Multilevel antennae

Information

  • Patent Grant
  • 9240632
  • Patent Number
    9,240,632
  • Date Filed
    Thursday, June 27, 2013
    11 years ago
  • Date Issued
    Tuesday, January 19, 2016
    8 years ago
Abstract
A multi-band antenna includes at least one structure useable at multiple frequency ranges. The structure includes at least two levels of detail, with one level of detail making up another level of detail. The levels of detail are composed of closed plane figures bounded by the same number of sides. An interconnection circuit links the multi-band antenna to an input/output connector and incorporates adaptation networks, filters or diplexers. Each of the closed plane figures is linked to at least one other closed plane figure to exchange electromagnetic power. For at least 75% of the closed plane figures, the region or area of contact, intersection, or interconnection between the closed plane figures is less than 50% of their perimeter or area. Not all of the closed plane figures have the same size, and the perimeter of the structure has a different number of sides than its constituent closed plane figures.
Description
OBJECT OF THE INVENTION

The present invention relates to antennae formed by sets of similar geometrical elements (polygons, polyhedrons electro magnetically coupled and grouped such that in the antenna structure may be distinguished each of the basic elements which form it.


More specifically, it relates to a specific geometrical design of said antennae by which two main advantages are provided: the antenna may operate simultaneously in several frequencies and/or its size can be substantially reduced.


The scope of application of the present invention is mainly within the field of telecommunications, and more specifically in the field of radio-communication.


BACKGROUND

Antennae were first developed towards the end of the past century, when James C. Maxwell in 1864 postulated the fundamental laws of electromagnetism. Heinrich Hertz may be attributed in 1886 with the invention of the first antenna by which transmission in air of electromagnetic waves was demonstrated. In the mid forties were shown the fundamental restrictions of antennae as regards the reduction of their size relative to wavelength, and at the start of the sixties the first frequency-independent antennae appeared. At that time helixes, spirals, logoperiodic groupings, cones and structures defined solely by angles were proposed for construction of wide band antennae.


In 1995 were introduced the fractal or multifractal type antennae (U.S. Pat. No. 9,501,019), which due to their geometry presented a multifrequency behavior and in certain cases a small size. Later were introduced multitriangular antennae (U.S. Pat. No. 9,800,954) which operated simultaneously in bands GSM 900 and GSM 1800.


The antennae described in the present patent have their origin in fractal and multitriangular type antennae, but solve several problems of a practical nature which limit the behavior of said antennae and reduce their applicability in real environments.


From a scientific standpoint strictly fractal antennae are impossible, as fractal objects are a mathematical abstraction which include an infinite number of elements. It is possible to generate antennae with a form based on said fractal objects, incorporating a finite number of iterations. The performance of such antennae is limited to the specific geometry of each one. For example, the position of the bands and their relative spacing is related to fractal geometry and it is not always possible, viable or economic to design the antennae maintaining its fractal appearance and at the same time placing the bands at the correct area of the radioelectric spectrum. To begin, truncation implies a clear example of the limitations brought about by using a real fractal type antenna which attempts to approximate the theoretical behavior of an ideal fractal antenna. Said effect breaks the behavior of the ideal fractal structure in the lower band, displacing it from its theoretical position relative to the other bands and in short requiring a too large size for the antenna which hinders practical applications.


In addition to such practical problems, it is not always possible to alter the fractal structure to present the level of impedance of radiation diagram which is suited to the requirements of each application. Due to these reasons, it is often necessary to leave the fractal geometry and resort to other types of geometries which offer a greater flexibility as regards the position of frequency bands of the antennae, adaptation levels and impedances, polarization and radiation diagrams.


Multitriangular structures (U.S. Pat. No. 9,800,954) were an example of non-fractal structures with a geometry designed such that the antennae could be used in base stations of GSM and DCS cellular telephony. Antennae described in said patent consisted of three triangles joined only at their vertices, of a size adequate for use in bands 890 MHz-960 MHz and 1710 MHz-1880 MHz. This was a specific solution for a specific environment which did not provide the flexibility and versatility required to deal with other antennae designs for other environments.


Multilevel antennae solve the operational limitations of fractal and multitriangular antennae. Their geometry is much more flexible, rich and varied, allowing operation of the antenna from two to many more bands, as well as providing a greater versatility as regards diagrams, band positions and impedance levels, to name a few examples. Although they are not fractal, multilevel antennae are characterized in that they comprise a number of elements which may be distinguished in the overall structure. Precisely because they clearly show several levels of detail (that of the overall structure and that of the individual elements which make it up), antennae provide a multiband behavior and/or a small size. The origin of their name also lies in said property.


The present invention consists of an antenna whose radiating element is characterized by its geometrical shape, which basically comprises several polygons or polyhedrons of the same type. That is, it comprises for example triangles, squares, pentagons, hexagons or even circles and ellipses as a limiting case of a polygon with a large number of sides, as well as tetrahedra, hexahedra, prisms, dodecahedra, etc. coupled to each other electrically (either through at least one point of contact or through a small separation providing a capacitive coupling) and grouped in structures of a higher level such that in the body of the antenna can be identified the polygonal or polyhedral elements which it comprises. In turn, structures generated in this manner can be grouped in higher order structures in a manner similar to the basic elements, and so on until reaching as many levels as the antenna designer desires.


