This disclosure relates to multilayered perspiration controlling fabrics and various articles, which can include garments, having the fabrics described herein. For example, in one aspect the garment can include a tee shirt having a multilayered perspiration controlling fabric described herein.
In mammals, perspiration is a physiological response that aids in thermoregulation. Sweat glands typically excrete perspiration as a fluid mixture of various chemical components. For example, human perspiration is a fluid mixture consisting primarily of water, urea, 2-methyphenol (o-cresol), 4-methylphenol (p-cresol), and various dissolved chlorides.
Human perspiration rates vary widely depending on numerous factors including outdoor temperature and/or climate, amount of physical activity, physical activity intensity, gender, the presence or absence of various congenital or acquired medical conditions (e.g., hyperhidrosis, focal hyperhidrosis, etc.), emotional stress including anxiety, etc. For example, under certain environmental and working conditions (e.g., outdoor, manual labor during summer in a temperate climate), studies have shown that humans can perspire up to 12 liters per day. Even under climate controlled conditions (e.g., indoors at temperatures between 72 to 76° F.), the average sedentary human body has been shown to perspire between 400 mL and 4 liters. In addition, human studies have shown that men typically begin perspiring much more quickly than women, and in certain instances, perspire more than twice as much as women while being subjected to similar conditions.
Although many people believe that human perspiration leads to body odor, this belief is ill founded. While human perspiration includes dissolved solutes, human perspiration is typically odorless and/or virtually undetectable by human olfaction. However, certain odor causing bacterial flora such as S. epidermidis and members of the Corynebacterium genus reside on the human body. These odor causing bacterial flora often feed on human perspiration and create odorant substances when metabolizing human perspiration. Thus, a person with a high odor causing bacterial flora or a person who excessively perspires while having an average amount of odor causing bacterial flora can potentially be more prone to body odor and/or to producing body odor causing substances either while or after perspiring.
In certain occupational and social settings, negative social stigmas and connotations can arise from perspiration and/or body odor indirectly caused from perspiration. For example, certain individuals may find the slightest amount of perspiration that “bleeds through” the outer surface of a fabric, such as the outer surface of a shirt, both undesirable and/or unprofessional.
To avoid negative social stigmas and connotations, it is desirable to control, reduce, or prevent perspiration from bleeding through, for example, clothing fabric in certain occupational and social settings. Described herein are multilayered fabrics that can be used to absorb perspiration. In certain aspects, these fabrics can be used to control, reduce, or prevent perspiration from bleeding through and being shown on the outer surface of a garment. For example, these garments can include, but are not limited to, a multi-layered fabric having at least a first fabric layer configured to wick moisture away from a person's body, at least a second fabric layer configured to absorb the moisture, and at least a third fabric layer that does not absorb moisture. As further described herein, various anti-microbial agents can be included in at least one fabric layer. These antimicrobial agents can be used to reduce or prevent the growth of microbes in and/or on the fabric, and these anti-microbial agents can be used to reduce or prevent odors derived from odor producing microbes. The advantages of this disclosure will be set forth in part in the description which follows or may be learned by practice of the aspects described below. The advantages described below will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive.
The disclosed compositions and articles may be understood more readily by reference to the following detailed description of particular embodiments, the Examples included herein, and to the Figures and their descriptions. The aspects described below are not limited to specific compositions and/or methods as described which may, of course, vary.
Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within the ranges as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc. as well as 1, 2, 3, 4, and 5, individually. The same principle applies to ranges reciting only one numerical value as a minimum or maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:
“Anti-microbial agent” includes a substance capable of preventing or reducing the growth of a microorganism by 20% or more, by 30% or more, by 40% or more, by 50% or more, by 60% or more, by 70% or more, 80% or more, by 85% or more, by 90% or more, by 95% or more, by 97% or more, by 99% or more, when compared to a substrate or surface that does not include the anti-microbial agent. In certain aspects, microorganisms include a bacteria (or bacterium), fungi, algae, protozoa, or a combination thereof.
