. A non-physical aperture is a microwave energy transparent area that allows microwave energy to pass through the structure without an actual void or hole cut through the structure. Such areas may be formed by simply not applying microwave energy interactive material to the particular area, by removing microwave energy interactive material from the particular area, or by mechanically deactivating the particular area (rendering the area electrically discontinuous). Alternatively, the areas may be formed by chemically deactivating the microwave energy interactive material in the particular area, thereby transforming the microwave energy interactive material in the area into a substance that is transparent to microwave energy (i.e., microwave energy inactive). While both physical and non-physical apertures allow the food item to be heated directly by the microwave energy, a physical aperture also provides a venting function to allow steam or other vapors or liquids released from the food item to be carried away from the food item.
As stated above, the microwave energy interactive element may be supported on a microwave inactive or transparent substrate 114, 118, 228, 230 (
If desired, the polymer film may undergo one or more treatments to modify the surface prior to depositing the microwave energy interactive material onto the polymer film. By way of example, and not limitation, the polymer film may undergo a plasma treatment to modify the roughness of the surface of the polymer film. While not wishing to be bound by theory, it is believed that such surface treatments may provide a more uniform surface for receiving the microwave energy interactive material, which in turn, may increase the heat flux and maximum temperature of the resulting susceptor structure. Such treatments are discussed in U.S. patent application Ser. No. 12/709,578, filed Feb. 22, 2010, which is incorporated by reference herein in its entirety.
The microwave energy interactive material may be applied to the substrate in any suitable manner, and in some instances, the microwave energy interactive material is printed on, extruded onto, sputtered onto, evaporated on, or laminated to the substrate. The microwave energy interactive material may be applied to the substrate in any pattern, and using any technique, to achieve the desired heating effect of the food item. For example, the microwave energy interactive material may be provided as a continuous or discontinuous layer or coating including circles, loops, hexagons, islands, squares, rectangles, octagons, and so forth.
Various materials may serve as the base material 122, 124, 236, 238 (
The construct may be formed according to numerous processes known to those in the art, including using adhesive bonding, thermal bonding, ultrasonic bonding, mechanical stitching, or any other suitable process. Any of the various components used to form the construct may be provided as a sheet of material, a roll of material, or a die cut material in the shape of the package to be formed (e.g., a blank).
The disclosure may be understood further from the following example, which is not intended to be limiting in any manner.
Various microwave heating constructs were evaluated in 1200 W and 1300 W ovens. A first construct was similar to the construct of
In each evaluation, a refrigerated meat and cheese sandwich was heated on the construct in an open faced configuration for about 1 minute and 45 seconds. The construct was placed directly on the turntable of the microwave oven. Both pieces of bread of each sandwich were browned and crisped in a pattern that resembled grill marks. The remainder of the sandwich was heated properly.
While the present invention is described herein in detail in relation to specific aspects and embodiments, it is to be understood that this detailed description is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the present invention and to set forth the best mode of practicing the invention known to the inventors at the time the invention was made. The detailed description set forth herein is illustrative only and is not intended, nor is to be construed, to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are used only for identification purposes to aid the reader's understanding of the various embodiments of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., joined, attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are connected directly and in fixed relation to each other. Further, various elements discussed with reference to the various embodiments may be interchanged to create entirely new embodiments coming within the scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 61/214,106, filed Apr. 20, 2009, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3662139 | Love | May 1972 | A |
4283427 | Winters et al. | Aug 1981 | A |
4398994 | Beckett | Aug 1983 | A |
4552614 | Beckett | Nov 1985 | A |
4883936 | Maynard et al. | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4927991 | Wendt et al. | May 1990 | A |
4943456 | Pollart et al. | Jul 1990 | A |
5002826 | Pollart et al. | Mar 1991 | A |
5038009 | Babbitt | Aug 1991 | A |
5079397 | Keefer | Jan 1992 | A |
5118747 | Pollart et al. | Jun 1992 | A |
5177332 | Fong | Jan 1993 | A |
5213902 | Beckett | May 1993 | A |
5220143 | Kemske et al. | Jun 1993 | A |
5239153 | Beckett | Aug 1993 | A |
5254821 | Walters | Oct 1993 | A |
5278378 | Beckett | Jan 1994 | A |
5352465 | Gondek et al. | Oct 1994 | A |
5391864 | Bodor et al. | Feb 1995 | A |
5410135 | Pollart et al. | Apr 1995 | A |
5412187 | Walters et al. | May 1995 | A |
5466917 | Matsuki et al. | Nov 1995 | A |
5530231 | Walters et al. | Jun 1996 | A |
5565228 | Gics | Oct 1996 | A |
5585027 | Young | Dec 1996 | A |
6133560 | Zeng et al. | Oct 2000 | A |
6204492 | Zeng et al. | Mar 2001 | B1 |
6251451 | Zeng | Jun 2001 | B1 |
6414290 | Cole et al. | Jul 2002 | B1 |
6433322 | Zeng et al. | Aug 2002 | B2 |
6552315 | Zeng et al. | Apr 2003 | B2 |
6677563 | Lai | Jan 2004 | B2 |
6765182 | Cole et al. | Jul 2004 | B2 |
7019271 | Wnek et al. | Mar 2006 | B2 |
7022959 | Cole et al. | Apr 2006 | B2 |
7351942 | Wnek et al. | Apr 2008 | B2 |
7365292 | Cole et al. | Apr 2008 | B2 |
7541562 | Cole et al. | Jun 2009 | B2 |
20070215611 | O'Hagan et al. | Sep 2007 | A1 |
20080035634 | Zeng et al. | Feb 2008 | A1 |
20080078759 | Wnek et al. | Apr 2008 | A1 |
20080081095 | Cole et al. | Apr 2008 | A1 |
20080230537 | Lafferty | Sep 2008 | A1 |
20090032529 | Lafferty | Feb 2009 | A1 |
20090246332 | Lai et al. | Oct 2009 | A1 |
20110024413 | Cole | Feb 2011 | A1 |
20110240635 | Lafferty et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2001-031149 | Feb 2001 | JP |
10-2005-0092380 | Sep 2005 | KR |
WO 9309945 | May 1993 | WO |
WO 9808752 | Mar 1998 | WO |
WO 9835887 | Aug 1998 | WO |
WO 2004063053 | Jul 2004 | WO |
WO 2007127371 | Nov 2007 | WO |
Entry |
---|
International Search Report for PCT/US2010/031541 mailed Nov. 11, 2010. |
Written Opinion for PCT/US2010/031541 mailed Nov. 11, 2010. |
Number | Date | Country | |
---|---|---|---|
20100264135 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61214106 | Apr 2009 | US |