Its designation as multilevel antenna is precisely due to the fact that in the body of the antenna can be identified at least two levels of detail: that of the overall structure and that of the majority of the elements (polygons or polyhedrons) which make it up. This is achieved by ensuring that the area of contact or intersection (if it exists) between the majority of the elements forming the antenna is only a fraction of the perimeter or surrounding area of said polygons or polyhedrons.


A particular property of multilevel antennae is that their radioelectric behavior can be similar in several frequency bands. Antenna input parameters (impedance and radiation diagram) remain similar for several frequency bands (that is, the antenna has the same level of adaptation or standing wave relationship in each different band), and often the antenna presents almost identical radiation diagrams at different frequencies. This is due precisely to the multilevel structure of the antenna, that is, to the fact that it remains possible to identify in the antenna the majority of basic elements (same type polygons or polyhedrons) which make it up. The number of frequency bands is proportional to the number of scales or sizes of the polygonal elements or similar sets in which they are grouped contained in the geometry of the main radiating element.


In addition to their multiband behavior, multilevel structure antennae usually have a smaller than usual size as compared to other antennae of a simpler structure. (Such as those consisting of a single polygon or polyhedron). This is because the path followed by the electric current on the multilevel structure is longer and more winding than in a simple geometry, due to the empty spaces between the various polygon or polyhedron elements. Said empty spaces force a given path for the current (which must circumvent said spaces) which travels a greater distance and therefore resonates at a lower frequency. Additionally, its edge-rich and discontinuity-rich structure simplifies the radiation process, relatively increasing the radiation resistance of the antenna and reducing the quality factor Q, i.e., increasing its bandwidth.


Thus, the main characteristic of multilevel antennae are the following:

    • A multilevel geometry comprising polygon or polyhedron of the same class, electromagnetically coupled and grouped to form a larger structure. In multilevel geometry most of these elements are clearly visible as their area of contact, intersection or interconnection (if these exist) with other elements is always less than 50% of their perimeter.
    • The radioelectric behavior resulting from the geometry: multilevel antennae can present a multiband behavior (identical or similar for several frequency bands) and/or operate at a reduced frequency, which allows to reduce their size.


In specialized literature it is already possible to find descriptions of certain antennae designs which allow to cover a few bands. However, in these designs the multiband behavior is achieved by grouping several single band antennae or by incorporating reactive elements in the antennae (concentrated elements as inductors or capacitors or their integrated versions such as posts or notches) which force the apparition of new resonance frequencies. Multilevel antennae on the contrary base their behavior on their particular geometry, offering a greater flexibility to the antenna designer as to the number of bands (proportional to the number of levels of detail), position, relative spacing and width, and thereby offer better and more varied characteristics for the final product.


A multilevel structure can be used in any known antenna configuration. As a nonlimiting example can be cited: dipoles, monopoles, patch or microstrip antennae, coplanar antennae, reflector antennae, wound antennae or even antenna arrays. Manufacturing techniques are also not characteristic of multilevel antennae as the best suited technique may be used for each structure or application. For example: printing on dielectric substrate by photolithography (printed circuit technique); dieing on metal plate, repulsion on dielectric, etc.


Publication WO 97/06578 discloses a fractal antenna, which has nothing to do with a multilevel antenna being both geometries essentially different.





BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the invention will become apparent in view of the detailed description which follows of a preferred embodiment of the invention given for purposes of illustration only and in no way meant as a definition of the limits of the invention, made with reference to the accompanying drawings, in which:



FIG. 1 shows a specific example of a multilevel element comprising only triangular polygons;



FIG. 2 shows examples of assemblies of multilevel antennae in several configurations: monopole (2.1), dipole (2.2), patch (2.3), coplanar antennae (2.4), horn (2.5-2.6) and array (2.7);



FIG. 3 shows examples of multilevel structures based on triangles;



FIG. 4 shows examples of multilevel structures based on parallelepipeds;



FIG. 5 examples of multilevel structures based on pentagons;



FIG. 6 shows of multilevel structures based on hexagons;



FIG. 7 shows of multilevel structures based on polyhedrons;



FIG. 8 shows an example of a specific operational mode for a multilevel antenna in a patch configuration for base stations of GSM (900 MHz) and DCS (1800 MHz) cellular telephony;



FIG. 9 shows input parameters (return loss on 50 ohms) for the multilevel antenna described in the previous figure;



FIGS. 10
a and 10b show radiation diagrams for the multilevel antenna of FIG. 8: horizontal and vertical planes;



FIG. 11 shows an example of a specific operation mode for a multilevel antenna in a monopole construction for indoors wireless communication systems or in radio-accessed local network environments;



FIG. 12 shows input parameters (return loss on so ohms) for the multilevel antenna of the previous figure; and



FIGS. 13
a and 13b show radiation diagrams for the multilevel antenna of FIG. 11.