Described herein are multilayered fabrics that can be used to absorb moisture, such as perspiration. These fabrics have a variety of purposes including being used in athletic garments or garments used for business and social purposes. In certain aspects, these fabrics can control, reduce, or prevent perspiration from bleeding through and being shown on the outer surface of the garment. For example, these garments can include, but are not limited to, a multilayered fabric having at least a first fabric layer configured to wick moisture away from a person's body, at least a second fabric layer configured to absorb the moisture, and at least a third fabric layer that does not absorb moisture. As further described herein, various antimicrobial agents can be included in at least one fabric layer. These antimicrobial agents can be used to reduce or prevent the growth of microbes in and/or on the fabric, and these antimicrobial agents can be used to reduce or prevent odors derived from odor producing microbes.
As briefly described above, the multilayered fabric can include at least three distinct fabric layers having different properties (e.g., different rates of absorbency and hygroscopicity) and structural characteristics. Each layer can include either a woven fabric or a non-woven fabric made from a natural substance, an artificial substance, or a combination thereof (e.g., a semi-synthetic substance). Natural substances can include any material derived from plants or animals. For example, natural substances derived from plants can include, but are not limited to, cellulosic materials such as cotton, hemp, jute, flax, ramie, sisal, and any combination thereof. In certain aspects, these natural substances can further include fibers, thread, and yarn. Artificial substances can include any polymeric material. In certain aspects, these polymeric materials can further include films, fibers, threads, and yarns.
Each layer can further include an antimicrobial agent that prevents or reduces the growth of microbes. It can be advantageous to incorporate these agents in the fabric layers to potentially prevent or reduce odor produce by odor causing microbes. These microbes can include, but are not limited to, a bacteria (or bacterium), fungi, algae, protozoa, or a combination thereof. In certain aspects, the antimicrobial agents prevent or reduce growth of microbes often found on the human body. For example, the antimicrobial agent can prevent or reduce growth of certain odor causing bacterial flora such as S. epidermidis and members of the Corynebacterium genus on/in the fabric layers and may potentially reduce the amount of bacteria on a human body if the fabric is contacted with a human's skin. In certain aspects, the antimicrobial agent can include but is not limited to copper, copper salts, silver, silver salts, nickel, nickel salts, or any combination thereof.
These fabric layers can include at least a first fabric layer configured to wick moisture (e.g., perspiration), at least a second fabric layer configured to absorb moisture, and at least a third fabric layer that does not absorb moisture. For example,
In certain aspects, the at least a second fabric layer is disposed between the at least first fabric layer and the at least third fabric layer. A surface of the second fabric layer can be disposed immediately adjacent to one surface of the first fabric layer to form an interface between the first and second fabric layers. On a side opposite of the first and second fabric interface, a second surface of the second fabric layer can be disposed immediately adjacent to one surface of the third fabric layer to form an interface between the second fabric layer and the third fabric layer. When disposed in this manner, the at least first, second, and third fabric layers can have a parallel orientation relative to the other fabric layers about an axis. Furthermore, when the fabric layers are disposed as described immediately above, the first layer and third layer can completely surround the at least second fabric layer. In other aspects, the first layer and third layer only surround portions of the second fabric layer. In further aspects, additional fabric layers or films can be disposed in between the first and second fabrics, in between the second and third fabrics, or any combination thereof. Similar to the second fabric layer described above, these additional fabric layers can be completely surrounded by the first and/or third fabric layers, or the first and third fabric layers surround portions of these additional layers.
The fabric layers described herein can have end portions. For example, the at least first fabric layer can have at least one end portion, the at least second fabric layer can have at least one end portion, and the at least third fabric layer can have at least one end portion. In certain aspects, the multilayered fabric described herein can further have at least one end portion. The at least one portion of the multilayered fabric can be formed by converging at least one end portion of one fabric layer with at least one end portion of another fabric layer. For example, an end portion of the at least first fabric layer and an end portion of the at least third fabric layer can converge to form one end portion of the multilayered fabric. In certain aspects, it can be preferable to converge at least one end portion of the first fabric with at least one end portion of the second fabric and at least one end portion of the third fabric to form an end portion of the multilayered fabric. When the fabric layers described above are converged to form an end portion of the multilayered fabric, it is preferable to fixably attach the end portions of the fabric layers together to form the multilayered fabric.
