The present invention pertains to valves suitable for use in handling fluids, such as a valve for use in a fluid pump, for example, and pumps which utilize such valves.
Valves have myriads of uses, and are particularly employed in the handling of fluids. For example, when fluids are being pumped by a pump, typically the pump has an inlet port and an outlet port, one or both of which are selectively opened and closed by a valve, or other wise have a valve associated therewith.
U.S. patent application Ser. No. 10/388,589, filed Mar. 17, 2003, entitled “PIEZOELECTRIC ACTUATOR AND PUMP USING SAME, incorporated herein by reference in its entirety, shows various examples of piezoelectric pumps. In the course of disclosing piezoelectric pump structures, flapper valve structures are also shown for placement in a seat of one or more of an inlet port and an outlet port of a pump chamber.
The diaphragm pump 1410 of
The diaphragm 1414 acts upon a fluid in the pumping chamber 1430. Preferably action of the diaphragm 1414 is in response to application of an electromagnetic field to a piezoelectric element. The piezoelectric element may actually comprise the diaphragm 1414 (in the manner of piezoelectric wafer 38 comprising actuator 14 in
At least one, and preferably both, of inlet port 1422 and outlet port 1424 of the pump 1410 of
For inlet port 1422, flapper valve 1450 is situated in a recessed seat 1454 provided on a chamber-facing surface of body base 1413. For outlet port 1424, flapper valve 1450 is situated in a recessed seat 1456 on a chamber-opposing face of body base 1413. The flapper valves 1450 are held in place in their respective recessed seats 1454 by a retainer element 1457 which is pressed into place around the edges of the flapper valve 1450.
Preferably each flapper valve 1450 is a thin silicon wafer. In one implementation, the flapper valve 1450 has a diameter of about 0.37 inch and a thickness of about 0.002 inch. As shown in
The flapper valve 1450 is particularly beneficial for replacing metal check valves or the like in small pumps. Advantageously, the thin flapper valve 1450 facilitates overall a thinner pump. Whereas conventional metal check valves have a thickness on the order of about 0.093 inch, the flapper valve 1450 has a thickness of about 0.002 inch. In the illustrated implementation, such small thickness for flapper valve 1450 means that the pump 1410 can have an overall thickness (in the direction of arrow 1460) as small as 0.125 inch. As such, the pump 1410 is particularly advantageous for use in fuel cells, fountains and cooling solutions as well as drug infusion pumps in the medical industry, or in any environment in which small but accurate flows are required. The entire pump 1410 can be either molded in ceramics, injection molded in plastic or milled in metal or plastic.
The foregoing illustrates just one employment of one example embodiment of a valve in a fluid-handling environment. It is important that fluid-handling valves remain structurally stable for suitably responding in the course of valve operation to stimuli for opening or closing the valves, such as fluidic pressure or even electrical signal(s). However, the fluid being handled can have deleterious or corrosive effect upon exposed valve structure, particularly if valve structure provided for stability is metallic.
What is needed, therefore, and an object of the present invention, is a fluid-handling valve which has suitable resilience to facilitate valve opening, stability to maintaining valve closing when required, and substantial structurally immunity to the fluids.
A multilayer valve subassembly comprises an interface layer having an interface layer flap; a cover layer having a cover layer flap; and, an intermediate layer positioned between the interface layer and the cover layer. The intermediate layer has an intermediate layer flap essentially aligned with the interface layer flap and the cover layer flap. A first bond adheres the cover layer to the interface layer; a flap bond seals the interface layer flap between the cover layer flap and the interface layer flap and thereby forms a multilayer valve flap which is insulated from fluid which travels through the valve.
In an example embodiment, the each of the interface layer flap, the cover layer flap, and the interface layer flap has a substantially U-shape.
Preferably the interface layer is not in contact with the first bond or the second bond and has a size that permits the interface layer to float in a sandwich pocket formed between the interface layer and the cover layer. In one example implementation, the intermediate layer serves as a stabilizing or stiffener layer and comprises, e.g., an electroconductive metal which is sealed by the first bond and the flap bond for protection from fluid. In an example implementation, the cover layer comprises an elastomer.