DETAILED DESCRIPTION

In the detailed description which follows of a preferred embodiment of the present invention permanent reference is made to the figures of the drawings, where the same numerals refer to the identical or similar parts.


The present invention relates to an antenna which includes at least one construction element in a multilevel structure form. A multilevel structure is characterized in that it is formed by gathering several polygon or polyhedron of the same type (for example triangles, parallelepipeds, pentagons, hexagons, etc., even circles or ellipses as special limiting cases of a polygon with a large number of sides, as well as tetrahedra, hexahedra, prisms, dodecahedra, etc. coupled to each other electromagnetically, whether by proximity or by direct contact between elements. A multilevel structure or figure is distinguished from another conventional figure precisely by the interconnection (if it exists) between its component elements (the polygon or polyhedron). In a multilevel structure at least 75% of its component elements have more than 50% of their perimeter (for polygons) not in contact with any of the other elements of the structure. Thus, in a multilevel structure it is easy to identify geometrically and individually distinguish most of its basic component elements, presenting at least two levels of detail: that of the overall structure and that of the polygon or polyhedron elements which form it. Its name is precisely due to this characteristic and from the fact that the polygon or polyhedron can be included in a great variety of sizes. Additionally, several multilevel structures may be grouped and coupled electromagnetically to each other to form higher level structures. In a multilevel structure all the component elements are polygons with the same number of sides or polyhedron with the same number of faces. Naturally, this property is broken when several multilevel structures of different natures are grouped and electromagnetically coupled to form meta-structures of a higher level.


In this manner, in FIGS. 1 to 7 are shown a few specific examples of multilevel structures.



FIG. 1 shows a multilevel element exclusively consisting of triangles of various sizes and shapes. Note that in this particular case each and every one of the elements (triangles, in black) can be distinguished, as the triangles only overlap in a small area of their perimeter, in this case at their vertices.



FIG. 2 shows examples of assemblies of multilevel antennae in various configurations: monopole (21), dipole (22), patch (23), coplanar antennae (24), coil in a side view (25) and front view (26) and array (27). With this it should be remarked that regardless of its configuration the multilevel antenna is different from other antennae in the geometry of its characteristic radiant element.



FIG. 3 shows further examples of multilevel structures (3.1-3.15) with a triangular origin, all comprised of triangles. Note that case (3.14) is an evolution of case (3.13); despite the contact between the 4 triangles, 75% of the elements (three triangles, except the central one) have more than 50% of the perimeter free.



FIG. 4 describes multilevel structures (4.1-4.14) formed by parallelepipeds (squares, rectangles, rhombi . . . ). Note that the component elements are always individually identifiable (at least most of them are). In case (4.12), specifically, said elements have 100% of their perimeter free, without there being any physical connection between them (coupling is achieved by proximity due to the mutual capacitance between elements).



FIGS. 5, 6 and 7 show non-limiting examples of other multilevel structures based on pentagons, hexagons and polyhedron respectively.


It should be remarked that the difference between multilevel antennae and other existing antennae lies in the particular geometry, not in their configuration as an antenna or in the materials used for construction. Thus, the multilevel structure may be used with any known antenna configuration, such as for example and in a non-limiting manner: dipoles, monopoles, patch or microstrip antennae, coplanar antennae, reflector antennae, wound antennae or even in arrays. In general, the multilevel structure forms part of the radiative element characteristic of said configurations, such as the arm, the mass plane or both in a monopole, an arm or both in a dipole, the patch or printed element in a microstrip, patch or coplanar antenna; the reflector for an reflector antenna, or the conical section or even antenna walls in a horn type antenna. It is even possible to use a spiral type antenna configuration in which the geometry of the loop or loops is the outer perimeter of a multilevel structure. In all, the difference between a multilevel antenna and a conventional one lies in the geometry of the radiative element or one of its components, and not in its specific configuration.


As regards construction materials and technology, the implementation of multilevel antennae is not limited to any of these in particular and any of the existing or future techniques may be employed as considered best suited for each application, as the essence of the invention is found in the geometry used in the multilevel structure and not in the specific configuration. Thus, the multilevel structure may for example be formed by sheets, parts of conducting or superconducting material, by printing in dielectric substrates (rigid or flexible) with a metallic coating as with printed circuits, by imbrications of several dielectric materials which form the multilevel structure, etc. always depending on the specific requirements of each case and application. Once the multilevel structure is formed the implementation of the antenna depends on the chosen configuration (monopole, dipole, patch, horn, reflector . . . ). For monopole, spiral, dipole and patch antennae the multisimilar structure is implemented on a metal support (a simple procedure involves applying a photolithography process to a virgin printed circuit dielectric plate) and the structure is mounted on a standard microwave connector, which for the monopole or patch cases is in turn connected to a mass plane (typically a metal plate or case) as for any conventional antenna. For the dipole case two identical multilevel structures form the two arms of the antenna; in an opening antenna the multilevel geometry may be part of the metal wall of a horn or its cross section, and finally for a reflector the multisimilar element or a set of these may form or cover the reflector.


