Multilayer synthetic wood component

Information

  • Patent Grant
  • 6958185
  • Patent Number
    6,958,185
  • Date Filed
    Wednesday, April 23, 2003
    21 years ago
  • Date Issued
    Tuesday, October 25, 2005
    19 years ago
Abstract
A multilayer synthetic wood component comprised of a layer of a first synthetic wood composition that is secured to a layer of a second synthetic wood composition. As a result, the present invention may provide a component that utilizes the beneficial characteristics of each of the compositions. For instance, the component can have an improved combination of appearance, strength, durability, weight, weatherability, and other characteristics. Moreover, the present invention enables the ingredients of each layer to be tailored to the particular application. Consequently, certain ingredients can be conserved, thereby reducing the cost and/or the weight of the component.
Description
BACKGROUND AND SUMMARY OF THE INVENTION

The present invention relates generally to components comprised of wood replacement materials and, more particularly, to multilayer synthetic wood components. It is not intended to limit the present invention to a particular type or category of components. The components of the present invention may be substituted for components typically made of wood, particle board, wafer board, or other similar materials. In addition, it should be recognized that the components of the present invention may be substituted for components commonly made of other materials such as, but not limited to, metal, plastic, single layer extrusions, molding materials, and other materials used presently or in the past or future to make components.


The supply of natural woods for construction and other purposes is dwindling. As a result, many are concerned about conserving the world's forests, and the cost of natural woods has risen. In light of these factors, a tremendous demand has developed in recent years for synthetic wood composites, e.g., cellulosic/polymer composites, that exhibit the look and feel of natural woods.


Although improvements and developments are still being made, it is known in the art how to make wood replacement products. For example, U.S. Pat. Nos. 3,908,902, 4,091,153, 4,686,251, 4,708,623, 5,002,713, 5,055,247, 5,087,400, and 5,151,238 relate to processes for making wood replacement products. As a result, synthetic wood composites are commonly used for applications such as interior and exterior decorative house moldings, crown moldings, chair rails, baseboards, door moldings, picture frames, furniture components, decks, deck railings, window moldings, window components, window frames, door components, door frames, roofing components, building siding, fences, and other suitable indoor and outdoor items.


Synthetic wood composites can offer many advantages as compared to natural wood. For instance, synthetic wood composites can offer superior resistance to wear and tear. In particular, synthetic wood composites can have enhanced resistance to moisture. In fact, it is well known that the retention of moisture is a primary cause of the warping, splintering, and discoloration of natural woods. Moreover, synthetic wood composites can be sawed, sanded, shaped, turned, fastened, and finished in the same manner as natural woods. Also, synthetic wood composites can be embossed or otherwise textured to promote a wood grain appearance.


There are many different synthetic wood compositions. Each synthetic wood composition has specific characteristics including, but not limited to, appearance, durability, workability, flexibility, weight, resistance to moisture, resistance to cracking and splintering, resistance to expansion and contraction, resistance to discoloration, mildew resistance, ultraviolet light screening ability, etc. A particular synthetic wood composition may be superior to another synthetic wood composition in one respect but inferior in another respect. For example, one synthetic wood composition may provide a desired appearance but not adequate durability, and a different synthetic wood composition may provide excellent durability but lack in appearance. For another example, one synthetic wood composition may provide a desired appearance but be too heavy, and a different synthetic wood composition may be lighter but lack in other respects. Consequently, there is a need for a synthetic wood component that utilizes the advantages of different synthetic wood compositions.


Additionally, it may be costly to incorporate a sufficient amount of certain composition ingredients throughout a single layer synthetic wood component. For example, it can be expensive to incorporate additives for mildew resistance and ultraviolet light screening throughout a single layer synthetic wood component. Therefore, there is a need for a synthetic wood component that conserves the use of composition ingredients without compromising the desired characteristics of the component.


The present invention provides a multilayer synthetic wood component. More particularly, the present invention is comprised of a layer of a first synthetic wood composition that is secured to a layer of a second synthetic wood composition. For example, the first synthetic wood composition layer may be integrally formed with the second synthetic wood composition layer. By securing two different synthetic wood compositions, the present invention may provide a component having an improved combination of appearance, strength, durability, weight, weatherability, and other characteristics. Moreover, the present invention enables the ingredients of each layer to be tailored to the particular application. Consequently, certain ingredients can be conserved, thereby reducing the cost and/or the weight of the component.


The two compositions may form the shape of the entire component. However, it should also be recognized that the two compositions may form only a portion of the component. Examples of components that can be made with the present invention include, but are not limited to, fence components, furniture components, cabinet components, storage device components, lawn edging components, flower box components, floor components, baseboards, roof components, wall covering components, building siding components, basement floor components, basement wall covering components, interior and exterior decorative house molding components, crown molding components, chair rail components, picture frame components, porch deck components, deck railing components, window molding components, window components, window frames, door components, door frames, door moldings, boards, and other suitable indoor and outdoor items.


In addition to the novel features and advantages mentioned above, other objects and advantages of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevation view of one embodiment of a siding unit made in accordance with the present invention;



FIG. 2 is a perspective view of one embodiment of a deck plank made in accordance with the present invention;



FIG. 3 is an end elevation view of one embodiment of construction component made in accordance with the present invention;



FIG. 4 is a schematic diagram of one embodiment of a manufacturing system that may be used to make a component of the present invention;



FIG. 5 is a cross sectional view of a co-extrusion system that may be used to make a component of the present invention;



FIG. 6 is a cross sectional view of one embodiment of a die system that may be used to make a component of the present invention;



FIG. 7 is a schematic diagram of another embodiment of a manufacturing system that may be used to make a component of the present invention; and



FIG. 8 is a flow diagram of yet another embodiment of a manufacturing system that may be used to make a component of the present invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

The present invention is directed to multilayer synthetic wood components. The present invention also includes methods of manufacturing multilayer synthetic wood components.