The end portions of the fabric layers can be fixably attached by various forms and methods of attachment. For example, the end portions of the fabric layer can be fixably attached by stitching the end portions together to form an end portion of the multilayered fabric. Alternatively, the end portions of the fabric can be fixably attached via an adhesive. For example, at least one end portion of the fabric layer being fixably attached to another end portion of a different fabric layer can include an adhesive. This adhesive can function to fixably attach one end portion of a fabric layer to an end portion of a separate fabric layer to form an end portion of the multilayered fabric. Examples of adhesives include, but are not limited to, contact adhesives, pressure adhesives, and hot melt adhesives. In certain aspects, end portions of the fabric layer can be fixably attached by using both stitching and adhesives.
First Fabric Layer
The multilayered fabric described herein includes at least a first fabric layer. The first fabric layer can be a woven or non-woven fabric, and this fabric layer can have multiple surfaces that are either identical or that differ from one another.
For example, in certain aspects, the first fabric layer is configured to wick away moisture (e.g., perspiration) from a human body and direct the moisture towards the second fabric layer of the multilayered fabric as described in further detail below. This wicking effect preferably occurs by capillary action in which the moisture flows between narrow spaces within the first fabric layer and towards the second fabric layer without the assistance of external forces (e.g., gravity). To facilitate and further enhance the wicking effect of the first fabric layer, the first fabric layer has a first surface and a second surface, which vary from one another. For example, in one aspect, the first fabric layer is a woven material. In this aspect, the woven first fabric layer includes a first surface and a second surface. To generate the wicking effect described above, the first surface (e.g., feature (3) of
In certain aspects the first fabric layer can be made from a natural substance, an artificial substance, or a combination thereof (e.g., a semi-synthetic substance). In certain aspects the first fabric layer is made from a polymeric substance. In this aspect, the polymeric substance can, include but is not limited to, a semi-aromatic co-polymer such as polyester. In certain aspects, the first fabric layer includes at least one polyester selected from the group of polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and any combination thereof. In certain aspects, the polymeric substance can comprise at least 60 wt %, at least 65 wt %, at least 70 wt %, at least 75 wt %, at least 80 wt %, at least 85 wt %, at least 90 wt %, at least 95 wt %, at least 98 wt %, or 100 wt % of the overall weight of the first fabric layer.
When producing the first fabric layer it may be desirable to further include an antimicrobial agent. The antimicrobial agent can be either incorporated into, for example, a polymeric substance used to make the first fabric layer or the first fabric layer can be further coated with the antimicrobial agent. As described above, the antimicrobial agent can include but is not limited to copper, copper salts, silver, silver salts, nickel, nickel salts, or any combination thereof. In certain aspects, the first fabric layer includes 0 to 30 wt %, 0 to 25 wt %, 0 to 20 wt %, 0 to 15 wt %, 0 to 10 wt %, 0 to 5 wt %, 0 to 3 wt %, 1 to 10 wt %, 2 to 8 wt %, 3 to 6 wt % of the antimicrobial agent in the first fabric layer or coated on the first fabric layer.
In certain aspects, the first fabric layer is made entirely from an artificial substance or a semi-synthetic substance being made from both artificial and natural substances. In certain aspects it may be desirable to make the first fabric layer from entirely a polymeric substance (e.g., a polyester). In other aspects the first fabric layer can include a blend and/or mixture of a polymeric substance and the antimicrobial agent. For example, in certain aspects, the first fabric layer can be made from a material having 80 to 100 wt % of a polymeric substance and 0 to 30 wt % of the antimicrobial agent. (Weight percentage being calculated from the overall weight of the material comprising the first fabric layer.) In certain aspects, the first fabric layer includes at least one polyester selected from the group of polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and any combination thereof, wherein the at least one polyester comprises 80 to 100 wt % of the first fabric layer's overall weight, and in this aspect, the fabric layer can include at least one antimicrobial agent selected from the group consisting of copper, copper salts, silver, silver salts, nickel, nickel salts, or any combination thereof, wherein the antimicrobial agent comprises 0 to 30 wt % of the first fabric layer's overall weight. In other aspects, the first fabric layer can include one polyester selected from the group of polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and any combination thereof, and the first fabric layer can be blended with or coated with the antimicrobial agent. When the first fabric layer is blended with or coated with the antimicrobial agent, the polymeric substance can comprise 80 to 100 wt % and the antimicrobial agent can comprise 0 to 30 wt % of the antimicrobial agent of the first fabric layer's overall weight.
