1. Field of the Invention
A multi-layered device structure is prepared from materials having a wide lattice mismatch.
2. Description of the Related Art
Gallium nitride (GaN) is a wide-bandgap semiconductor material that has potential applications in high-speed, high power transistor devices. One of the main drawbacks to the production of these devices is the limited availability of suitable substrates for epitaxial growth. A high-quality bulk single crystal substrate at low cost that has a large area is desirable for the growth of gallium nitride epitaxial layers for device fabrication. In one example of the related art technology, the GaN epitaxial layer would be grown homoepitaxially on a single crystal GaN substrate. However, the cost and availability of these wafers are prohibitive.
Currently, GaN films are produced by heteroepitaxial growth on either single crystal silicon carbide (SiC) or sapphire. Due to the lattice mismatch between GaN (4.8 Å) and sapphire (4.763 Å) or 4H-silicon carbide (3.0730 Å), a significant number of threading dislocations on the order of 108 cm−3 are formed during the growth process.
Another substrate of interest is single crystal silicon, which is readily available in sizes up to 12 inches in diameter. However, silicon does not have the thermal dissipation properties that are necessary for high power, high-speed devices. In addition, Si and GaN have a significant thermal expansion mismatch. One potential method to reduce the cost and improve the properties of the substrates is to manufacture the devices on a polycrystalline substrate utilizing three-dimensional integration through wafer bonding.
Wafer bonding allows heterogeneous substrates to be bonded together at temperatures as low as 200° C. Low temperature bonding is important to minimize chemical reactions of the metals and stresses that arise due to thermal coefficient of expansion mismatches. Wafer bonding occurs when wafers with atomically smooth surfaces are brought into contact and initially adhere due to hydrogen bonding, which is a result of the reaction between water molecules and hydroxyl groups present on the wafer surfaces. Subsequent anneals either transport the water away from the interface or cause the water to react and produce a siloxane bond across the interface.
The siloxane bond, Si—O—Si, is a covalent bond. In the case of silicon-to-silicon bonding, where no siloxane bond is desired, high temperature anneals will cause the oxygen to diffuse away from the interface, resulting in Si—Si covalent bonding.
A conventional approach to forming a multi-layered substrate is typified by the work F. J. Kub et al. (U.S. Pat. Nos. 6,328,796 and 6,497,763). This conventional technology forms a composite substrate that includes polycrystalline layers, amorphous layers and single crystal layers. However, the conventional technology requires an oxide bonding layer in order to have monocrystalline silicon bond to polycrystalline substrate structure. Alternately, the conventional art used carbonization (which can produce impurities) to promote adhesion.
Accordingly, the development of high power semiconductor devices requires new and low cost substrates having both good thermal conductivity and superior electrical properties.
Accordingly, one aspect of the present invention is directed at producing a multi-layered substrate that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An aspect of the invention is to provide a bonding process in which a single crystal silicon layer is transferred from a silicon-on-insulator (SOI) wafer to a polycrystalline silicon carbide substrate by creating a Si—Si bond.
One aspect of the technology pertains to a semiconductor device that includes a substrate having a polished surface, a planarization layer formed over the polished surface of the substrate, and a single crystalline layer formed over the planarization layer.
Also, polished surface may optionally have a root-mean-square surface roughness of 10 nm or less, preferably 5 nm or less. Trenches can optionally be formed in at least one of the planarization layer and the single crystalline layer, and the trenches can have a pitch up to 2000 μm apart, preferably at about 1500-1700 μm. The substrate can be an amorphous, a single crystalline or a polycrystalline material selected from SiC, graphite, diamond, ZnSe, AlN, BN, GaN or mixtures thereof. Preferably, the substrate can be polycrystalline SiC, the planarization layer can be Si, and the single crystalline layer comprises Si. Also, an epitaxial layer can be formed over the single crystalline layer.
Another aspect of the technology pertains to manufacturing a semiconductor device that includes providing a substrate, polishing a surface of the substrate, forming a planarization layer over the surface of the substrate, and bonding a single crystalline layer to the planarization layer. At least one trench may optionally be formed in at least one of the planarization layer or the single crystalline layer, before the step of bonding the single crystalline layer to the planarization layer.