FIGS. 1, 2, and 3 show examples of components of the present invention. FIG. 1 is an example of a siding unit 10. The siding unit 10 is comprised of a first synthetic wood composition layer 12 that is integrally formed with a second synthetic wood composition layer 14. On the other hand, FIG. 2 is an example of a deck plank 20. In this example, a first synthetic wood composition layer 22 is integrally formed with a second synthetic wood composition layer 24 to make the deck plank 20. Similarly, FIG. 3 is an example of a construction component 25 that is comprised of an outer shell layer 26 that is integrally formed with a core layer 28. The outer shell layer 26 is made of a first synthetic wood composition, and the core layer 28 is made of a second synthetic wood composition layer. In an alternative embodiment, the outer shell layer 26 can completely cover all sides of the core layer 28, i.e., the outer shell layer 26 can completely enclose the core layer 28.


In the example of FIG. 3, the component 25 may have any desired dimensions. For instance, the component can be a 5/4 inch board or a 2 inch×6 inch board. In one embodiment, the outer shell layer 26 may be selected for appearance, durability, and dimensional stability, and the core layer 28 may be selected to reduce the cost and weight of the component. The component 25 can provide many advantages over a hollow component. In particular, the core layer 28 may provide enhanced fastener retention. In addition, the core layer 28 can prevent water, insects, debris, etc. from entering and accumulating in the interior of the component 25. Furthermore, the cut end of the component 25 may be more aesthetically pleasing. When using the component 25, there is preferably no need to design and install a system that hides the unappealing cut end of a hollow component.


Any desired synthetic wood compositions may be used in the present invention including, but not limited to, plastic/cellulosic filler compositions, polymer/cellulosic filler compositions, thermoplastic/cellulosic filler compositions, rubber/cellulosic filler compositions, foamed synthetic wood compositions, and other synthetic wood compositions that are known now or in the future. For instance, the materials used to make the compositions of the present invention may include, but are not limited to, cellulosic fillers, polymers, plastics, thermoplastics, rubber, inorganic fillers, cross-linking agents, lubricants, process aids, stabilizers, accelerators, inhibitors, enhancers, compatibilizers, blowing agents, foaming agents, thermosetting materials, colorants, and other similar, suitable, or conventional materials. Examples of cellulosic fillers include sawdust, newspapers, alfalfa, wheat pulp, wood chips, wood fibers, wood particles, ground wood, wood flour, wood flakes, wood veneers, wood laminates, paper, cardboard, straw, cotton, rice hulls, coconut shells, peanut shells, bagass, plant fibers, bamboo fiber, palm fiber, kenaf, and other similar, suitable, or conventional materials. Any of the wood examples may be hard or soft wood or variations thereof. Furthermore, any desired mesh size of the cellulosic filler can be used. With regard to wood flour, an exemplary range of mesh size is about 10 to about 100 mesh, more preferably about 40 mesh to about 80 mesh depending on the desired characteristics of the composition. On the other hand, examples of polymers include multilayer films, high density polyethylene (HDPE), polypropylene, polyvinyl chloride (PVC), low density polyethylene (LDPE), chlorinated polyvinyl chloride (CPVC), acrylonitrile butadiene styrene (ABS), ethyl-vinyl acetate (EVA), polystyrene, other similar copolymers, other similar, suitable, or conventional plastic materials, and formulations that incorporate any of the aforementioned polymers. Examples of inorganic fillers include talc, calcium carbonate, kaolin clay, magnesium oxide, titanium dioxide, silica, mica, barium sulfate, and other similar, suitable, or conventional materials. Examples of thermosetting materials include polyurethanes, such as isocyanates, phenolic resins, unsaturated polyesters, epoxy resins, and other similar, suitable, or conventional materials. Combinations of the aforementioned materials are also examples of thermosetting materials. Examples of lubricants include zinc stearate, calcium stearate, esters, amide wax, paraffin wax, ethylene bis-stearamide, and other similar, suitable, or conventional materials. Examples of stabilizers include tin stabilizers, lead and metal soaps such as barium, cadmium, and zinc, and other similar, suitable, or conventional materials. In addition, examples of process aids include acrylic modifiers and other similar, suitable, or conventional materials. Furthermore, the foaming agent can be an exothermic or endothermic foaming agent. An example of an exothermic foaming agent is azodicarbonamide, and an example of an endothermic foaming agent is sodium bicarbonate.


One example of a synthetic wood composition is a cellulosic/PVC composite material. The composite material may include at least one cellulosic filler in the amount of about 30% to about 60% by weight, more preferably about 40% to about 50% by weight, and still more preferably about 48% to about 50% by weight. The composite may also include a PVC material in the amount of about 40% to about 70% by weight, more preferably about 50% to about 60% by weight, and still more preferably about 50% to about 52% by weight.


The cellulosic filler(s) may be dried to a desired moisture content. For example, the cellulosic filler(s) may be dried to about 0.5% to about 3% moisture content by weight, more preferably to about 1% to about 2% moisture content by weight. However, it is appreciated that the cellulosic filler(s) may have a moisture content less than about 0.5% by weight or greater than about 3% by weight.


The PVC material can be made by mixing a PVC resin, at least one stabilizer, at least one lubricant, at least one process aid, and optional other ingredients in a mixer. An example of a mixer is a high intensity mixer such as those made by Littleford Day Inc. or Henschel Mixers America Inc. As an example, the mechanically induced friction may heat the ingredients to a temperature between about 200° F. and about 230° F. After mixing, the ingredients may be cooled to ambient temperature.