In certain aspects, it may be desirable that the first fabric layer includes the highest amount of antimicrobial agent because the first fabric layer comes in closest contact with the surface containing moisture. More specifically, it may be desirable that the first surface of the first fabric layer (e.g., the surface with the tighter weave when the first fabric layer is a woven material) have the highest amount of antimicrobial agent because the first surface of the first fabric layer will be in closest proximity to a surface containing moisture. In this aspect, the first surface of the first fabric layer can have at least 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times more antimicrobial agent than any other surface in the multilayered fabric and/or than any other fabric layer in the multilayered fabric. However, in other aspects, the first fabric layer does not include an antimicrobial agent.
In certain aspects, it is important for the first fabric layer to maintain the qualities described above after 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more wash machine cleanings, which includes washing the first fabric layer in the presence of cleaning agents such as washing detergent(s) and/or bleach. In certain aspects, the wash machine cleaning ranges from 5 to 60 minutes in length, 10 to 45 minutes in length, 15 to 35 minutes in length, or 20 to 30 minutes in length.
Second Fabric Layer
The multilayered fabric described herein includes at least a second fabric layer (see, for example,
To achieve the characteristics described immediately above, it is preferable that the second fabric layer be made of a semi-synthetic substance, a natural substance (e.g., bamboo and derivatives thereof, cotton, etc.), or any combination thereof. For example, the semi-synthetic substance can include, but is not limited to, hygroscopic materials such as rayon and derivatives thereof. For example, the hygroscopic material can include, but is not limited to, modal, bamboo (i.e., a natural substance), or a combination thereof. In certain aspects, these hygroscopic materials do not contain cotton, and in certain aspects, these hygroscopic materials are at least 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more hygroscopic per unit volume than cotton. In this aspect, the second fabric layer includes at least 70 wt %, at least 75 wt %, 80 wt %, 85 wt %, 90 wt %, 95 wt %, or at least 99 wt % modal, bamboo, or a combination thereof as the overall weight of the second fabric layer. In certain aspects, the second fabric layer does not include cotton, polyester (or derivatives thereof), an antimicrobial agent, or any combination thereof.
Similar to the first fabric layer described above, it may be desirable to include the antimicrobial agent into the second fabric layer or to coat the second fabric layer with the antimicrobial agent. In certain aspects, the second fabric layer includes 0 to 30 wt %, 0 to 25 wt %, 0 to 20 wt %, 0 to 15 wt %, 0 to 10 wt %, 0 to 5 wt %, 0 to 3 wt %, 1 to 10 wt %, 2 to 8 wt %, 3 to 6 wt % of the antimicrobial agent blended in its fabric layer or coated on the second fabric layer. (Weight percentage being calculated from the overall weight of the material comprising the second fabric layer.) In this aspect, the fabric layer can include at least one antimicrobial agent selected from the group consisting of copper, copper salts, silver, silver salts, nickel, nickel salts, or any combination thereof. In certain aspects and to prevent and/or to reduce growth of microbes in the second fabric layer, it is desirable that the second fabric layer includes the most antimicrobial agent. For example, the second fabric layer can include at least 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times more anti-microbial agent than any other fabric layer of the multilayered fabric.
In certain aspects, the second fabric layer includes at least modal, at least one polymeric substance, and at least one antimicrobial agent. For example, the second fabric layer can include at least 70 wt % modal and from 0 to 30 wt % of the anti-microbial agent. In yet another aspect, the second fabric layer can include at least 90 wt % modal and from 3 to 6 wt % of the antimicrobial agent.