The most relevant properties of the multilevel antennae are mainly due to their geometry and are as follows: the possibility of simultaneous operation in several frequency bands in a similar manner (similar impedance and radiation diagrams) and the possibility of reducing their size compared to other conventional antennae based exclusively on a single polygon or polyhedron. Such properties are particularly relevant in the field of communication systems. Simultaneous operation in several freq bands allows a single multilevel antenna to integrate several communication systems, instead of assigning an antenna for each system or service as is conventional. Size reduction is particularly useful when the antenna must be concealed due to its visual impact in the urban or rural landscape, or to its unaesthetic or unaerodynamic effect when incorporated on a vehicle or a portable telecommunication device.


An example of the advantages obtained from the use of a multiband antenna in a real environment is the multilevel antenna AM1, described further below, used for GSM and DCS environments. These antennae are designed to meet radioelectric specifications in both cell phone systems. Using a single GSM and DCS multilevel antenna for both bands (900 MHz and 1800 MHz) cell telephony operators can reduce costs and environmental impact of their station networks while increasing the number of users' (customers) supported by the network.


It becomes particularly relevant to differentiate multilevel antennae from fractal antennae. The latter are based on fractal geometry, which is based on abstract mathematical concepts which are difficult to implement in practice. Specialized scientific literature usually defines as fractal those geometrical objects with a non-integral Haussdorf dimension. This means that fractal objects exist only as an abstraction or a concept, but that said geometries are unthinkable (in a strict sense) for a tangible object or drawing, although it is true that antennae based on this geometry have been developed and widely described in the scientific literature, despite their geometry not being strictly fractal in scientific terms. Nevertheless some of these antennae provide a multiband behavior (their impedance and radiation diagram remains practically constant for several freq bands), they do not on their own offer all of the behavior required of an antenna for applicability in a practical environment. Thus, Sierpinski's antenna for example has a multiband behavior with N bands spaced by a factor of 2, and although with this spacing one could conceive its use for communications networks GSM 900 MHz and GSM 1800 MHz (or DCS), its unsuitable radiation diagram and size for these frequencies prevent a practical use in a real environment. In short, to obtain an antenna which in addition to providing a multiband behavior meets all of the specifications demanded for each specific application it is almost always necessary to abandon the fractal geometry and resort for example to multilevel geometry antennae. As an example, none of the structures described in FIGS. 1, 3, 4, 5 and 6 are fractal. Their Hausdorff dimension is equal to 2 for all, which is the same as their topological dimension. Similarly, none of the multilevel structures of FIG. 7 are fractal, with their Hausdorff dimension equal to 3, as their topological dimension.


In any case multilevel structures should not be confused with arrays of antennae. Although it is true that an array is formed by sets of identical antennae, in these the elements are electromagnetically decoupled, exactly the opposite of what is intended in multilevel antennae. In an array each element is powered independently whether by specific signal transmitters or receivers for each element, or by a signal distribution network, while in a multilevel antenna the structure is excited in a few of its elements and the remaining ones are coupled electromagnetically or by direct contact (in a region which does not exceed 50% of the perimeter or surface of adjacent elements). In an array is sought an increase in the directivity of an individual antenna o forming a diagram for a specific application; in a multilevel antenna the object is to obtain a multiband behavior or a reduced size of the antenna, which implies a completely different application from arrays.


Below are described, for purposes of illustration only, two non-limiting examples of operational modes for Multilevel Antennae (AM1 and AM2) for specific environments and applications.


Mode AM1


This model consists of a multilevel patch type antenna, shown in FIG. 8, which operates simultaneously in bands GSM 900 (890 MHz-960 MHz) and GSM 1800 (1710 MHz-1880 MHz) and provides a sector radiation diagram in a horizontal plane. The antenna is conceived mainly (although not limited to) for use in base stations of GSM 900 and 1800 mobile telephony.


The multilevel structure (8.10), or antenna patch, consists of a printed copper sheet on a standard fiberglass printed circuit board. The multilevel geometry consists of 5 triangles (8.1-8.5) joined at their vertices, as shown in FIG. 8, with an external perimeter shaped as an equilateral triangle of height 13.9 cm (8.6). The bottom triangle has a height (8.7) of 8.2 cm and together with the two adjacent triangles form a structure with a triangular perimeter of height 10.7 cm (8.8).


The multilevel patch (8.10) is mounted parallel to an earth plane (8.9) of rectangular aluminum of 22.times.18.5 cm. The separation between the patch and the earth plane is 3.3 cm, which is maintained by a pair of dielectric spacers which act as support (8.12).


Connection to the antenna is at two points of the multilevel structure, one for each operational band (GSM 900 and GSM 1800). Excitation is achieved by a vertical metal post perpendicular to the mass plane and to the multilevel structure, capacitively finished by a metal sheet which is electrically coupled by proximity (capacitive effect) to the patch. This is a standard system in patch configuration antennae, by which the object is to compensate the inductive effect of the post with the capacitive effect of its finish.