The PVC material may include stabilizer(s) in an amount of about 1 to about 10 parts, more preferably about 3 to about 5 parts, per 100 parts of the PVC resin. The lubricant(s) may be present in an amount of about 2 to about 12 parts, more preferably about 4 to about 8 parts, per 100 parts of the PVC resin. Also, process aid(s) may be included in an amount of about 0.5 to about 8 parts, more preferably about 1 to about 3 parts, per 100 parts of the PVC resin. Optionally, at least one inorganic filler may be added in an amount of up to about 10 parts, more preferably up to about 5 parts, per 100 parts of the PVC resin.


Another example of a synthetic wood composition is a cellulosic/polypropylene composite material. Referring back to FIG. 3, this is one example of a synthetic wood composition that may be used for the outer shell layer 26 or the core layer 28. However, it should be recognized that it may have other uses. The composite material may be comprised of at least one cellulosic filler in an amount of about 20% to about 75% by weight. Depending on the desired use of the composite material, one embodiment may have a more preferred range of about 35% to about 55% of the cellulosic filler by weight, and another embodiment may have a more preferred range of about 60% to about 75% of the cellulosic filler by weight. Additionally, the composite material may be comprised of a polypropylene material in an amount of about 25% to about 80% by weight. Again, depending on the desired use of the composite material, one embodiment may have a more preferred range of about 45% to about 65% of the polypropylene material by weight, and another embodiment may have a more preferred range of about 25% to about 40% of the polypropylene material by weight.


Although any desired size may be used, the cellulosic filler(s) is preferably about 40 to about 50 mesh. The cellulosic filler(s) may be dried to a desired moisture content. For example, the cellulosic filler(s) may be dried to about 0.5% to about 3% moisture content by weight, more preferably to about 1% to about 2% moisture content by weight. However, it is appreciated that the cellulosic filler(s) may have a moisture content less than about 0.5% by weight or greater than about 3% by weight.


The polypropylene material is comprised of polypropylene. The polypropylene may be a homopolymer, copolymer, or random, and it may have any desired melt index (MI). However, an exemplary range of MI is from about fractional melt to about 20 MI. The polypropylene may be incorporated in any desired form, but powder reactor flake form may be preferred to facilitate mixing with the cellulosic filler. Optionally, the polypropylene material may include other ingredients in addition to the polypropylene. For instance, an additive package for thermal and/or ultraviolet stability may be included in an amount of 0% to about 2% by weight of the composite, more preferably 0% to about 1% by weight of the composite, still more preferably about 0.25% to about 1% by weight of the composite. An example of an additive for thermal and ultraviolet stability is one that is commercially available from AmeriChem. Additionally, other process aids may be included in the amount of 0% to about 10% by weight of the composite, more preferably 0% to about 7% by weight of the composite. Examples of such other process aids include lubricants, e.g., wax and zinc stearate, and other types of stabilizers, e.g., metal soaps. Furthermore, the composition may include at least one colorant in the amount of 0% to about 10% by weight of the composite, more preferably 0% to about 6% by weight of the composite.


A third example of a synthetic wood composition is a foamed cellulosic/polypropylene composite material. This is one example of a foamed synthetic wood material that is suitable for use as the core layer 28 of the component 25 in FIG. 3. However, it should be recognized that this material may have other uses. In this embodiment, the composite material may be comprised of at least one cellulosic filler in an amount of about 10% to about 60% by weight, more preferably about 20% to about 50% by weight. The amount of the cellulosic filler(s) may be selected taking into consideration that there is trade-off between material cost and ease of foaming, with lower cellulosic content increasing material cost but improving foaming. Additionally, the composite material may be comprised of a polypropylene material in an amount of about 40% to about 90% by weight, more preferably about 50% to about 80% by weight.


The cellulosic material in this embodiment may be any desired mesh size. However, it may be preferred that the cellulosic material is between about 40 mesh and about 100 mesh, more preferably about 40 mesh to about 80 mesh. The cellulosic filler(s) may be dried to a desired moisture content. For example, the cellulosic filler(s) may be dried to about 0.5% to about 3% moisture content by weight, more preferably to about 1% to about 2% moisture content by weight. However, it is appreciated that the cellulosic filler(s) may have a moisture content less than about 0.5% by weight or greater than about 3% by weight.


The polypropylene material is comprised of polypropylene and a foaming agent. The polypropylene may be a homopolymer, copolymer, or random, and it may have any desired MI. However, a preferred range of MI may be from about fractional melt to about 20 MI, more preferably a fractional melt. Additionally, higher molecular weight, higher viscosity polypropylene resins may be preferred, although lower molecular weight, lower viscosity polypropylene resins may also be used. The polypropylene may be incorporated in any desired form, but powder reactor flake form may be preferred to facilitate mixing with the cellulosic filler. The foaming agent may be an exothermic foaming agent, e.g., azodicarbonamide, or an endothermic foaming agent, e.g., sodium bicarbonate. The foaming agent is preferably present in an amount of about 0.1% to about 2% by weight of the composition, more preferably about 0.4% to about 1.0% by weight. Furthermore, the polypropylene material may optionally include other ingredients in addition to the polypropylene and the foaming agent. For instance, an additive package for thermal and/or ultraviolet stability may be included in an amount of 0% to about 2% by weight of the composite, more preferably 0% to about 1% by weight of the composite, still more preferably about 0.25% to about 1% by weight of the composite. An example of an additive for thermal and ultraviolet stability is one that is commercially available from AmeriChem. Additionally, other process aids may be Included in the amount of 0% to about 10% by weight of the composite, more preferably 0% to about 7% by weight of the composite. Examples of such other process aids include lubricants, e.g., wax and zinc stearate, and other types of stabilizers, e.g., metal soaps.