Other aspects include polishing that can optionally be performed using chemical-mechanical-planarization (CMP). Also, the bonding of the single crystalline layer to the planarization layer can be performed by contacting the single crystalline layer to the planarization layer under a vacuum at a temperature of about 20 to 50° C., preferably 25 to 35° C. The method can also include annealing at a temperature at up to about 1150° C., after the step of bonding the planarization layer to the single crystalline layer.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structures and methods particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description of the invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention.
In the drawings:
a is an atomic force microscopy (AFM) photomicrograph of an SiC wafer prior to polishing, according to an exemplary embodiment of the invention;
b is a photomicrograph of an SiC wafer after polishing, according to an exemplary embodiment of the invention;
c shows a an SiC wafer coated with Si after chemical mechanical polishing (CMP), according to an exemplary embodiment of the invention;
a shows a sonoscan of the initial effect of trenches and an exclusion zone), according to an exemplary embodiment of the invention;
b shows a bonded substrate with trenches spaced about 1500 to 1700 μm apart), according to an exemplary embodiment of the invention;
a shows an acoustic microscope sonoscan image of an example of a bulk wafer bonded to polycrystalline SiC prior to thinning, according to an embodiment of the invention;
b shows an acoustic microscope sonoscan of an example of a silicon on insulator (SOI) wafer bonded to a polycrystalline silicon carbide substrate, according to an embodiment of the invention; and
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
A multi-layer semiconductor utilizes the good thermal and electrical properties of a polycrystalline substrate with the electrical properties of single crystal film transferred via wafer bonding. The structure includes a polycrystalline substrate, e.g., silicon carbide substrate, which was polished. A planarization layer of silicon (Si), silicon nitride (SiN) or silicon dioxide (SiO2) is applied to the surface using sputtering, CVD or any other appropriate method, followed by polishing. The substrate is bonded to either a bulk silicon wafer or a silicon-on-insulator (SOI) wafer. The silicon (SOI) wafer is thinned to the desired thickness.
A multilayered device structure utilizes a novel bonding process, which results in the transfer of a single crystal silicon layer for subsequent epitaxial growth and/or device fabrication. A substrate that may be chosen for this application is polycrystalline silicon carbide, but may also include single crystal or polycrystalline AlN, GaN, SiC, ZnSe, graphite, diamond, BN or mixtures thereof. Polycrystalline SiC was chosen as the preferred substrate material due to its superior thermal dissipation properties and low cost.
Over a surface 1a of the substrate 1 is formed a planarization (bonding) layer 2, which can typically be of sputtered amorphous or polycrystalline silicon. The planarization layer 2 may also be formed from an amorphous or polycrystalline material such as a nitride, an oxide or benzocyclobutene (BCB). The planarization layer 2 may have a thickness of 1 to 4 μm before polishing with CMP, and may have a thickness of about 0.5 μm to 2 μm after polishing with CMP.
Over the planarization layer 2 is formed a single crystalline layer 3 of silicon or any other suitable single crystalline material. The single crystalline film can have a thickness of 1000 Å to 2 μm, preferably in the range of 1000 Å to 5000 Å. Typically, the single crystalline film 3 has a thickness of about 2000 Å. Finally, the desired epitaxial and/or buffer layers 4 are deposited over the single crystalline film 3. The epitaxial/buffer layer 4 can have a thickness of from 0.5 μm to 3 μm. In this range, the thickness of the epitaxial/buffer layer 4 will be thinner if it is formed by molecular beam epitaxy (MBE), and it will be thicker if formed by metal organic chemical vapor deposition (MOCVD).
One of the advantages of the invention resides in that no adhesion promoting oxide layer is required between the planarization (bonding) layer 2 and the single crystalline layer 3. Oxide layers have poor thermal conductivity. If an oxide layer is present, then the thermal efficiency of the semiconductor device is reduced. As a result, Si and SiN are preferred materials.
