1. Technical Field of the Invention
The present invention relates generally to a new family of antenna ground-planes of reduced size and enhanced performance based on an innovative set of geometries. These new geometries are known as multilevel and space-filling structures, which had been previously used in the design of multiband and miniature antennas. A throughout description of such multilevel or space-filling structures can be found in “Multilevel Antennas” (Patent Publication No. WO01/22528) and “Space-Filling Miniature Antennas” (Patent Publication No. WO01/54225).
2. Description of the Related Art
The current invention relates to the use of such geometries in the ground-plane of miniature and multiband antennas. In many applications, such as for instance mobile terminals and handheld devices, it is well known that the size of the device restricts the size of the antenna and its ground-plane, which has a major effect on the overall antenna performance. In general terms, the bandwidth and efficiency of the antenna are affected by the overall size, geometry, and dimensions of the antenna and the ground-plane. A report on the influence of the ground-plane size in the bandwidth of terminal antennas can be found in the publication “Investigation on Integrated Antennas for GSM Mobile Phones”, by D. Manteuffel, A. Bahr, I. Wolff, Millennium Conference on Antennas & Propagation, ESA, AP2000, Davos, Switzerland, April 2000. In the prior art, most of the effort in the design of antennas including ground-planes (for instance microstrip, planar inverted-F or monopole antennas) has been oriented to the design of the radiating element (that is, the microstrip patch, the PIFA element, or the monopole arm for the examples described above), yet providing a ground-plane with a size and geometry that were mainly dictated by the size or aesthetics criteria according to every particular application.
One of the key issues of the present invention is considering the ground-plane of an antenna as an integral part of the antenna that mainly contributes to its radiation and impedance performance (impedance level, resonant frequency, bandwidth). A new set of geometries are disclosed here, such a set allowing to adapt the geometry and size of the ground-plane to the ones required by any application (base station antennas, handheld terminals, cars, and other motor-vehicles and so on), yet improving the performance in terms of, for instance, bandwidth, Voltage Standing Wave Ratio (hereafter VSWR), or multiband behaviour.
The use of multilevel and space-filling structures to enhance the frequency range an antenna can work within was well described in patent publication numbers WO01/22528 and WO01/54225. Such an increased range is obtained either through an enhancement of the antenna bandwidth, with an increase in the number of frequency bands, or with a combination of both effects. In the present invention, said multilevel and space-filling structures are advantageously used in the ground-plane of the antenna obtaining this way either a better return loss or VSWR, a better bandwidth, a multiband behaviour, or a combination of all these effects. The technique can be seen as well as a means of reducing the size of the ground-plane and therefore the size of the overall antenna.
A first attempt to improve the bandwidth of microstrip antennas using the ground-plane was described by T. Chiou, K. Wong, “Designs of Compact Microstrip Antennas with a Slotted Ground Plane”. IEEE-APS Symposium, Boston, 8-12 Jul., 2001. The skilled in the art will notice that even though the authors claim the improved performance is obtained by means of some slots on the antenna ground-plane, those were unintentionally using a very simple case of multilevel structure to modify the resonating properties of said ground-plane. In particular, a set of two rectangles connected through three contact points and a set of four rectangles connected through five contact points were described there. Another example of an unintentional use of a multilevel ground structure in an antenna ground-plane is described in U.S. Pat. No. 5,703,600. There, a particular case of a ground-plane composed by three rectangles with a capacitive electromagnetic coupling between them was used. It should be stressed that neither in the paper by Chiou and Wong, nor in U.S. Pat. No. 5,703,600, the general configuration for space-filling or multilevel structures were disclosed or claimed, so the authors were not attempting to use the benefits of said multilevel or space-filling structures to improve the antenna behaviour.
Some of the geometries described in the present invention are inspired in the geometries already studied in the 19.sup.th century by several mathematicians such as Giusepe Peano and David Hilbert. In all said cases the curves were studied from the mathematical point of view but were never used for any practical engineering application. Such mathematical abstractions can be approached in a practical design by means of the general space-filling curves described in the present invention. Other geometries, such as the so called SZ, ZZ, HilbertZZ, Peanoinc, Peanodec or PeanoZZ curves described in patent publication WO01/54225 are included in the set of space-filling curves used in an innovative way in the present invention. It is interesting to notice that in some cases, such space-filling curves can be used to approach ideal fractal shapes as well.
The dimension (D) is often used to characterize highly complex geometrical curves and structures such as those described in the present invention. There exists many different mathematical definitions of dimension but in the present document the box-counting dimension (which is well-known to those skilled in mathematics theory) is used to characterize a family of designs. Again, the advantage of using such curves in the novel configuration disclosed in the present invention is mainly the overall antenna miniaturization together with and enhancement of its bandwidth, impedance, or multiband behaviour.