A fourth example of a synthetic wood composition is a cellulosic/HDPE material. The composite material may be comprised of at least one cellulosic filler in an amount of about 40% to about 70% by weight, more preferably about 50% to about 60%. Additionally, the composite material may be comprised of HDPE material in an amount of about 30% to about 60% by weight, more preferably about 40% to about 50% by weight.


Although any desired size may be used, the cellulosic filler(s) is preferably about 40 to about 50 mesh. The cellulosic filler(s) may be dried to a desired moisture content. For example, the cellulosic filler(s) may be dried to about 0.5% to about 3% moisture content by weight, more preferably to about 1% to about 2% moisture content by weight. However, it is appreciated that the cellulosic filler(s) may have a moisture content less than about 0.5% by weight or greater than about 3% by weight.


The HDPE material is comprised of HDPE. The HDPE may be of any desired type, and it may have any desired melt index (MI). The HDPE may be incorporated in any desired form, but powder reactor flake form may be preferred to facilitate mixing with the cellulosic filler. Optionally, the HDPE material may include other ingredients in addition to the HDPE. For instance, process aids may be included in the amount of 0% to about 10% by weight of the composite, more preferably about 1% to about 5% by weight of the composite. Examples of such other process aids include lubricants, e.g., wax and zinc stearate, and other types of stabilizers, e.g., metal soaps. Furthermore, the HDPE material may include at least inorganic filler, e.g., talc and other mineral fillers, in the amount of 0% to about 20% by weight of the composite, more preferably about 5% to about 15% by weight of the composite.


As noted above, it should be appreciated that the above compositions are provided merely as examples. The present invention may utilize any desired synthetic wood compositions. Moreover, the synthetic wood compositions may include any desired amounts of any desired ingredients. If desired, the synthetic wood compositions may be selected such that it is difficult to visibly distinguish the two layers in the finished product, i.e., it appears to the naked eye that the finished product is only made of a single synthetic wood composition.


It should be recognized that the differences between the synthetic wood composition layers may be the ingredients and/or the amounts of the ingredients. For example, each layer of the component may be a cellulosic/thermoplastic composition, wherein the thermoplastic material is the same in each layer. However, one layer may include additives that are not included in the other layer. In such a component, the additives are conserved. For another example, one layer may be a foamed synthetic wood composition, and the other layer may be an unfoamed synthetic wood composition. For yet another example, one layer, e.g., a core layer, may have a relatively high content of wood, thereby reducing the amount of polymer resin used in that layer. In such examples, the weight and ingredient cost of a component may be significantly reduced.


The primary thermoplastic, polymer, or plastic material in each layer may be the same or dissimilar. A benefit of using the same primary thermoplastic, polymer, or plastic material in each layer is that it facilitates bonding of the layers due to resin compatibility. However, it should be recognized that the layers may still bond if the layers do not contain the same primary thermoplastic, polymer, or plastic material.


Although not shown in the figures, a component of the present invention may have more than two synthetic wood composition layers. In addition, a component of the present invention may include one or more other layers that are not synthetic wood compositions. For instance, a component of the present invention may include one or more layers that do not have any cellulosic content. Examples of such other layers include, but are not limited to, tie layers, adhesives, epoxies, inorganic-filled compositions, and other plastic, polymer, rubber, and thermoplastic materials that do not contain cellulosic material. These other layers may be interposed between the synthetic wood composition layers. Also, these other layers may be positioned outside of the synthetic wood composition layers.


A component of the present invention may be formed by any suitable method. For example, a component of the present invention may be made using one or more manufacturing methods including, but not limited, extrusion, coextrusion, compression molding, and other conventional, similar, or suitable manufacturing methods used to make synthetic wood components. FIG. 4 is an example of an extrusion system that may be used to make a component of the present invention. The ingredients of one synthetic wood composition may be physically mixed or blended by any conventional mixing device or industrial blender 30. The composition is then placed into a feed hopper 32. Feed hoppers such as gravity feed or force feed mechanisms (having a crammer) may be used. After the materials are mixed and transferred to the hopper 32, they are delivered to a heated extruder 34 where they are processed at a suitable speed and temperature. Several well-known extruders may be used in the present invention. For example, a twin screw extruder by Cincinnati Milacron (CM80-HP) may be used. In the extruder 34, the materials are blended and heated and then forced into a die system 36. The die system 36 can be made up of one or more plates. The die system 36 allows the starting materials to bond and form a shaped-homogeneous product. The extruded material 38 can be cooled in a cooling chamber 40 and later secured to another synthetic wood composition layer and cut to a required size.


The second synthetic wood composition may be simultaneously processed in a system similar to the one described above, and the melt streams from each of the extruders can be joined in the same die system to form the desired profile. A cross-sectional view of one example of such a co-extrusion system is shown in FIG. 5. In FIG. 5, a co-extrusion apparatus 42 includes at least one extruder 44 which is adapted to prepare a first synthetic wood composition 45 for extrusion through a cross-head die 49 which forms a profile 43 and urges it along longitudinal direction 46. As shown in this example, the co-extrusion apparatus includes two extruders 44 for providing the first synthetic wood composition 45 to the cross-head die 49. At least one other layer of another synthetic wood composition such as layer 47 may be added through the use of at least one additional extruder such as extruder 48. Layer 45 and layer 47 are formed by the forming die 49 into the desired final shape 43, e.g., a hollow or solid rectangular cross-section. In this example, a cross-sectional view of a hollow profile 43 is shown. The hollow profile 43 is comprised of an inner substrate layer 45 and a cap layer 47 that are intimately bonded. Although not shown, it should be recognized that a tie layer may be extruded between layers 45 and 47 if desired or necessary.