A process to obtain the multi-layer device is shown schematically in
The surface 1a of the substrate 1 (which may be polycrystalline silicon carbide) is polished and planarized, resulting in a surface roughness of less than about 10 nm, preferably less than about 5 nm. The root-mean-square (RMS) roughness value of the surface 1a may be considerably high, 3 nm for a 2 μm square scan, for direct wafer bonding. Even a 5 nm RMS can be used. In a preferred embodiment of the invention, an RMS roughness value of less than about 5 Å is desirable. Currently, RMS values below the range of about 1-2 Å are difficult to obtain, but preferably an RMS roughness approaching 0 Å, i.e., 0.1 Å would be used.
Polishing can be performed using various methods. For example, a diamond based mechanical polish can be used. Chemical mechanical planarization (CMP) may be performed using slurries of ceria, mixed rare earth metal oxides or alumina. The mean particle size of the slurries should preferably be 100 nm or less. In CMP, the wafer is positioned in a wafer holder or carrier, and held against a polishing pad on a flat surface known as a platen. The motion between the wafer and the polishing pad may be controlled using either orbital or rotary motion.
a and 3b show atomic force microscope images of the polycrystalline silicon carbide substrates before and after polishing. Polishing the substrate eliminates the growth of a polycrystalline layer of the substrate material (which can be SiC, graphite, diamond, AlN, ZnSe, BN, and mixtures thereof) that was observed in the related art technologies. As a result, the need to utilize an oxide adhesion layer is eliminated.
Then, a planarization layer 2 (preferably formed from Si, but other materials can be used, including SiN and SiO2) is deposited over the surface 1a of the substrate 1 after it has been polished. However, the material of the planarization layer is not restricted to silicon, and any appropriate material can be used. Between 1 and 4 μm thick films of silicon may be deposited onto the silicon carbide surface using any appropriate method such as sputtering or CVD. However, these thicknesses can be reduced. The film is then polished using CMP or mechanical polishing. After polishing, the thickness can range from about 0.5 μm to 2 μm.
c shows an example of the surface roughness (RMS) of the substrate 1 after polishing, which is on the order of 7 Å. Although the RMS roughness value is still slightly greater than the preferred 5 Å, the results demonstrate a process that will improve with lower roughness values.
Adhesion problems arise when bonding wafers according to the conventional art technology. That is, although good adhesion is frequently observed near wafer edges, insufficient outgassing of impurities often results in poor adhesion at the interior of the wafer surface. In the invention, a low temperature bonding process may be used to bond the wafers. In order to bond silicon surfaces at low temperatures, excess gases such as water vapor, nitrogen, hydrocarbons and hydrogen must be removed from the interface. Bonding results for silicon-to-silicon bonding indicated a strong bond occurred at the edges of the wafers, but was very weak at the center of the wafers. That is, at the center of the wafer, there is no edge effect that can efficiently remove excess gaseous material by outgassing. To overcome this problem, a preferred bonding method uses trenches to remove residual gases from the interface.
As shown in
The pitch (spacing) of the trenches is not restricted, but a range of about 1500 to 1700 μm is preferred, based upon a 6 inch wafer pressed at 200 lb. The preferred trench depth is about 250 Å. The trenches may preferably have a width of about 1 μm near the reticle and slightly wider (about 5 μm) within the reticle.
The Trenches may be formed either in the planarization (bonding) layer 2 or the single crystalline layer 3, or in both the planarization layer 2 and the single crystalline layer 3. The trenches may be parallel or formed at angles from one another. The trenches may cross each other at 90° or other angles. The pitch, i.e., spacing of the trenches may vary. The pitch may become shorter (thereby providing more trenches) near the center of the wafer, where reduced adhesion is observed, and the pitch may become longer near the edge of the wafer, where fewer adhesion problems are observed. The trenches can form patterns. When trenches are formed in both the planarization layer 2 and the single crystalline layer 3, the trenches of the different layers may cross each other to form a single void system for outgassing. On the other hand, the trenches of the two layers may be arranged so that they do not interconnect.