Although usually not as efficient as the general space-filling curves disclosed in the present invention, other well-known geometries such as meandering and zigzag curves can also be used in a novel configuration according to the spirit and scope of the present invention. Some descriptions of using zigzag or meandering curves in antennas can be found for instance in patent publication WO96/27219, but it should be noticed that in the prior-art such geometries were used mainly in the design of the radiating element rather than in the design of the ground-plane as it is the purpose and basis of several embodiments in the present invention.
It is known the European Patent EP-688.040 which discloses a bidirectional antenna including a substrate having a first and second surfaces. On a second surface are arranged respectively, a ground conductor formed by a single surface, a strip conductor and a patch conductor.
The key point of the present invention is shaping the ground-plane of an antenna in such a way that the combined effect of the ground-plane and the radiating element enhances the performance and characteristics of the whole antenna device, either in terms of bandwidth, VSWR, multiband behaviour, efficiency, size, or gain. Instead of using the conventional solid geometry for ground-planes as commonly described in the prior art, the invention disclosed here introduces a new set of geometries that forces the currents on the ground-plane to flow and radiate in a way that enhances the whole antenna behaviour.
The basis of the invention consists of breaking the solid surface of a conventional ground-plane into a number of conducting surfaces (at least two of them) said surfaces being electromagnetically coupled either by the capacitive effect between the edges of the several conducting surfaces, or by a direct contact provided by a conducting strip, or a combination of both effects.
The resulting geometry is no longer a solid, conventional ground-plane, but a ground-plane with a multilevel or space-filling geometry, at least in a portion of said ground-plane.
A Multilevel geometry for a ground-plane consists of a conducting structure including a set of polygons, all of said polygons featuring the same number of sides, wherein said polygons are electromagnetically coupled either by means of a capacitive coupling or ohmic contact, wherein the contact region between directly connected polygons is narrower than 50% of the perimeter of said polygons in at least 75% of said polygons defining said conducting ground-plane. In this definition of multilevel geometry, circles and ellipses are included as well, since they can be understood as polygons with infinite number of sides.
On the other hand, an Space-Filling Curve (hereafter SFC) is a curve that is large in terms of physical length but small in terms of the area in which the curve can be included. More precisely, the following definition is taken in this document for a space-filling curve: a curve composed by at least ten segments which are connected in such a way that each segment forms an angle with their neighbours, that is, no pair of adjacent segments define a larger straight segment, and wherein the curve can be optionally periodic along a fixed straight direction of space if, and only if, the period is defined by a non-periodic curve composed by at least ten connected segments and no pair of said adjacent and connected segments defines a straight longer segment. Also, whatever the design of such SFC is, it can never intersect with itself at any point except the initial and final point (that is, the whole curve can be arranged as a closed curve or loop, but none of the parts of the curve can become a closed loop). A space-filling curve can be fitted over a flat or curved surface, and due to the angles between segments, the physical length of the curve is always larger than that of any straight line that can be fitted in the same area (surface) as said space-filling curve. Additionally, to properly shape the ground-plane according to the present invention, the segments of the SFC curves included in said ground-plane must be shorter than a tenth of the free-space operating wavelength.
Depending on the shaping procedure and curve geometry, some infinite length SFC can be theoretically designed to feature a Haussdorf dimension larger than their topological-dimension. That is, in terms of the classical Euclidean geometry, it is usually understood that a curve is always a one-dimension object; however when the curve is highly convoluted and its physical length is very large, the curve tends to fill parts of the surface which supports it; in that case, the Haussdorf dimension can be computed over the curve (or at least an approximation of it by means of the box-counting algorithm) resulting in a number larger than unity. The curves described in
Depending on the application, there are several ways for establishing the required multilevel and space-filling metallic pattern according to the present invention. Due to the special geometry of said multilevel and space-filling structures, the current distributes over the ground-plane in such a way that it enhances the antenna performance and features in terms of:
(a) Reduced size compared to antennas with a solid ground-plane.
(b) Enhanced bandwidth compared to antennas with a solid ground-plane.
(c) Multifrequency performance.
(d) Better VSWR feature at the operating band or bands.
(e) Better radiation efficiency.
(f) Enhanced gain.