FIG. 6 shows another example of coextrusion. In FIG. 6, the die system 62 facilitates an optional mechanical lock feature 50 which bonds the two synthetic wood composition layers 52 and 54 of the extruded material 56 together. Angled pockets 58 in the synthetic wood composition layer 52 receive the synthetic wood composition layer 54. Since the co-extrusion process is done under heat, the synthetic wood composition layer 54 flows into the pockets 58, and later as the co-extrusion cools the synthetic wood composition layer 54 is locked in place within the pockets 58 of the synthetic wood composition layer 52. The pockets 58 may be formed with at least one acute angle 60 to enhance the interlock of the two layers 52 and 54. Nevertheless, as shown in FIGS. 1 and 3, it should be recognized that the synthetic wood composition layers of a coextrusion or molding may bond together without being interlocked.


Alternatively, a first synthetic wood composition layer can be formed, and then a second synthetic wood composition layer can be formed on the first synthetic wood composition layer. An example of this manufacturing method is shown in FIG. 7. In FIG. 7, a synthetic wood composition layer 72 is first formed. Optionally, the synthetic wood composition layer 72 may be passed through an application system 74, e.g., a roller, for a tie material 76, e.g., an adhesive, to be placed on the layer 72. The layer 72 is then passed through a cross-head die 78 and a second synthetic wood composition layer 80 is added in a conventional hot melt process.


In this embodiment, it should also be recognized that the tie material 76 may be applied using any other similar or suitable process. For example, an extrusion system such as the one shown in FIG. 4 may be used to process the tie material 76 and co-extrude it through a die with layer 72 and/or layer 80. For instance, the tie material 76 may be co-extruded with layer 80 through die 78 onto layer 72.


Another manufacturing method is to separately form each synthetic wood composition layer and then later connect the layers together. For example, each synthetic wood composition layer can be separately extruded or molded, allowed to cool, and then connected together to form the component. An example of this manufacturing method is shown in FIG. 8. In FIG. 8, two separate extrusion lines are formed. The first line 90 would be for the extrusion of a first synthetic wood composition layer while the second line 92 would be for the extrusion of a second synthetic wood composition layer. At a later point in the process, the two layers are formed together at 94 by any suitable means such as a tie layer, e.g., an adhesive, or a mechanical fastening means. The resultant component 96 provides a unique combination of materials not heretofore seen in the art.


As shown by the above examples, the synthetic wood composition layers may be connected together by any suitable means. For example, the layers may be connected together by bonding of the synthetic wood composition layers. Alternatively, a tie layer can be used to join the synthetic wood composition layers. Examples of tie layers include, but are not limited to, adhesives and epoxies. It is also appreciated that the synthetic wood composition layers can be connected together by mechanical means including, but not limited to, nails, screws, bolts, clamps, braces, and other similar, suitable, or conventional mechanical fastening devices.


EXAMPLES

Six exemplary embodiments of the present invention were made by co-extrusion through a small, vented 25 mm conical twin screw extruder and a small, single screw ¾-inch 24.1 extruder. The two extruders fed a co-block and extrusion die which married the two melt streams. In an exemplary mode, two twin screw extruders (e.g., either conical or parallel) may be used to allow easy conveying of the powdered compound and wood flour.


In the first example, approximately 60 mils of a cap layer was intimately bonded to a 500 mils foamed core substrate. The foamed layer was comprised of about 44% by weight of 5 MI polypropylene homopolymer, about 50% by weight of 40 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 0.5% by weight of sodium bicarbonate. On the other hand, the outer layer was comprised of about 44% by weight of 5 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, and about 2.5% by weight of zinc stearate.


The extrusion barrel heats were about 370 degrees Fahrenheit on the cap extruder and about 340 degrees. Fahrenheit on the foaming extruder. In addition, the die temperature was about 320 degrees Fahrenheit. As the profile was exiting the die with a %-inch rectangular opening, the profile swelled to about ⅜-inch total thickness. Overall density of the resulting profile was about 0.74 gram/cc.


The second exemplary embodiment was also about 60 mils of cap intimately bonded to a 500 mils foamed core substrate. The foamed layer of the composite was comprised of about 64% by weight of 5 MI polypropylene homopolymer, about 30% by weight of 40 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 0.5% by weight of sodium bicarbonate. The top layer, on the other hand, was comprised of about 44% by weight of 5 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, and about 2.5% by weight of zinc stearate.


The extrusion conditions were similar to the first example. In particular, the extrusion barrel heats were about 370 degrees Fahrenheit on the cap extruder and about 340 degrees Fahrenheit on the foaming extruder, and the die temperature was about 320 degrees Fahrenheit. The profile swelled to about a ½-inch thickness after it exited the ¼-inch thick rectangular die opening. Overall density of the resulting profile was about 0.59 gram/cc.


In the third example, approximately 60 mils of a cap layer was intimately bonded to a 500 mils foamed core substrate. The foamed layer was comprised of about 69% by weight of a polypropylene homopolymer fractional melt solvay (which itself included about 0.7 phr of a thermal and ultraviolet stabilizer), about 29% by weight of 40 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 1% by weight of a wax, about 1% by weight of zinc stearate, and about 0.5% by weight of sodium bicarbonate. On the other hand, the outer layer was comprised of about 42% by weight of 12 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 3% by weight of a colorant.


The extrusion barrel heats were about 370 degrees Fahrenheit on the cap extruder and about 330 degrees Fahrenheit on the foaming extruder. In addition, the die temperature was about 325 degrees Fahrenheit. The overall density of the extruded profile was about 0.58 gram/cc.


In the fourth example, another profile was made using fractional melt polypropylene. In this embodiment, approximately 60 mils of a cap layer was intimately bonded to a 500 mils foamed core substrate. The foamed layer was comprised of about 49% by weight of a polypropylene homopolymer fractional melt solvay (which itself included about 0.7 phr of a thermal and ultraviolet stabilizer), about 49% by weight of 40 mesh wood flour, about 1% by weight of a wax, about 1% by weight of zinc stearate, and about 0.5% by weight of sodium bicarbonate. The cap layer was comprised of about 42% by weight of 12 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 3% by weight of a colorant.