In another example embodiment, the interface layer has an interface layer first flap and an interface layer second flap. The intermediate layer has an intermediate layer first flap and an intermediate layer second flap. The cover layer has a cover layer first flap and a cover layer second flap. A first flap bond bonds the first flap of the interface layer to the first flap of the cover layer whereby the first flap of the intermediate layer sandwiched between the first flap of the interface layer and the first flap of the cover layer forms a first valve flap. A second flap bond bonds the second flap of the interface layer to the second flap of the cover layer whereby the second flap of the intermediate layer sandwiched between the second flap of the interface layer and the second flap of the cover layer forms a second valve flap. Preferably but not necessarily, the intermediate layer first flap and the intermediate layer second flap are electrically isolated. In an illustrated embodiment, the first valve flap is centrally formed with respect to the interface layer, the intermediate layer, and the cover layer.
When utilized in conjunction with a pump, a multilayer structure formed by the bonding of the cover layer to the interface layer has a footprint which is substantially equal to a pump footprint. The multilayer structure formed by the bonding of the cover layer to the interface layer can have various shapes.
In one example mode of fabrication, at least one of the first bond and the second bond is an electromagnetic bond formed by absorption of electromagnetic energy. Other bonding techniques are also possible, such as use of adhesives, fasteners, heat treatment, for example.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.
Valve subassembly 50 comprises a pump interface layer 60 having an interface layer inlet flap 62 and an interface layer outlet flap 64; a subassembly cover layer 70 having a cover layer inlet flap 72 and a cover layer outlet flap 74; and, an intermediate layer 80 positioned between interface layer 60 and cover layer 70, intermediate layer 80 having an intermediate layer inlet flap 82 and an intermediate layer outlet flap 84. The intermediate layer 80 may serve as a stabilizing or stiffener layer, and can comprise an electroconductive metal. The cover layer may be an elastomer, for example.
An inlet valve weld or seam 92 bonds inlet flap 62 of interface layer 60 to inlet flap 72 of cover layer 70 for forming inlet valve 52. Thus, inlet valve 52 comprises inlet flap 82 of intermediate layer 80 sandwiched between inlet flap 62 of interface layer 60 and inlet flap 72 of cover layer 70. Similarly, an outlet valve weld or seam 94 bonds outlet flap 64 of interface layer 60 to outlet flap 74 of cover layer 70 for forming outlet valve 54. Accordingly, outlet valve 54 comprises outlet flap 84 of intermediate layer 80 sandwiched between outlet flap 64 of interface layer 60 and outlet flap 74 of cover layer 70. The inlet valve weld or seam 92 and outlet valve weld or seam 94 are illustrated in exploded fashion in
As shown in
In a variation of the illustrated embodiment, one or both of intermediate layer inlet flap 82 and intermediate layer outlet flap 84 can each have mounted or overlaid thereon a piezoelectric material so that one or both of inlet valve 52 and outlet valve 54 can function as active valves. The structure and operation of such an active valve arrangement is understood from U.S. patent application Ser. No. 11/024,937, filed Dec. 30, 2004, which is incorporated by reference herein in its entirety.
Intermediate layer 80, or the segments comprising intermediate layer 80, is/are thus embedded between two other layers, which preferably are elastomer layers, so that intermediate layer 80 (or the segments thereof) is/are sealed between pump interface layer 60 and subassembly cover layer 70. This may be particularly beneficial in an implementation in which, for example, the interface layer is a metallic layer. Moreover, depending on tolerances, the intermediate layer 80 may even have the capability of slightly floating within a pocket formed by the welding of pump interface layer 60 and subassembly cover layer 70.
The valves 52, 54 (which are comprised of the respective interface layer flaps 62, 64; the respective intermediate layer flaps 82, 84; and the respective cover layer flaps 72, 74) can have any convenient shape. In the illustrated example, each flap and thus the valves 52, 54 have an essentially U shape. Thus, the respective flaps may be formed by a U-shaped cut out in the respective layer. Preferably, in order to provide floating positioning of intermediate layer 80 between pump interface layer 60 and subassembly cover layer 70, intermediate layer inlet flap 82 and intermediate layer outlet flap 84 are slightly smaller than the respective flaps 62, 72 and 64, 74, with which they are aligned. The flaps of the different layers are aligned with respect to a width direction of the layers.
The shapes of the layers comprising valve subassembly 50, e.g., pump interface layer 60, subassembly cover layer 70, and intermediate layer 80 are illustrated as being essentially circular. However, in other embodiments layers of differing shapes can be utilized.
The subassembly cover layer 70 may have alignment marks or indentations 98 thereon to serve as a template or guide for placement of intermediate layer 80. Such alignment marks or indentations 98 essentially are an image of intermediate layer 80, or segments comprising intermediate layer 80.