At the base of the excitation post is connected the circuit which interconnects the elements and the port of access to the antenna or connector (8.13). Said interconnection circuit may be formed with microstrip, coaxial or strip-line technology to name a few examples, and incorporates conventional adaptation networks which transform the impedance measured at the base of the post to so ohms (with a typical tolerance in the standing wave relation (SWR) usual for these application under 1.5) required at the input/output antenna connector. Said connector is generally of the type N or SMA for micro-cell base station applications.


In addition to adapting the impedance and providing an interconnection with the radiating element the interconnection network (8.11) may include a diplexor allowing the antenna to be presented in a two connector configuration (one for each band) or in a single connector for both bands.


For a double connector configuration in order to increase the insulation between the GSM 900 and GSM 1800 (DCS) terminals, the base of the DCS and excitation post may be connected to a parallel stub of electrical length equal to half a wavelength, in the central DCS wavelength, and finishing in an open circuit. Similarly, at the base of the GSM 900 lead can be connected a parallel stub ending in an open circuit of electrical length slightly greater than one quarter of the wavelength at the central wavelength of the GSM band. Said stub introduces a capacitance in the base of the connection which may be regulated to compensate the residual inductive effect of the post. Furthermore, said stub presents a very low impedance in the DCS band which aids in the insulation between connectors in said band.


In FIGS. 9, 10a and 10b are shown the typical radioelectric behavior for this specific embodiment of a dual multilevel antenna.



FIG. 9 shows return losses (Lr) in GSM (9.1) and DCS (9.2), typically under −14 dB (which is equivalent to SWR<1.5), so that the antenna is well adapted in both operation bands (890 MHz-960 MHz and 1710 MHz-1880 MHz).


Radiation diagrams in the vertical (10.1 and 10.3) and the horizontal plane (10.2 and 10.4) for both bands are shown in FIG. 10. It can be seen clearly that both antennae radiate using a main lobe in the direction perpendicular to the antenna (10.1 and 10.3), and that in the horizontal plane (10.2 and 10.4) both diagrams are sectorial with a typical beam width at 3 dB of 65°. Typical directivity (d) in both bands is d>7 Db.


Mode AM2


This model consists of a multilevel antenna in a monopole configuration, shown in FIG. 11, for wireless communications systems for indoors or in local access environments using radio.


The antenna operates in a similar manner simultaneously for the bands 1880 MHz-1930 MHz and 3400 MHz-3600 MHz, such as in installations with the system DECT. The multilevel structure is formed by three or five triangles (see FIGS. 11 and 3.6) to which may be added an inductive loop (11.1). The antenna presents an omnidirectional radiation diagram in the horizontal plane and is conceived mainly for (but not limited to) mounting on roof or floor.


The multilevel structure is printed on a Rogers® RO4003 dielectric substrate (11.2) of 5.5 cm width, 4.9 cm height and 0.8 mm thickness, and with a dielectric permittivity equal to 3.38. The multilevel element consists of three triangles (11.3-11.5) joined at the vertex; the bottom triangle (11.3) has a height of 1.82 cm, while the multilevel structure has a total height of 2.72 cm. In order to reduce the total size f the antenna the multilevel element is added an inductive loop (11.1) at its top with a trapezoidal shape in this specific application, so that the total size of the radiating element is 4.5 cm.


The multilevel structure is mounted perpendicularly on a metallic (such as aluminum) earth plane (11.6) with a square or circular shape about 18 cm in length or diameter. The bottom vertex of the element is placed on the center of the mass plane and forms the excitation point for the antenna. At this point is connected the interconnection network which links the radiating element to the input/output connector. Said interconnection network may be implemented as a microstrip, strip-line or coaxial technology to name a few examples. In this specific example the microstrip configuration was used. In addition to the interconnection between radiating element and connector, the network can be used as an impedance transformer, adapting the impedance at the vertex of the multilevel element to the 50 Ohms (Lr<−14 dB, SWR<1.5) required at the input/output connector.



FIGS. 12, 13a and 13b summarize the radioelectric behavior of antennae in the lower (1900) and higher bands (3500).



FIG. 12 shows the standing wave ratio (SWR) for both bands: FIG. 12.1 for the band between 1880 and 1930 MHz, and FIG. 12.2 for the band between 3400 and 3600 MHz. These show that the antenna is well adapted as return losses are under 14 dB, that is, SWR<1.5 for the entire band of interest.



FIGS. 13
a and 13b show typical radiation diagrams. Diagrams (13.1), (13.2) and (13.3) at 1905 MHz measured in the vertical plane, horizontal plane and antenna plane, respectively, and diagrams (13.4), (13.5) and (13.6) at 3500 MHz measured in the vertical plane, horizontal plane and antenna plane, respectively.


One can observe an omnidirectional behavior in the horizontal plane and a typical bilobular diagram in the vertical plane with the typical antenna directivity above 4 dBi in the 1900 band and 6 dBi in the 3500 band.