The extrusion barrel heats and the die temperature were about the same as in the previous example. The resulting profile had an overall density of about 0.59 gram/cc.


The fifth embodiment used finer wood flour in the foamed layer. Specifically, approximately 60 mils of a cap layer was intimately bonded to a 500 mils foamed core substrate. The foamed layer was comprised of about 59% by weight of a polypropylene homopolymer fractional melt solvay (which itself included about 0.7 phr of a thermal and ultraviolet stabilizer), about 39% by weight of 80 mesh wood flour, about 1% by weight of a wax, about 1% by weight of zinc stearate, and about 0.5% by weight of sodium bicarbonate. The outer layer was comprised of about 42% by weight of 12 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 3% by weight of a colorant.


This example used about the same barrel heats and die temperature as in the previous two examples. The overall density of the extruded profile was about 0.57 gram/cc.


In the sixth example, a 60 mils cap layer was co-extruded with a 250 mils, solid, highly wood-filled base layer. The base layer was comprised of about 29% by weight of about 5 MI polypropylene homopolymer, about 69% by weight of 40 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 1% by weight of a wax, and about 1% by weight of zinc stearate. The outer layer, on the other hand, was comprised of about 42% by weight of 12 MI polypropylene homopolymer, about 50% by weight of 50 mesh wood flour, about 0.35% by weight of a thermal and ultraviolet stabilizer, about 2.5% by weight of a wax, about 2.5% by weight of zinc stearate, and about 3% by weight of a colorant.


The cap extruder had a barrel heat of about 370 degrees Fahrenheit, and the base extruder had a barrel heat of about 330 degrees Fahrenheit. In addition, the die temperature was about 325 degrees Fahrenheit. The result was a profile with improved aesthetics and performance. Moreover, the material cost was decreased by using less polymer resin and more cellulosic material in the base layer. The overall density of the extruded profile was about 0.96 gram/cc.


The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A component comprising: a core of a foamed plastic composite comprising cellulosic filler; anda cap extending around said core, said cap of a second plastic composite comprising cellulosic filler.
  • 2. A component having a core and a cap, said cap extending around said core, said component comprising: (a) a first plastic composite forming said core, said first plastic composite comprised of: at least one cellulosic filler in a total amount of about 20% to about 50% by weight; anda first polypropylene material in an amount of about 50% to about 80% by weight, said first polypropylene material comprising: at least one foaming agent in a total amount of about 0.4% to about 1% by weight of said first plastic composite;at least one stabilizer in a total amount of 0% to about 1% by weight of said first plastic composite; andat least one process aid in a total amount of 0% to about 7% by weight of said first plastic composite; and(b) a second plastic composite secured to said first plastic composite, said second plastic composite forming said cap, said second plastic composite comprised of: at least one cellulosic filler in a total amount of about 35% to about 55% by weight; anda second polypropylene material in an amount of about 45% to about 65% by weight, said second polypropylene material comprising: at least one stabilizer in a total amount of 0% to about 1% by weight of said second plastic composite; andat least one process aid in a total amount of 0% to about 7% by weight of said second plastic composite.
  • 3. A component comprising: a layer of a first plastic composite including plastic resin and cellulosic filler; anda layer of a second plastic composite consisting essentially of the same ingredients as said first plastic composite;wherein said first plastic composite is secured to said second plastic composite by a tie layer; andwherein at least one ingredient is in a different amount in said first plastic composite than in said second plastic composite.
  • 4. A component comprising: a layer of a first plastic composite including plastic resin, cellulosic filler, and a foaming agent; anda layer of a second plastic composite consisting essentially of the same ingredients as said first plastic composite;wherein at least one ingredient is in a different amount in said first plastic composite than in said second plastic composite.
  • 5. A component comprising: a core of a first plastic composite including plastic resin and cellulosic filler; anda cap of a second plastic composite consisting essentially of the same ingredients as said first plastic composite, said cap completely enclosing said core;wherein at least two of said ingredients are in different amounts in said first plastic composite than in said second plastic composite.
Parent Case Info

