1. Field of the Invention
The present disclosure relates to power converters, and more particularly to rectifiers for converting alternating current (AC) power into direct current (DC) power.
2. Description of Related Art
Rectifiers are commonly employed in aerospace, marine, and terrestrial vehicles, electrical power networks and systems, variable speed drives, grid interfaces for renewable energy sources, electrical energy storage systems, and telecommunications systems to convert alternating current (AC) power into direct current (DC) power. Rectifiers can include solid-state devices such as diodes, metal oxide field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), or gate turn-off device (GTOs) arranged between an AC power source and a DC load. Such solid-state devices typically have electrical stress limits that determine the maximum output power that a rectifier can reliably provide. Since the need of some rectifier applications can exceed the rating of such solid-state devices, some rectifiers employ the devices in a multilevel topology. Such topologies generally include numbers of solid-state devices that scale with the number of voltage levels in the topology, one exemplary N-level topology including N−1 capacitors and 2(N−1) solid-state switch devices clamped by diodes for each voltage level. Conventional topologies can also require voltage balancing circuitry to control and balance the DC link capacitor voltages, potentially reducing the power density, efficiency and reliability of such rectifiers.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved multilevel rectifiers. There is also a continuing need for rectifiers with greater power density, reliability, and efficiency. The present disclosure provides a solution for this need.
A multilevel rectifier includes input leads, rectifier phase legs, and a multilevel direct current (DC) link. Each rectifier phase leg includes switching module to perform alternating current (AC) to direct current (DC) rectification. The switching module includes a plurality of switch devices connected between the input lead and the direct current (DC) link. The multilevel
DC link includes a positive lead, a midpoint lead, and a negative lead each connected to the switching module. The plurality of switching module switch devices are operatively connected between the input lead and the DC link to provide a greater number of output voltage levels than the number of leads in the DC link. In certain embodiments, the plurality of switching module switch devices includes a first switch and a second switch connected in parallel with one another, and in series between the input lead and the DC link leads. The switching module can also include a switching module capacitor connected between the first and second switches. A third switch can be connected in series between both the first and second switches and the DC link midpoint lead. An inductor or filters can be connected in series between the input lead and the AC source. A first capacitor can be connected between the DC link positive lead and the DC link midpoint lead and a second capacitor can be connected between the DC link midpoint lead and the DC link negative lead.
In accordance with certain embodiments the switching module can include first and second switching module diodes. The switching module first diode can be connected between the first switch and the DC link positive lead, and can be further arranged such that the switching module first diode opposes current flow from the DC link positive lead to the first switch. The switching module second diode can be connected between the second switch and the DC link negative lead, and can be arranged to oppose current flow from the second switch to the DC link negative lead to provide unidirectional current flow rectification.
It is also contemplated that in certain embodiments, the switching module first switch can include first and second MOSFET devices. The first MOSFET device can be connected between the input lead, the diode connecting to DC link positive lead, switching module capacitor and to switch connecting to the DC link midpoint lead. The second MOSFET device can be connected between the first MOSFET device, the diode connecting to the DC link positive lead, and the third switch connecting to the DC link midpoint lead. The switching module second switch can include a third and a fourth MOSFET device, the third MOSFET device being connected between the input lead, the diode connecting to the DC link negative lead, switching module capacitor and to the switch connecting to the DC link midpoint, and the fourth MOSFET device being connected between the third MOSFET device, the didoes connecting to the DC link positive lead and the third switch connecting to the DC link midpoint lead.
It is further contemplated that in certain embodiments the switching module third switch can include a pair of MOSFET devices connected in series with one another. The switching module third switch can include a first diode leg, a second diode leg, and a MOSFET device, the first and second diode legs being arranged in parallel with one another and the MOSFET device being connected between the first and second diode legs. As will be appreciated, switches can include solid-state switch devices such as insulated gate bipolar transistors (IGBT) or gate turn-off (GTO) devices.