In certain aspects, it is important for the second fabric layer to maintain the qualities described above after 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more wash machine cleanings, which includes washing the second fabric layer in the presence of cleaning agents such as washing detergent(s) and/or bleach. In certain aspects, the wash machine cleaning ranges from 5 to 60 minutes in length, 10 to 45 minutes in length, 15 to 35 minutes in length, or 20 to 30 minutes in length.
Third Fabric Layer
The third fabric layer described herein is a woven or non-woven fabric and is preferably the least moisture absorbing fabric layer included in the multilayered fabric. In certain aspects, the third fabric layer does not absorb any moisture or minimally absorbs moisture. For example, the third fabric layer can be completely waterproof. This fabric can further be a waterproof breathable fabric. In the multilayered fabric, the third fabric layer can function to trap any moisture present in the multilayered fabric inside the second fabric layer because the third fabric layer does not absorb moisture or minimally absorbs moisture present in the second fabric layer. In certain aspects, it is important for the third fabric layer to maintain these non-absorbent qualities after 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more wash machine cleanings, which can include the addition of cleaning agents such as washing detergent(s) and/or bleach. In certain aspects, the wash machine cleaning ranges from 5 to 60 minutes in length, 10 to 45 minutes in length, 15 to 35 minutes in length, or 20 to 30 minutes in length.
This third fabric layer can be made of an artificial substance such as a polymeric substance (e.g., artificial substances), semi-synthetic substance, a natural substance, or any combination thereof. In certain aspects, it is preferable that the third fabric layer be made entirely of a polymeric substance or the third fabric layer can include at least 80 wt %, 85 wt %, 90 wt %, 95 wt %, or at least 99 wt % of the polymeric substance. For example, the third fabric layer can include only a single polymeric substance, or the third fabric layer can include a plurality of polymeric substances. These polymeric substances can further include, but are not limited to, polyester, polyurethane, polyvinyl chloride, silicone elastomer, fluoropolymers (e.g., a perfluoroalkane derivative such as perfluorobutanesulfonic acid), synthetic waxes (e.g., polyethylene based waxes, polymerized olefin waxes, Fischer-Tropsch waxes, etc.), or any combination thereof.
In certain aspects and to achieve minimal moisture absorbency, it is preferable that the third fabric layer is blend of polymeric substances. For example, blend of polymeric substances can include at least any two, at least any three, or at least any four of the polymeric substances selected from the group of polyester, polyurethane, polyvinyl chloride, silicone elastomer, fluoropolymers (e.g., a perfluoroalkane derivative such as perfluorobutanesulfonic acid), synthetic waxes (e.g., polyethylene based waxes, polymerized olefin waxes, Fischer-Tropsch waxes, etc.), or any combination thereof. In one aspect, the third fabric layer includes at least a blend of 30 to 80 wt %, 30 to 70 wt %, 40 to 60 wt %, 40 to 70 wt %, 50 to 65 wt %, 65 to 80 wt %, 75 to 80 wt % of polyurethane and 30 to 70 wt %, 35 to 70 wt %, 35 to 60 wt %, 40 to 55 wt %, 45 to 50 wt % of polyester.
Similar to the first and second fabric layers described above, it may be desirable to include the antimicrobial agent in the second fabric layer or to coat the second fabric layer with the antimicrobial agent. In certain aspects, the second fabric layer includes 0 to 30 wt %, 0 to 25 wt %, 0 to 20 wt %, 0 to 15 wt %, 0 to 10 wt %, 0 to 5 wt %, 0 to 3 wt %, 1 to 10 wt %, 2 to 8 wt %, 3 to 6 wt % of the antimicrobial agent in its fabric layer or coated on the third fabric layer. (Weight percentage being calculated from the overall weight of the material comprising the second fabric layer.) In this aspect, the fabric layer can include at least one antimicrobial agent selected from the group consisting of copper, copper salts, silver, silver salts, nickel, nickel salts, or any combination thereof. In certain aspects and to prevent and/or to reduce growth of microbes in the second fabric layer, it is desirable that the third fabric layer include the least antimicrobial agent. For example, when the antimicrobial agent is present, the third fabric layer can include 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times less antimicrobial agent than any other fabric layer of the multilayered fabric. However, in certain aspects, the third layer does not include an antimicrobial agent.