This is a continuation of U.S. application Ser. No. 09/854,894, filed May 14, 2001, which claims the benefit of U.S. Provisional Application No. 60/221,947, filed Jul. 31, 2000, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (255)
Number Name Date Kind
2188396 Semon Jan 1940 A
2489373 Gilman Nov 1949 A
2519442 Delorme et al. Aug 1950 A
2558378 Petry Jun 1951 A
2635976 Meiler et al. Apr 1953 A
2680102 Becher Jun 1954 A
2789903 Lukman et al. Apr 1957 A
2935763 Newman et al. May 1960 A
3287480 Wechsler et al. Nov 1966 A
3308218 Etal Mar 1967 A
3309444 Schueler Mar 1967 A
3492388 Inglin-Knüsel Jan 1970 A
3493527 Schueler Feb 1970 A
3562373 Logrippo Feb 1971 A
3645939 Gaylord Feb 1972 A
3671615 Price Jun 1972 A
3864201 Susuki et al. Feb 1975 A
3867493 Seki Feb 1975 A
3878143 Baumann et al. Apr 1975 A
3879505 Boutillier et al. Apr 1975 A
3888810 Shinomura Jun 1975 A
3899559 Johnanson et al. Aug 1975 A
3922328 Johnson Nov 1975 A
3931384 Forquer et al. Jan 1976 A
3943079 Hamed Mar 1976 A
3954555 Kole et al. May 1976 A
3956541 Pringle May 1976 A
3956555 McKean May 1976 A
3969459 Fremont et al. Jul 1976 A
4005162 Bucking Jan 1977 A
4012348 Chelland et al. Mar 1977 A
4016232 Pringle Apr 1977 A
4016233 Pringle Apr 1977 A
4018722 Baker Apr 1977 A
4029831 Daunheimer Jun 1977 A
4045603 Smith Aug 1977 A
4056591 Goettler et al. Nov 1977 A
4058580 Flanders Nov 1977 A
4071479 Broyde et al. Jan 1978 A
4071494 Gaylord Jan 1978 A
4081582 Butterworth et al. Mar 1978 A
4097648 Pringle Jun 1978 A
4102106 Golder et al. Jul 1978 A
4107110 Lachowicz et al. Aug 1978 A
4115497 Halmç et al. Sep 1978 A
4129132 Butterworth et al. Dec 1978 A
4145389 Smith Mar 1979 A
4157415 Lindenberg Jun 1979 A
4168251 Schinzel et al. Sep 1979 A
4178411 Cole et al. Dec 1979 A
4181764 Totten Jan 1980 A
4187352 Klobbie Feb 1980 A
4191798 Schumacher et al. Mar 1980 A
4203876 Dereppe et al. May 1980 A
4228116 Colombo et al. Oct 1980 A
4239679 Rolls et al. Dec 1980 A
4241125 Canning et al. Dec 1980 A
4241133 Lund et al. Dec 1980 A
4244903 Schnause Jan 1981 A
4248743 Goettler Feb 1981 A
4248820 Haataja Feb 1981 A
4250222 Mavel et al. Feb 1981 A
4263184 Leo et al. Apr 1981 A
4263196 Schumacher et al. Apr 1981 A
4272577 Lyng Jun 1981 A
4273688 Porzel et al. Jun 1981 A
4277428 Luck et al. Jul 1981 A
4290988 Nopper et al. Sep 1981 A
4297408 Stead et al. Oct 1981 A
4303019 Haataja et al. Dec 1981 A
4305901 Prince et al. Dec 1981 A
4317765 Gaylord Mar 1982 A
4323625 Coran et al. Apr 1982 A
4351873 Davis Sep 1982 A
4376144 Goettler Mar 1983 A
4382108 Carroll et al. May 1983 A
4382758 Nopper et al. May 1983 A
4393020 Li et al. Jul 1983 A
4414267 Coran et al. Nov 1983 A
4420351 Lussi et al. Dec 1983 A
4430468 Schumacher Feb 1984 A
4440708 Haataja et al. Apr 1984 A
4480061 Coughlin et al. Oct 1984 A
4481701 Hewitt Nov 1984 A
4491553 Yamada et al. Jan 1985 A
4503115 Hemels et al. Mar 1985 A
4505869 Nishibori Mar 1985 A
4506037 Suzuki et al. Mar 1985 A
4508595 Gåsland Apr 1985 A
4562218 Fornadel et al. Dec 1985 A
4594372 Natov et al. Jun 1986 A
4597928 Terentiev et al. Jul 1986 A
4610900 Nishibori Sep 1986 A
4645631 Hegenstaller et al. Feb 1987 A
4659754 Edwards et al. Apr 1987 A
4663225 Farley et al. May 1987 A
4687793 Motegi et al. Aug 1987 A
4717742 Beshay Jan 1988 A
4734236 Davis Mar 1988 A
4737532 Fujita et al. Apr 1988 A
4746688 Bistak et al. May 1988 A
4769109 Tellvik et al. Sep 1988 A
4769274 Tellvik et al. Sep 1988 A
4783493 Motegi et al. Nov 1988 A
4789604 van der Hoeven Dec 1988 A
4790966 Sandberg et al. Dec 1988 A
4791020 Kokta Dec 1988 A
4800214 Waki et al. Jan 1989 A
4801495 van der Hoeven Jan 1989 A
4818590 Prince et al. Apr 1989 A
4818604 Tock Apr 1989 A
4820749 Beshay Apr 1989 A
4851458 Hopperdietzel Jul 1989 A
4865788 Davis Sep 1989 A
4889673 Takimoto Dec 1989 A
4894192 Warych Jan 1990 A
4915764 Miani Apr 1990 A
4927572 van der Hoeven May 1990 A
4927579 Moore May 1990 A
4935182 Ehner et al. Jun 1990 A
4960548 Ikeda et al. Oct 1990 A
4968463 Levasseur Nov 1990 A
4973440 Tamura et al. Nov 1990 A
4978489 Radvan et al. Dec 1990 A
4988478 Held Jan 1991 A
5002713 Palardy et al. Mar 1991 A
5008310 Beshay Apr 1991 A
5009586 Pallmann Apr 1991 A
5049334 Bach Sep 1991 A
5057167 Gersbeck Oct 1991 A
5064592 Ueda et al. Nov 1991 A
5075057 Hoedl Dec 1991 A
5075359 Castagna et al. Dec 1991 A