A phase leg for an N-level rectifier includes an input lead, a first switching module connected to the input lead, at least one second switching module in series with the first switching module and a multilevel DC link with a positive lead, a midpoint lead, and a negative lead each connected to the at least one second switching module. The number of levels of the multilevel rectifier, i.e. N, is greater than or equal to 5 and evenly divisible by 2, and the number of switching modules connected in series between the DC link leads and the power source is (N−3)/2.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of the rectifier in accordance with the disclosure is shown in
As shown in
With reference to
Switching module 22 includes a plurality of solid-state components interconnected with one another and connected between input lead 16 and DC link 18. In this respect switching module 22 includes a first switch 34, a second switch 36, and a third switch 38. First switch 34, second switch 36, and third switch 38 are connected to input lead 16. First switch 34 and second switch 36 are connected in parallel with one another. First switch 34 and second switch 36 are also connected in series between the input lead 16 and DC link positive lead 28, DC link midpoint lead 30, and DC link negative lead 32. Third switch 38 is connected in series between both first switch 34 and second switch 36 and DC link midpoint lead 18. First switch 34, second switch 36, and third switch 38 are also operatively connected to DC link 18 such that phase leg 100 provides a greater number of voltage levels to DC link 18 than levels, i.e. physical leads, of DC line 18. In the illustrated embodiment switching module 22 is configured and adapted for providing five voltage levels to the three leads of DC link 18.
Switching module 22 also includes a switching module capacitor 40, a switching module first diode 42, and a switching module second diode 44. Switching module capacitor 40 is connected between first switch 34 and second switch 36. This arrangement provides a self-balanced flying capacitor 40 to switching module 22 because the average charge and discharge of the capacitor is controlled to be balanced over the course of the rectification cycle such that the voltage of the flying capacitor 40 is maintained to be substantially constant. For example, with reference to
Switching module first diode 42 is connected between first switch 34 and DC link positive lead 28, and is arranged such to oppose current flow from DC link positive lead 28 to first switch 34. Switching module second diode 44 is connected between second switch 36 and DC link negative lead 32, and is arranged to oppose current flow from second switch 36 to DC link negative lead 32. Such arrangement of the diodes and connections to the DC link positive lead 28 and the DC link negative lead 32 provides unidirectional rectification. With reference to
As illustrated in
As also illustrated in
With reference to
With reference to
In first mode (i) and fourth mode (iv), output voltage is +U/2 and 0, respectively. In second mode (ii) and third mode (iii), voltage is U/2 is provided in conjunction with charging and discharging of switching module capacitor 40. As will be appreciated, corresponding current flows occur during the negative phase of the rectification cycle. As will also be appreciated, similar unidirectional current flow modes occur in phase leg 100 (shown in
Some conventional five-level rectifier have circuitry arranged between an alternating current (AC) source and a direct current (DC) link with five voltage levels +U/2, +U/4, 0, −U/4, and −U/2. Such conventional five-level rectifiers generally include four voltage level capacitors arranged between respective pairs of DC link leads, e.g. a first voltage level capacitor C1 connected between the +U/2 and +U/4 DC link leads, a second voltage level capacitor C2 connected between the +U/4 and 0 DC link leads, a third voltage level capacitor C3 connected between the 0 and −U/4 DC link leads, and a fourth voltage level capacitor C4 connected between the −U/4 and −U/2 DC link leads. The circuitry for a phase leg of such conventional five-level rectifier typically includes a switching arrangement with eight solid-state switch devices and six diodes arranged between the source and the DC link and a balancing circuit coupled to the DC link leads for balancing current flow through each of the leads.
In embodiments of multilevel rectifier phase legs described herein, a phase leg for a five-level rectifier includes a switching module connected between a source and a DC link having a DC link positive lead, a DC link reference lead, and a DC link negative lead. The phase leg includes two voltage level capacitors arranged between respective DC link leads, e.g. a first voltage capacitor arranged between the DC link positive lead and the DC link reference lead and second voltage level capacitor arranged between the DC link reference lead and the DC link negative lead. The switching module includes a self-balanced flying capacitor, three solid-state switch devices, and two diodes for providing a five-level voltage output to the DC link leads using unidirectional rectification and active neutral point clamping. The switches are controlled for connecting the flying capacitor to the three DC link leads such that the charge of the flying capacitor is maintained. This provides can provide multilevel rectifier phase legs with fewer solid-state components, e.g. four switch devices versus eight switch devices; two diodes versus six diodes. In certain embodiments, the rectifier phase legs have relatively high power density, greater efficiency, and/or are relatively lightweight of the rectifier. It is also contemplated that the unidirectional functionality can provide a regeneration blocking capability with relatively high power quality, and in certain embodiments, without the need for a voltage balancing circuit—further improving power density, reducing component count and complexity, and/or improving efficiency and reliability.
The methods and systems of the present disclosure, as described above and shown in the drawings, provided for rectifier phase legs and/or rectifier phase legs with superior properties including lightweight construction. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject disclosure.