a and 5b show sonoscan images of the effect of adding trenches. Initially without trenches (not shown), a large area in the center of the wafer would be weakly bonded, therefore preventing further processing. As trenches were added around the reticles, instead of a large weak area in the center of the wafer, microvoids would form in the center of the reticles, as seen in
Once the trenches have been formed in either wafer or both wafers, the wafers are ready for bonding. The wafers are processed through a series of cleans, i.e., cleaning processes, that consist of a wet chemical clean, plasma clean, and de-ionized water rinse. The purpose of the chemical clean is to remove any particulates, hydrocarbons, or metallic contaminates from the surface. One specific clean consists of an ammonium hydroxide/peroxide, hydrochloric acid/peroxide, and a sulfuric acid/peroxide clean. However, the cleaning process is not restricted to the aforesaid cleaning solvents, and any appropriate cleaning solvents and sequences may be used. However, eliminating sulfuric acid/peroxide was sometimes met with inconsistent results.
The wafers may be then immediately placed in an oxygen plasma to remove any residual hydrocarbons resulting from the chemical clean. This has been found to been one of the important process steps, since the chemicals used in the chemical clean may attack the carriers, resulting in re-deposition of hydrocarbons.
Once the wafers have been processed through the oxygen plasma, the wafers are rinsed with de-ionized water. This step is used to re-form the hydroxide groups on the wafer surface that are necessary to create the initial hydrogen bonds. The wafers are spun dry and then immediately aligned and bonded. The bonding process utilizes vacuum and tool pressure in order to initiate bonding.
Bonding of the two surfaces, i.e., of the planarization (bonding) layer 2 and the single crystalline layer 3 is through aligning in a system at a temperature that is usually slightly above room temperature. The wafer may then be brought into contact in the aligner, or transported to a bonding chamber where a vacuum may be present. Although bonding under a vacuum is preferred, bonding may also be performed under air or an inert gas at atmospheric pressure. Bonding may also be performed at elevated pressures and temperatures. Bonding is typically performed at 50° C. but could be performed at higher temperatures.
A sample profile is shown in
After a sonoscan confirms the absence of voids, the wafer pair advances to annealing. This annealing step provides the energy necessary to diffuse away the hydrogen and to create the Si—O—Si covalent bonds. Determining an acceptable temperature range helpful in this step because a temperature that is too low would result in a weak bond that may fail during later processing steps. A slow ramp (e.g., about 25° C./hour) was used in order to minimize the effect of the thermal expansion mismatch. However, other temperature ramps can be used.
Annealing temperatures can be about 175° C. for a 4 inch wafer. However, annealing temperatures as high as 1150° C. can be used. Typical annealing conditions are 175° C. for 24-100 hours. Annealing may be performed with or without vacuum.
In order to complete the transfer, the handle wafer of the SOI may be thinned. Typically, this process begins with a bulk removal process. Grinding, lapping and chemical etches are examples of bulk removal processes that could be used. Bulk removal was demonstrated using grinding. If a bulk wafer is used, the wafer pair may either be chemically thinned or lapped in order to remove more material, or may be polished using chemical mechanical planarization (CMP).
For SOI wafers, bulk removal should stop prior to reaching the oxide to allow for a slower removal process, such as a chemical etch that has high silicon to oxide selectivity. The selective etch should continue until the oxide is exposed at which point the etching is stopped. The oxide layer can be removed using a wet etch, leaving only the device layer of the SOI, resulting in a successful layer transfer. Finally, the wafers can be annealed at high temperatures. This high temperature annealing decomposes the Si—O—Si bonds and form Si—Si bonds.
Also, the material of the single crystalline layer 30 is not restricted to Si, and other materials can be used, such as MgO, SiC, InP, GaSb, GaAs, CaF2, AlN, GaN and combinations thereof.
The multi-layer substrate described has a high thermal efficiency combined with a single crystalline layer of semiconductor (which may be silicon) suitable as the foundation for forming a semiconductor device. This unique construction makes possible technologies were both efficient switching and high power amplification and be integrated on a single chip. That is, the high thermal efficiency allows the heat generated by a high-powered amplifier to be readily conducted away from the semiconductor through the substrate. Additionally, the single crystalline semiconductor layer can be used to form a high speed switching circuit. In the related art, these two functions necessitated the utilization of separate chips that then needed to be bonded together. However, a composite substrate that combines thermal efficiency with the appropriate single crystalline semiconductor can be used to overcome the disadvantages of the related art.