5078937 Eela Jan 1992 A
5082605 Brooks et al. Jan 1992 A
5087400 Theuveny Feb 1992 A
5088910 Goforth et al. Feb 1992 A
5091436 Frisch et al. Feb 1992 A
5096046 Goforth et al. Mar 1992 A
5096406 Brooks et al. Mar 1992 A
5110843 Bries et al. May 1992 A
5120776 Raj et al. Jun 1992 A
5153241 Beshay Oct 1992 A
5160784 Shmidt et al. Nov 1992 A
5194461 Bergquist et al. Mar 1993 A
5218807 Fulford Jun 1993 A
5219634 Aufderhaar Jun 1993 A
5272000 Chenoweth et al. Dec 1993 A
5276082 Forry et al. Jan 1994 A
5288772 Hon Feb 1994 A
5302634 Mushovic Apr 1994 A
5356697 Jonas Oct 1994 A
5369147 Mushovic Nov 1994 A
5393536 Brandt et al. Feb 1995 A
5406768 Giuseppe et al. Apr 1995 A
5422170 Iwata et al. Jun 1995 A
5435954 Wold Jul 1995 A
5441801 Deaner et al. Aug 1995 A
5458834 Faber et al. Oct 1995 A
5474722 Woodhams Dec 1995 A
5480602 Nagaich Jan 1996 A
5486553 Deaner et al. Jan 1996 A
5497594 Giuseppe et al. Mar 1996 A
5516472 Laver May 1996 A
5518677 Deaner et al. May 1996 A
5532065 Gübitz et al. Jul 1996 A
5537789 Minke et al. Jul 1996 A
5539027 Deaner et al. Jul 1996 A
5574094 Malucelli et al. Nov 1996 A
5576374 Betso et al. Nov 1996 A
5585155 Heikklia et al. Dec 1996 A
5593625 Riebel et al. Jan 1997 A
5695874 Deaner et al. Dec 1997 A
5735092 Clayton et al. Apr 1998 A
5759680 Brooks et al. Jun 1998 A
5773138 Seethamraju et al. Jun 1998 A
5776841 Bondoc et al. Jul 1998 A
5783125 Bastone et al. Jul 1998 A
5795641 Pauley et al. Aug 1998 A
5807514 Grinshpun et al. Sep 1998 A
5827462 Brandt et al. Oct 1998 A
5827607 Deaner et al. Oct 1998 A
5836128 Groh et al. Nov 1998 A
5847016 Cope Dec 1998 A
5863064 Rheinlander et al. Jan 1999 A
5866264 Zehner et al. Feb 1999 A
5882564 Puppin Mar 1999 A
5910358 Thoen et al. Jun 1999 A
5932334 Deaner et al. Aug 1999 A
5948505 Puppin Sep 1999 A
5948524 Seethamraju et al. Sep 1999 A
5951927 Cope Sep 1999 A
5965075 Pauley et al. Oct 1999 A
5981067 Seethamraju et al. Nov 1999 A
5985429 Plummer et al. Nov 1999 A
6004652 Clark Dec 1999 A
6004668 Deaner et al. Dec 1999 A
6007656 Heikkila et al. Dec 1999 A
6011091 Zehner Jan 2000 A
6015611 Deaner et al. Jan 2000 A
6015612 Deaner et al. Jan 2000 A
6035588 Zehner et al. Mar 2000 A
6044604 Clayton et al. Apr 2000 A
6054207 Finley Apr 2000 A
6066680 Cope May 2000 A
6103791 Zehner Aug 2000 A
6106944 Heikkila et al. Aug 2000 A
6114008 Eby et al. Sep 2000 A
6117924 Brandt Sep 2000 A
6122877 Hendrickson et al. Sep 2000 A
6131355 Groh et al. Oct 2000 A
6133348 Kolla et al. Oct 2000 A
6153293 Dahl et al. Nov 2000 A
6180257 Brandt et al. Jan 2001 B1
6210616 Suwanda Apr 2001 B1
6210792 Seethamraju et al. Apr 2001 B1
6248813 Zehner Jun 2001 B1
6265037 Godavarti et al. Jul 2001 B1
6272808 Groh et al. Aug 2001 B1
6280667 Koenig et al. Aug 2001 B1
6284098 Jacobsen Sep 2001 B1
6295777 Hunter et al. Oct 2001 B1
6295778 Burt Oct 2001 B1
6337138 Zehner Jan 2002 B1
6341458 Burt Jan 2002 B1
6342172 Finley Jan 2002 B1
6344268 Stucky et al. Feb 2002 B1
6344504 Zehner et al. Feb 2002 B1
6346160 Puppin Feb 2002 B1
6357197 Serino et al. Mar 2002 B1
6358585 Wolff Mar 2002 B1
6360508 Pelfrey et al. Mar 2002 B1
6362252 Prutkin Mar 2002 B1
6409952 Hacker et al. Jun 2002 B1
6423257 Stobart et al. Jul 2002 B1
6453630 Buhrts et al. Sep 2002 B1
6464913 Korney, Jr. Oct 2002 B1
6498205 Zehner Dec 2002 B1
6511757 Brandt et al. Jan 2003 B1
6578368 Brandt et al. Jun 2003 B1
6579605 Zehner Jun 2003 B2
6605245 Dubelsten et al. Aug 2003 B1
6662515 Buhrts et al. Dec 2003 B2
6685858 Korney, Jr. Feb 2004 B2
6716522 Matsumoto et al. Apr 2004 B2
20010019749 Godavarti et al. Sep 2001 A1
20010051242 Godavarti et al. Dec 2001 A1
20010051243 Godavarti et al. Dec 2001 A1
20020015820 Puppin Feb 2002 A1
20020038684 Puppin Apr 2002 A1
20020040557 Felton Apr 2002 A1
20020092256 Hendrickson et al. Jul 2002 A1
20020192401 Matsumoto et al. Dec 2002 A1
20020192431 Edgman Dec 2002 A1
20030021915 Rohatgi et al. Jan 2003 A1
Foreign Referenced Citations (11)
Number Date Country
0269470 Jan 1988 EP
0586211 Mar 1994 EP
0586212 Mar 1994 EP
0586213 Mar 1994 EP
0747419 Dec 1996 EP
1443194 Jul 1976 GB
2036148 Jun 1980 GB
2104903 Mar 1983 GB
2171953 Sep 1986 GB
2186655 Aug 1987 GB
WO 9008020 Jul 1990 WO
Provisional Applications (1)
Number Date Country
60221947 Jul 2000 US
Continuations (1)
Number Date Country
Parent 09854894 May 2001 US
Child 10421156 US