In the antenna behavior it should be remarked that the behavior is quite similar for both bands (both SWR and in the diagram) which makes it a multiband antenna.


Both the AM1 and AM2 antennae will typically be coated in a dielectric radome which is practically transparent to electromagnetic radiation, meant to protect the radiating element and the connection network from external aggression as well as to provide a pleasing external appearance.


It is not considered necessary to extend this description in the understanding that an expert in the field would be capable of understanding its scope and advantages resulting thereof, as well as to reproduce it.


However, as the above description relates only to a preferred embodiment, it should be understood that within this essence may be introduced various variations of detail, also protected, the size and/or materials used in manufacturing the whole or any of its parts.

Claims
  • 1. A multi-band antenna including: at least one structure for the multi-band antenna useable at three ranges of frequencies, each of the three ranges of frequencies extending between two limiting frequencies, the at least one structure including at least two levels of detail, wherein one level of detail makes up another level of detail, the at least two levels of detail being composed of closed figures bounded by the same number of sides, the sides comprising one or more of straight lines, portions of circles and portions of ellipses; andthe at least one structure including at least three portions, a first portion having a first geometry configured to operate at a range of frequencies of the three ranges of frequencies, a second portion located substantially within the first portion and having a second geometry configured to operate at a range of frequencies of the three ranges of frequencies and a third portion located substantially within the first portion and having a third geometry configured to operate at a range of frequencies of the three ranges of frequencies,the first portion comprises substantially all of the at least one structure,wherein each of the closed figures is directly or proximately linked to at least one other of the closed figures such that electromagnetic power is exchanged between the closed figures either directly through at least one point of contact or through a small separation providing coupling,wherein, for at least 75% of the closed figures, the region or area of contact, intersection, or interconnection between the closed figures is less than 50% of their perimeter or area, andwherein not all of the closed figures have the same size and the perimeter of the at least one structure has a different number of sides than the closed figures that compose the at least one structure.
  • 2. The multi-band antenna of claim 1, wherein the multi-band antenna is concealed within a portable communication device.
  • 3. The multi-band antenna of claim 2, wherein the second portion is smaller than the first portion.
  • 4. The multi-band antenna of claim 3, wherein the multi-band antenna provides a substantially similar combined amount of resistance and reactance measured at the input/output connector and radiation pattern in the three ranges of frequencies.
  • 5. The multi-band antenna of claim 4, further comprising an interconnection circuit that links the multi-band antenna to an input/output connector and that is configured to incorporate adaptation networks for impedances, filters or diplexers.
  • 6. A multi-band antenna including: at least one structure for the multi-band antenna useable at multiple ranges of frequencies, each of the multiple ranges of frequencies extending between two limiting frequencies and included in a portable communication device, the at least one structure including at least two levels of detail, wherein one level of detail makes up another level of detail, the at least two levels of detail being composed of closed figures bounded by the same number of sides, the sides comprising one or more of straight lines, portions of circles and portions of ellipses;the at least one structure including at least two portions, a first portion having a first geometry configured to operate at a range of frequencies of the multiple ranges of frequencies, and a second portion located substantially within the first portion and having a second geometry configured to operate at a range of frequencies of the multiple ranges of frequencies,the first portion comprises substantially all of the at least one structure;wherein each of the closed figures is directly or proximately linked to at least one other of the closed figures such that electromagnetic power is exchanged between the closed plane figures either directly through at least one point of contact or through a small separation providing coupling,wherein, for at least 75% of the closed figures, the region or area of contact, intersection, or interconnection between the closed figures is less than 50% of their perimeter or area,wherein not all of the closed figures have the same size and the perimeter of the at least one structure has a different number of sides than the closed figures that compose the at least one structure,wherein the multi-band antenna provides a substantially similar combined amount of resistance and reactance measured at an input/output connector and radiation pattern in the multiple ranges of frequencies, andwherein the multi-band antenna is configured to operate at the multiple ranges of frequencies and wherein at least one of the multiples ranges of frequencies is within the 890 MHz-3600 MHz frequency range.
  • 7. The multi-band antenna of claim 6, wherein the second portion is smaller than the first portion.
  • 8. The multi-band antenna of claim 7, wherein the multi-band antenna is configured to operate in at least three frequency bands.
  • 9. The multi-band antenna of claim 8, wherein the multi-band antenna provides a substantially similar combined amount of resistance and reactance measured at an input/output connector and radiation pattern in the at least three frequency bands.
  • 10. The multi-band antenna of claim 9, wherein the at least three frequency bands are cellular frequency bands, and the antenna element is configured to transmit and receive wireless signals over an entirety of the cellular frequency bands.