In certain aspects, the third fabric layer may include at least two polymeric substances and at least one antimicrobial agent. For example, the third fabric layer can include 30 to 80 wt % polyurethane, from 35 to 60 wt % polyester, and from 0 up to 10 wt % of the antimicrobial agent.
In certain aspects, the third fabric layer has at least two surfaces. A first surface of the third fabric layer (e.g.,
In certain aspects, it is desirable to enhance non-absorbency of only one surface of the third fabric layer. For example, it may be desirable to enhance non-absorbency of the first surface of the third fabric layer (e.g.,
In alternative embodiments, the multilayered fabrics can optionally include additional layers other than the at least first, second and third layers described above. For example,
Articles
The multilayered fabrics described herein can be made into numerous articles including, but not limited to, garments or inserts configured to be either removably incorporated or permanently incorporated into garments. In certain aspects, these articles having the multi-layered fabrics can be inserted into pouches within a garment. In other aspects, these articles having the multi-layered fabrics can be incorporated into a garment by permanently fixing the multi-layered fabric article either to or within the garment by various methods including but not limited to stitching, cross-stitching, various forms of adhering with adhesives, or any combination thereof.
The garments described above can include, but are not limited to, athletic garments or garments used for business and social purposes. For example, these garments can include any type of shirt, and in certain aspects, these garments are tee shirts. As described above, these multilayered fabrics can be used to control, reduce, or prevent perspiration from bleeding through and being shown on the outer surface of the garment by using the wicking features, the absorbent features, and the non-absorbent features described above.
As described herein are exemplary embodiments of articles made of the multi-layered fabric configured to be removably or permanently incorporated into garments including shirts. In certain aspects, these articles can be in the form of a shield configured to be incorporated into, for example, a tee shirt. These shields can be made of a single piece of the multi-layered fabric or the shield can include multiple pieces of the multi-layered fabric joined together. For example,
The article shown in
In certain aspects, the distance between the opposing end portions of (200) and (300) of the article are separated by the multilayered fabric extending in a direction beginning near the wearer's anatomical midline and extending away from the wearer's anatomical midline. In certain aspects, the distance between the opposing end portions (200) and (300) ranges from 4 inches to 16 inches in length, 5 inches to 15 inches in length, 6 inches to 13 inches in length, 6.5 inches to 12 inches in length, 6.5 inches to 10 inches in length, 7 inches to 10 inches in length, 7 inches to 9.5 inches in length, 7 to 8.5 inches in length, 7 inches to 8 inches in length, 7 inches to 7.5 inches in length, or any combination thereof, wherein any values within the ranges disclosed above can be used to form additional ranges.
In certain aspects, the article shown in
In certain aspects, the article shown in
Furthermore, as shown in
In certain aspects, at least ⅗, at least ⅝, at least ⅔, or at least ¾ of the overall length of the second end portion (300) can be oriented in the front side of the article when the article is integrated into or attached/fixed to the tee shirt. For example,
As described immediately above,
As shown in
In certain aspects, a partial length of the third end portion (650) of the first piece of the multilayered fabric and a partial length of the third end portion (850) of the second piece of the multilayered fabric can be joined together to form the shield. In certain aspects, the entire length of the third end portion (650) of the first piece of the multi-layered fabric and an entire length of the third end portion (850) of the second piece of the multilayered can be joined together to form the shield. For example,
As discussed above, two pieces of the multi-layered fabric can be joined together to form a shield configured to be incorporated into the underarm area of a shirt and positioned in such a manner to cover most or substantially all of the garment wearer's sweat glands in the underarm area. Thus, similar to the other embodiments described above, the shield is positioned in the tee shirt to maximize the garment wearer's comfort while also maximizing perspiration absorption. For example,
The shield shown in
In certain aspects, the distance between the opposing end portions of (250) and (350) of the article are separated by the multilayered fabric extending in a direction beginning near the wearer's anatomical midline and extending away from the wearer's anatomical midline. In certain aspects, the distance between the opposing end portions (250) and (350) ranges from 4 inches to 16 inches in length, 5 inches to 15 inches in length, 6 inches to 13 inches in length, 6.5 inches to 12 inches in length, 6.5 inches to 10 inches in length, 7 inches to 10 inches in length, 7 inches to 9.5 inches in length, 7 to 8.5 inches in length, 7 inches to 8 inches in length, 7 inches to 7.5 inches in length, or any combination thereof, wherein any values within the ranges disclosed above can be used to form additional ranges.