It will be clear that any of the general and newly described ground-planes of the present invention can be advantageously used in any of the prior-art antenna configurations that require a ground-plane, for instance: antennas for handheld terminals (cellular or cordless telephones, PDAs, electronic pagers, electronic games, or remote controls), base station antennas (for instance for coverage in micro-cells or pico-cells for systems such as AMPS, GSM900, GSM1800, UMTS, PCS1900, DCS, DECT, WLAN, . . . ), car antennas, and so on. Such antennas can usually take the form of microstrip patch antennas, slot-antennas, Planar Inverted-F (PIFA) antennas, monopoles and so on, and in all those cases where the antenna requires a ground-plane, the present invention can be used in an advantageous way. Therefore, the invention is not limited to the aforementioned antennas. The antenna could be of any other type as long as a ground-plane is included.
For a better understanding of the present invention, reference will now be made to the appended drawings in which:
In order to construct an antenna assembly according to embodiments of our invention, a suitable antenna design is required. Any number of possible configurations exists, and the actual choice of antenna is dependent, for instance, on the operating frequency and bandwidth, among other antenna parameters. Several possible examples of embodiments are listed hereinafter. However, in view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention. In particular, different materials and fabrication processes for producing the antenna system may be selected, which still achieve the desired effects. Also, it would be clear that other multilevel and space-filling geometries could be used within the spirit of the present invention.
Unlike the prior art PIFA ground-planes illustrated in
For this preferred embodiment, the edges between coupled rectangles are either parallel or orthogonal, but they do not need to be so. Also, to provide the ohmic contact between polygons several conducting strips can be used according to the present invention. The position of said strips connecting the several polygons can be placed at the center of the gaps as in
In some preferred embodiments, larger rectangles have the same width (for instance
Some embodiments like 59 and 61, where several conducting surfaces are coupled by means of more than one strip or conducting polygon, are preferred when a multiband or broadband behaviour is to be enhanced. Said multiple strip arrangement allows multiple resonant frequencies which can be used as separate bands or as a broad-band if they are properly coupled together. Also, said multiband or broad-band behaviour can be obtained by shaping said strips with different lengths within the same gap.
In other preferred embodiments, conducting surfaces are connected by means of strips with SFC shapes, as in the examples shown in
Another preferred embodiment of multilevel and space-filling ground-plane is the monopole configuration as shown in
To illustrate that several modifications of the antenna can be done based on the same principle and spirit of the present invention, another preferred embodiment example is shown in
Preferably, the antenna, the ground-plane or both are disposed on a dielectric substrate. This may be achieved, for instance, by etching techniques as used to produce PCBs, or by printing the antenna and the ground-plane onto the substrate using a conductive ink. A low-loss dielectric substrate (such as glass-fibre, a teflon substrate such as Cuclad® or other commercial materials such as Rogers® 4003 well-known in the art) can be placed between said patch and ground-plane. Other dielectric materials with similar properties may be substituted above without departing from the intent of the present invention. As an alternative way to etching the antenna and the ground-plane out of copper or any other metal, it is also possible to manufacture the antenna system by printing it using conductive ink. The antenna feeding scheme can be taken to be any of the well-known schemes used in prior art patch antennas as well, for instance: a coaxial cable with the outer conductor connected to the ground-plane and the inner conductor connected to the patch at the desired input resistance point; a microstrip transmission line sharing the same ground-plane as the antenna with the strip capacitively coupled to the patch and located at a distance below the patch, or in another embodiment with the strip placed below the ground-plane and coupled to the patch through an slot, and even a microstrip transmission line with the trip co-planar to the patch. All these mechanisms are well known from prior art and do not constitute an essential part of the present invention. The essential part of the present invention is the shape of the ground-plane (multilevel and/or space-filling), which contributes to reducing the size with respect to prior art configurations, as well as enhancing antenna bandwidth, VSWR, and radiation efficiency.
It is interesting to notice that the advantage of the ground-plane geometry can be used in shaping the radiating element in a substantially similar way. This way, a symmetrical or quasi-symmetrical configuration is obtained where the combined effect of the resonances of the ground-plane and radiating element is used to enhance the antenna behavior. A particular example of a microstrip (127) and monopole (128) antennas using said configuration and design in drawing 61 is shown in
Although various embodiments of the method and apparatus of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit and scope of the invention as set forth in the foregoing specification and following claims.