In addition to illustrating the example structure of valve subassembly 50,
A second step involves bonding the first flap 62 of the interface layer 60 to the first flap 72 of the cover layer 70 for forming a first valve flap or inlet valve 52, the first valve flap or inlet valve 52 comprising the first flap 82 of the intermediate layer 80 sandwiched between first flap 62 of interface layer 60 and first flap 72 of cover layer 70. Such bonding for forming inlet valve 52 is represented by inlet valve weld or seam 92 shown in
For two valve embodiments, the second step also includes bonding second flap 62 of interface layer 60 to second flap 72 of cover layer 70 for forming a second valve flap or outlet valve 54, the second valve flap or outlet valve 54 comprising second flap 84 of intermediate layer 80 sandwiched between second flap 64 of interface layer 60 and second flap 74 of cover layer 70. Such bonding for forming outlet valve 54 is represented by outlet valve weld or seam 94 shown in
The third step of forming valve subassembly 50 comprises sealing the periphery of subassembly cover layer 70 to pump interface layer 60, thereby encasing intermediate layer 80 between subassembly cover layer 70 and pump interface layer 60 so that fluid will not intrude to reach intermediate layer 80. The step of bonding periphery of subassembly cover layer 70 to pump interface layer 60 can occur simultaneously with the preceding step of bonding the flaps. At this point, the valve subassembly 50 is now substantially complete as a stand alone part or subassembly.
The bonding included in fabrication of the valve subassembly 50 can be performed in diverse manners, such as electromagnetic bonding, adhesive bonding, heat bonding, mechanical fasteners, just to name a few.
The bonding included in the second step can be performed, for example, by directing a beam of electromagnetic energy in the pattern depicted by inlet valve weld or seam 92 and electromagnetic outlet valve weld or seam 94 as shown in
As mentioned above, the third step of forming valve subassembly 50 comprises sealing the periphery of subassembly cover layer 70 to pump interface layer 60, thereby encasing intermediate layer 80 between subassembly cover layer 70 and pump interface layer 60 so that fluid will not intrude to reach intermediate layer 80. This third step can be accomplished by electromagnetic welding in similar manner as the second step, but with the electromagnetic beam positioned and directed to travel proximate but just inside the periphery of subassembly cover layer 70, and thereby trace the cover weld or seam 100 shown in
In the electromagnetic welding mode, at least one of the interface layer 60 and the cover layer 80 (preferably the interface layer 60) is formed from an electromagnetically transmissive material. For the valve subassembly embodiments described that involve electromagnetic bonding, preferably the electromagnetically transmissive material is a thermal polymer, a thermo-plastic elastomer, a thermoplast, or a combination thereof.
Other aspects of electromagnetic bonding operations for a valve subassembly as well as for a pump are described in simultaneously-filed United States Patent Application Serial Number (Attorney Docket 4209-54), entitled ELECTROMAGNETICALLY BONDED PUMPS AND PUMP SUBASSEMBLIES AND METHODS OF FABRICATION, which is incorporated by reference herein in its entirety.
In another mode, the bonding of the second step and the third steps can be achieved using adhesive bonding. An adhesive can be applied at locations comparable to the welds or seams mentioned above. Suitable adhesives for such bonding can include, for example, epoxies and ultraviolet (UV) curable adhesives.
A valve subassembly 50 such as that described above has particular but not necessarily unique utility in a fluidic pump. As an example, valve subassembly 50 can be included in a pump 20 which is illustrated in exploded manner in
Valve subassembly 50 is bonded or attached to valve interface surface 44 of the pump base member 22 for providing (as shown in
Preferably the valve subassembly 50 has a footprint which is substantially the same as the pump, e.g., of pump base plate/member 22. For example, in one example implementation, preferably but not necessarily, pump interface layer 60 is planar and coextensive in size with pump base member 22, and has fastening apertures 96 which are aligned with fastening apertures 40 of pump base member 22.
Although various embodiments have been shown and described in detail, the claims are not limited to any particular embodiment or example. None of the above description should be read as implying that any particular element, step, range, or function is essential such that it must be included in the claims scope. The scope of patented subject matter is defined only by the claims. The extent of legal protection is defined by the words recited in the allowed claims and their equivalents. It is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements.
This application is related to simultaneously-filed United States Patent Application Serial Number (Attorney Docket 4209-54), entitled ELECTROMAGNETICALLY BONDED PUMPS AND PUMP SUBASSEMBLIES AND METHODS OF FABRICATION, which is incorporated by reference herein in its entirety.