In certain aspects, the shield shown in
In certain aspects, the article shown in
Furthermore, as shown in
As described immediately above,
In certain aspects, the articles (e.g., the shields) described herein can be configured in a different manner than described above. For example, in certain aspects, the articles (e.g., the shields) described above can be configured to be included in the bust line of a woman's tee shirt and can be configured to wick away sweat from a woman's bust line. For example, the articles described herein can be placed in between a woman's breast and upper abdominal area to wick away and absorb perspiration as described above.
This U.S. Non-Provisional patent application is a continuation claiming priority from U.S. Non-Provisional patent application Ser. No. 14/038,049 filed on Sep. 26, 2013, which claims priority from U.S. Patent Application No. 61/707,096 filed on Sep. 28, 2012 and from U.S. Patent Application No. 61/791,075 filed on Mar. 15, 2013, which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2344781 | Mullen | Mar 1944 | A |
3727237 | Glatt | Apr 1973 | A |
4205679 | Repke et al. | Jun 1980 | A |
4573987 | Lamb | Mar 1986 | A |
4641381 | Heran et al. | Feb 1987 | A |
4813950 | Branch | Mar 1989 | A |
5291617 | Moretz et al. | Mar 1994 | A |
5546607 | Roberts | Aug 1996 | A |
5562648 | Peterson | Oct 1996 | A |
5669902 | Sivilich | Sep 1997 | A |
5683373 | Darby | Nov 1997 | A |
6848121 | Halid | Feb 2005 | B1 |
7166095 | Coates | Jan 2007 | B1 |
7842625 | Stockton et al. | Nov 2010 | B1 |
8117675 | Strange et al. | Feb 2012 | B2 |
D701018 | Wexler | Mar 2014 | S |
8935813 | O'Leary | Jan 2015 | B2 |
9011403 | De Bruin et al. | Apr 2015 | B2 |
20050090795 | Coleman | Apr 2005 | A1 |
20060085886 | Williams | Apr 2006 | A1 |
20080052802 | Bryan | Mar 2008 | A1 |
20080096001 | Emden | Apr 2008 | A1 |
20080114327 | Barge | May 2008 | A1 |
20080222781 | Rhew | Sep 2008 | A1 |
20080276352 | Strange et al. | Nov 2008 | A1 |
20090082749 | Scott et al. | Mar 2009 | A1 |
20090276934 | Lindsay | Nov 2009 | A1 |
20120064313 | Rock | Mar 2012 | A1 |
20120071849 | Kumar | Mar 2012 | A1 |
20120180198 | Ruggieri | Jul 2012 | A1 |
20120288648 | Shull | Nov 2012 | A1 |
20130041339 | Taylor | Feb 2013 | A1 |
20130046265 | Felix | Feb 2013 | A1 |
20140018756 | De Bruin et al. | Jan 2014 | A1 |
20140039432 | Dunbar et al. | Feb 2014 | A1 |
20140090141 | Friedrich | Apr 2014 | A1 |
20140109285 | Amarasiriwardena | Apr 2014 | A1 |
20140157476 | Del Rosario | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
0 619 953 | Oct 1994 | EP |
2410882 | Feb 2012 | EP |
Number | Date | Country | |
---|---|---|---|
20170099895 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
61791075 | Mar 2013 | US | |
61707096 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14038049 | Sep 2013 | US |
Child | 15386102 | US |