  • 11. A multi-band antenna including: at least one structure for the multi-band antenna useable at multiple ranges of frequencies, each of the multiple ranges of frequencies extending between two limiting frequencies, the at least one structure including at least two levels of detail, wherein one level of detail makes up another level of detail, the at least one structure including at least one antenna region comprising a set of closed figures bounded by the same number of sides, the sides comprising one or more of straight lines, portions of circles and portions of ellipses,the at least one structure including at least two portions, a first portion having a first geometry configured to operate at a first range of frequencies of the multiple ranges of frequencies, and a second portion located substantially within the first portion and having a second geometry configured to operate at a second range of frequencies of the multiple ranges of frequencies, the second portion being smaller than the first portion and substantially overlapping within the first portion,wherein each of the closed figures in the antenna region is directly or proximately linked to at least one other of the closed figures such that electromagnetic power is exchanged between the closed figures in the antenna region either directly through at least one point of contact or through a small separation providing coupling,wherein for at least 75% of the closed figures, the region or area of contact between the closed figures is less than 50% of their perimeter or area,wherein not all of the closed figures have the same size and the perimeter of the at least one structure has a different number of sides than the closed figures that compose the antenna region, andwherein each of a plurality of the closed plane figures of the antenna region is generally identifiable as a closed plane figure defined by a free perimeter thereof and a projection of ones of the longest exposed perimeters thereof to define the least number of closed plane figures within the region necessary to form the generally distinguishable closed plane figures where the closed plane figures perimeters are interconnected.
  • 12. The multi-band antenna of claim 11, wherein the first range of frequencies is in a 1710-2170 MHz frequency range.
  • 13. The multi-band antenna of claim 12, wherein the multi-band antenna is concealed within a portable communication device.
  • 14. The multi-band antenna of claim 13, wherein the first portion comprises substantially all of the at least one structure.
  • 15. The multi-band antenna of claim 14, wherein the multi-band antenna is configured to operate in at least four frequency bands, two of the at least four frequency bands being the first range of frequencies and the second range of frequencies and the multi-band antenna is shared by four or more cellular services.
  • 16. The multi-band antenna of claim 15, wherein the multi-band antenna provides a substantially similar combined amount of resistance and reactance measured at an input/output connector and radiation pattern in the at least four frequency bands.
  • 17. A multi-band antenna including: at least one structure for the multi-band antenna useable at least three ranges of frequencies, each of the at least three ranges of frequencies extending between two limiting frequencies, the at least one structure being included in a portable communication device and including at least two levels of detail, wherein one level of detail makes up another level of detail, the at least one structure including at least one antenna region comprising a set of closed figures bounded by the same number of sides, the sides comprising one or more of straight lines, portions of circles and portions of ellipses,the at least one structure including at least three portions, a first portion having a first geometry configured to operate at a range of frequencies of the three ranges of frequencies, a second portion located substantially within the first portion and having a second geometry configured to operate at a range of frequencies of the three ranges of frequencies and a third portion located substantially within the first portion and having a third geometry configured to operate at a range of frequencies of the three ranges of frequencies, the second and third portions substantially overlap with the first portion,wherein each of the closed figures in the antenna region is directly or proximately linked to at least one other of the closed figures such that electromagnetic power is exchanged between the closed figures in the antenna region either directly through at least one point of contact or through a small separation providing coupling,wherein for at least 75% of the closed figures, the region or area of contact between the closed figures is less than 50% of their perimeter or area,wherein not all of the closed figures have the same size and the perimeter of the at least one structure has a different number of sides than the closed figures that compose the antenna region,wherein each of a plurality of the closed figures of the antenna region is generally identifiable as a closed figure defined by a free perimeter thereof and a projection of ones of the longest exposed perimeters thereof to define the least number of closed figures within the region necessary to form the generally distinguishable closed figures where the closed figures perimeters are interconnected, andwherein the multi-band antenna is configured to operate at the at least three ranges of frequencies and wherein at least one of the at least three ranges of frequencies is within the 800 MHz-3600 MHz frequency range.
  • 18. The multi-band antenna of claim 17, wherein the at least three ranges of frequencies includes a first frequency band in a 1710-2170 MHz frequency range.
  • 19. The multi-band antenna of claim 18, wherein the first portion comprises substantially all of the at least one structure.
  • 20. The multi-band antenna of claim 19, wherein the third portion is smaller than the first portion.
  • 21. The multi-band antenna of claim 20, wherein the multi-band antenna provides a substantially similar combined amount of resistance and reactance measured at an input/output connector and radiation pattern in the at least three ranges of frequencies.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. patent application Ser. No. 13/732,743, filed Jan. 2, 2013, entitled MULTILEVEL ANTENNAE, which is a Continuation Application of U.S. patent Ser. No. 13/669,916, filed Nov. 6, 2012, entitled MULTILEVEL ANTENNAE, which is a Continuation Application of U.S. patent application Ser. No. 13/411,212, filed Mar. 2, 2012, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 8,330,659, issued on Dec. 11, 2012, which is a Continuation Application of U.S. patent application Ser. No. 13/044,189, filed on Mar. 9, 2011, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 8,154,463, issued on Apr. 10, 2012, which is a Continuation Application of U.S. patent application Ser. No. 12/400,888, filed on Mar. 10, 2009, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 8,009,111, issued on Aug. 30, 2011, which is a Continuation Application of U.S. patent application Ser. No. 11/780,932, filed on Jul. 20, 2007, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 7,528,782, issued on May 5, 2009, which is a Continuation Application of U.S. patent application Ser. No. 11/179,257, filed on Jul. 12, 2005, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 7,397,431, issued on Jul. 8, 2008, which is a Continuation Application of U.S. patent application Ser. No. 11/102,390, filed on Apr. 8, 2005, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 7,123,208, issued on Oct. 17, 2006, which is a Continuation Application of U.S. patent application Ser. No. 10/963,080, filed on Oct. 12, 2004, entitled MULTILEVEL ANTENNAE, now U.S. Pat. No. 7,015,868, issued on Mar. 21, 2006, which is a Continuation Application of U.S. patent application Ser. No. 10/102,568, filed Mar. 18, 2002, entitled MULTILEVEL ANTENNAE, now abandoned, which is a National Phase Application of PCT/ES99/00296, filed on Sep. 20, 1999, entitled MULTILEVEL ANTENNAE, the specifications of each of which are incorporated herein by reference.