This application is a continuation of U.S. patent application Ser. No. 12/652,412, filed on Jan. 5, 2010. U.S. patent application Ser. No. 12/652,412 is a continuation of U.S. patent application Ser. No. 12/033,446, filed on Feb. 19, 2008. U.S. patent application Ser. No. 12/033,446 is a continuation of U.S. Pat. No. 7,362,283, issued on Apr. 22, 2008. U.S. Pat. No. 7,362,283 is a continuation of PCT/EP01/10589, filed on Sep. 13, 2001. U.S. patent application Ser. No. 12/652,412, U.S. patent application Ser. No. 12/033,446, U.S. Pat. No. 7,362,283 and International Patent Application PCT/EP01/10589 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3696438 | Ingerson | Oct 1972 | A |
5262792 | Egashira | Nov 1993 | A |
5495261 | Baker | Feb 1996 | A |
5497167 | Luoma | Mar 1996 | A |
5646637 | Miller | Jul 1997 | A |
5703600 | Burrel | Dec 1997 | A |
5903822 | Sekine | May 1999 | A |
5945950 | Elbadawy | Aug 1999 | A |
5945954 | Johnson | Aug 1999 | A |
6002367 | Engblom | Dec 1999 | A |
6140975 | Cohen | Oct 2000 | A |
6218992 | Sadler | Apr 2001 | B1 |
6271798 | Endo | Aug 2001 | B1 |
6285326 | Diximus | Sep 2001 | B1 |
6314273 | Matsuda | Nov 2001 | B1 |
6359589 | Bae | Mar 2002 | B1 |
6362790 | Proctor | Mar 2002 | B1 |
6366243 | Isohatala et al. | Apr 2002 | B1 |
6377217 | Zhu et al. | Apr 2002 | B1 |
6388620 | Bhattacharyya | May 2002 | B1 |
6400330 | Maruyama et al. | Jun 2002 | B1 |
6407710 | Keilen | Jun 2002 | B2 |
6462710 | Carson | Oct 2002 | B1 |
6466176 | Maoz | Oct 2002 | B1 |
6717494 | Kikuchi | Apr 2004 | B2 |
6885880 | Ali | Apr 2005 | B1 |
6911939 | Carson | Jun 2005 | B2 |
6940460 | Maoz | Sep 2005 | B2 |
7362283 | Quintero Illera et al. | Apr 2008 | B2 |
20010033250 | Keilen | Oct 2001 | A1 |
20020177416 | Boyle | Nov 2002 | A1 |
20040058723 | Mikkola et al. | Mar 2004 | A1 |
20040061648 | Pros et al. | Apr 2004 | A1 |
20100149064 | Gala et al. | Jun 2010 | A1 |
20110175776 | Anguera et al. | Jul 2011 | A1 |
20110260926 | Illera et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2416437 | Jul 2001 | CA |
0519508 | Jun 1992 | EP |
0548975 | Jun 1993 | EP |
0688040 | Dec 1995 | EP |
0892459 | Jan 1999 | EP |
0932219 | Jul 1999 | EP |
1148581 | Jan 2000 | EP |
0997974 | May 2000 | EP |
1026774 | Aug 2000 | EP |
1148581 | Oct 2001 | EP |
1401050 | Mar 2004 | EP |
1211750 | Nov 2011 | EP |
10022723 | Jan 1998 | JP |
10032422 | Feb 1998 | JP |
10261914 | Sep 1998 | JP |
9627219 | Sep 1996 | WO |
9706578 | Feb 1997 | WO |
9908337 | Feb 1999 | WO |
0052784 | Sep 2000 | WO |
0122528 | Mar 2001 | WO |
0139321 | May 2001 | WO |
0154225 | Jul 2001 | WO |
0180354 | Oct 2001 | WO |
0189031 | Nov 2001 | WO |
0229929 | Apr 2002 | WO |
02095869 | Nov 2002 | WO |
03034544 | Apr 2003 | WO |
04001894 | Dec 2003 | WO |
Entry |
---|
Puente , C. Fractal antennas. Universitat Politecnica de Catalunya. 1997. |
Lin , S. et al. A dual-frequency microstrip-line-fed printed slot antenna. Microwave and Optical Technology Letters. 2001. |
Chiou , Tzung-Wern et al. Designs of compact microstrip patch antennas with a slotted ground plane. Antennas and Propagation Society International Symposium, 2001. IEEE. |
Huang , C. et al. Dielectric resonator antenna on a slotted ground plane. Antennas and Propagation Society International Symposium, 2001. IEEE. |
Huynh , M. C. et al. Ground plane effects on PIFA performance. APS/URSI conference, Salt Lake City, Utah. 2000. |
Manteuffel , Dirk ; Bahr , Achim ; Wolff , Ingo. Investigation on integrated antennas for GSM mobile phones. AP2000, Davos, Conference. 2000. |
Volski , V. et al. Influence of the shape of the ground plane on the radiation parameters of planar antennas. Proc. of the Millenium AP conference, Davos, Switzerland. 2000. |