The multilayered substrate described above represents an embodiment of the invention that has a wide range of applications. These applications can be found wherever there is a desire for fast switching CMOS technology in environments that require high thermal efficiency. One preferred application is described below, where the multilayered substrate may be used as the basis of a technology that can combine a fast switching CMOS circuits with a power amplifier on the same circuit. However, the multilayer substrate is not restricted to the application described below. Also, the semiconductor device described below in not restricted to being manufactured on the substrate described above.
In
The HEMT structure 104 can be formed from AlGaN/GaN using chemical vapor deposition (CVD), molecular beam epitaxy (MBE) or organometallic molecular vapor phase epitaxy (OMVPE). AlGaN/GaN materials have high transconductance (which helps linearity), good thermal management and high cutoff frequencies. The HEMT structure can be grown using CVD or metal organic CVD (MOCVD). Other CVD methods include atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), plasma enhanced CVD (PECVD), MBE and OMVPE.
In
In
An alternate route to wafer bonding or forming the CMOS circuit structure is based on the “smart-cut” technique. The smart-cut technique entails the implantation of H+ or He+ onto an oxide coated Si wafer. The implanted ions introduce micro-cavities that will cause the silicon wafer to split along the peak concentration zone when subjected to high temperature annealing. That is, after the ion-implanted wafer is bond with a second wafer, a high temperature anneal will cause the ion-implanted wafer to split to leave an exposed single crystalline silicon layer ready for further processing. A typical smart-cut fabrication process is described by J. Du et al., Sensors and Actuators A, 112 (2004), p. 116-121.
The formation of the AlGaN/GaN HEMTs may be accomplished by various methods. For example, AlN, GaN and AlGaN films may be grown via gas source molecular beam epitaxy (GSMBE) using ammonia, as is described by G. Kipshidze et al. J. Electronic materials, Vol. 30, No. 7 (2001), p. 825.
Two examples demonstrate the successful transfer of silicon to silicon carbide: (1) a silicon layer from a bulk silicon wafer to silicon carbide, and (2) a silicon layer from SOI to silicon carbide. Sonoscan images of the two are shown in
The second example of bonding entailed bonding an SOI wafer to polycrystalline silicon carbide. The sonoscan in
As a result, clear advantages have been demonstrated over the conventional art devices, which have poor thermal conductivities arising from the utilization of oxide bonding layers. A single crystalline semiconductor (Si) bonds to a thermally conductive substrate (such as SiC) in a simple and cost effect manner to achieve a multilayer device that has both the electrical properties and thermal properties necessary for high voltage semiconductor devices.
High-speed silicon CMOS circuits and high-power AlGaN/GaN amplifiers are also integrated on the same wafer. The high thermal conductivity and high resistivity of polycrystalline silicon carbide substrates are advantageous for the fabrication of high power and high frequency devices are fabricated. For example, a thin layer of high resistivity <111> silicon may be bonded on a polycrystalline-SiC substrate. Following the bonding, an AlGaN/GaN structure may be grown over the bonded silicon layer. A silicon nitride or a silicon oxide layer is then deposited over the AlGaN/GaN structure. Following this, a thin layer of <100> silicon may be bonded to the silicon nitride/silicon oxide layer. The area for the fabrication of AlGaN/GaN devices is defined, and the <100> silicon is etched away from those areas. Following this, CMOS devices are fabricated on the silicon layer and AlGaN/GaN devices fabricated on the AlGaN/GaN surface. Finally, the wafer is planarized and multilevel interconnects formed.
It will be apparent to those skilled in the art that various modifications and variations can be made in the semiconductor device using dual light units of the invention without departing from the spirit or scope of the invention. Thus, it is intended that the invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims priority under 35 U.S.C. § 119 of provisional application No. 60/691,235, filed Jun. 17, 2005, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60691235 | Jun 2005 | US |