Natarajan , V. Effect of ground plane shape on microstrip antenna performance for cell-phone applications. Antennas and Propagation Society International Symposium, 2001. IEEE. |
Anguera , J. ; Sanz , I. ; Sanz , A. ; Gala , D. ; Condes , A. ; Puente , C. ; Soler , J. Enhancing the performance of handset antennas by means of groundplane design. IEEE International Workshop on Antenna Technology (IWAT) Small Antennas and Novel Metamaterials. 2006. |
Elamaran , B. A beam-steerer using reconfigurable PGB ground plane. Microwave Symposium Digest., 2000 IEEE MTT-S International. 2000. |
Kim , T. A novel photonic bandgap structure for low-pass filter of wide stopband. IEEE Microwave and Guided Wave Letters. 2000. |
Gschwendtner , E. Multi-service dual-mode spiral antenna for conformal integration into vehicle roofs. Antennas and Propagation Society International Symposium, 2000. IEEE. |
Horii , Y. Harmonic control by photonic bandgap on microstrip antenna. IEEE Microwave and Guided Wave Letters. 1999. |
Wong , S. An improved microstrip Sierpinski carpet antenna. Proceedings of APMC. 2000. |
Moretti , P. et al. Numerical investigation of vertical contacless transitions for multilayer RF circuits. Microwave Symposium Digest, 2001 IEEE MTT-S International. 2001. |
Huang , C. ; Wu , Jian-Yi ; Wong , Kin-Lu. Cross slot coupled microstrip antenna and dielectric resonator antenna for circular polarization. Antennas and Propagation, IEEE Transactions on. 1999. |
Shafai , L. L. et al. Dual-band dual-polarized perforated microstrip antennas for SAR applications. Antennas and Propagation, IEEE Transactions on. 2000. |
Notice of Allowance of U.S. Appl. No. 10/797,732 dated Jan. 15, 2008. |
Notice of Allowance of U.S. Appl. No. 12/033,446 dated Nov. 16, 2009. |
Notice of Allowance of U.S. Appl. No. 12/652,412 dated Dec. 1, 2010. |
Notice of Allowance of U.S. Appl. No. 12/033,446 dated Jun. 29, 2009. |
Office Action of U.S. Appl. No. 10/797,732 dated Aug. 9, 2007. |
Office Action of U.S. Appl. No. 10/797,732 dated Dec. 28, 2005. |
Office Action of U.S. Appl. No. 10/797,732 dated Jun. 3, 2005. |
Office Action of U.S. Appl. No. 10/797,732 dated May 31, 2006. |
Office Action of U.S. Appl. No. 10/797,932 dated Jan. 3, 2007. |
Office Action of U.S. Appl. No. 12/033,446 dated Aug. 5, 2009. |
Office Action of U.S. Appl. No. 12/033,446 dated Dec. 10, 2008. |
Office Action of U.S. Appl. No. 12/652,412 dated Jun. 24, 2010. |
Response to Office Action dated Dec. 28, 2005 of U.S. Appl. No. 10/797,732. |
Response to the Office Action dated Aug. 5, 2009 of U.S. Appl. No. 12/033,446. |
Response to the Office Action dated Aug. 9, 2007 of U.S. Appl. No. 10/797,732. |
Response to the Office Action dated Dec. 10, 2008 of U.S. Appl. No. 12/033,446. |
Response to the Office Action dated Jan. 3, 2007 of U.S. Appl. No. 10/797,732. |
Response to the Office Action dated Jun. 3, 2005 of U.S. Appl. No. 10/797,732. |
Response to the Office Action dated Jun. 24, 2010 of U.S. Appl. No. 12/652,412. |
Response to the Office Action dated May 31, 2006 of U.S. Appl. No. 10/797,732. |
Expert report of Dwight L. Jaggard (redacted)—expert witness retained by Fractus, dated Feb. 23, 2011. |
Rebuttal expert report of Dr. Dwight L. Jaggard (redacted version), dated Feb. 16, 2011. |
Rebuttal expert report of Dr. Stuart A. Long (redacted version), dated Feb. 16, 2011. |
Number | Date | Country | |
---|---|---|---|
20120026058 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12652412 | Jan 2010 | US |
Child | 13017226 | US | |
Parent | 12033446 | Feb 2008 | US |
Child | 12652412 | US | |
Parent | 10797732 | Mar 2004 | US |
Child | 12033446 | US | |
Parent | PCT/EP01/10589 | Sep 2001 | US |
Child | 10797732 | US |