US Referenced Citations (418)
Number Name Date Kind
621455 Hess Mar 1899 A
646850 Lindemeyr Apr 1900 A
2759183 Woodward Aug 1956 A
3079602 Du Hamel Feb 1963 A
3521284 Shelton et al. Jul 1970 A
3599214 Altmayer Aug 1971 A
3605102 Frye Sep 1971 A
3622890 Fujimoto Nov 1971 A
3680135 Boyer Jul 1972 A
3683376 Pronovost Aug 1972 A
3689929 Moody Sep 1972 A
3818490 Leahy Jun 1974 A
3858221 Harrison et al. Dec 1974 A
3967276 Goubau Jun 1976 A
3969730 Fuchser Jul 1976 A
4021810 Urpo et al. May 1977 A
4024542 Ikawa et al. May 1977 A
4038662 Turner Jul 1977 A
4131893 Munson et al. Dec 1978 A
4141014 Sletten Feb 1979 A
4141016 Nelson Feb 1979 A
4157548 Kaloi Jun 1979 A
4218682 Yu Aug 1980 A
4243990 Nemit Jan 1981 A
4290071 Fenwick Sep 1981 A
4318109 Weathers Mar 1982 A
4356492 Kaloi Oct 1982 A
4398199 Makimoto Aug 1983 A
4424500 Viola et al. Jan 1984 A
4471358 Glasser Sep 1984 A
4471493 Schober Sep 1984 A
4504834 Garay et al. Mar 1985 A
4509056 Ploussios Apr 1985 A
4517572 Dixon May 1985 A
4518968 Hately May 1985 A
4521784 Nemet Jun 1985 A
4527164 Cestaro et al. Jul 1985 A
4531130 Powers et al. Jul 1985 A
4536725 Hubler Aug 1985 A
4543581 Nemet Sep 1985 A
4553146 Butler Nov 1985 A
4571595 Phillips et al. Feb 1986 A
4584709 Kneisel et al. Apr 1986 A
4590614 Erat May 1986 A
4608572 Blakney Aug 1986 A
4623894 Lee et al. Nov 1986 A
4656642 Apostolos et al. Apr 1987 A
4673948 Kuo Jun 1987 A
4709239 Herrick Nov 1987 A
4723305 Phillips et al. Feb 1988 A
4730195 Phillips et al. Mar 1988 A
4792809 Gilbert et al. Dec 1988 A
4794396 Pothier Dec 1988 A
4799156 Shavit et al. Jan 1989 A
4827271 Berneking May 1989 A
4839660 Hadzoglou Jun 1989 A
4843468 Drewery Jun 1989 A
4847629 Shimazaki Jul 1989 A
4849766 Inaba et al. Jul 1989 A
4857939 Shimazaki Aug 1989 A
4860019 Jiang Aug 1989 A
4890114 Egashira Dec 1989 A
4894663 Urbish et al. Jan 1990 A
4907011 Kuo Mar 1990 A
4912481 Mace et al. Mar 1990 A
4975711 Lee Dec 1990 A
5014346 Phillips May 1991 A
5030963 Tadama Jul 1991 A
5033385 Zeren Jul 1991 A
5046080 Lee et al. Sep 1991 A
5061944 Powers et al. Oct 1991 A
5074214 Zeren Dec 1991 A
5075691 Garay Dec 1991 A
5138328 Zibrik et al. Aug 1992 A
5164980 Bush et al. Nov 1992 A
5168472 Lockwood Dec 1992 A
5172084 Fiedziuszko et al. Dec 1992 A
5197140 Balmer Mar 1993 A
5200756 Feller Apr 1993 A
5210542 Pett et al. May 1993 A
5212742 Normile et al. May 1993 A
5212777 Gove et al. May 1993 A
5214434 Hsu May 1993 A
5218370 Blaese Jun 1993 A
5227804 Oda Jul 1993 A
5227808 Davis Jul 1993 A
5245350 Sroka Sep 1993 A
5248988 Makino Sep 1993 A
5255002 Day Oct 1993 A
5257032 Diamond et al. Oct 1993 A
5258765 Dorrie et al. Nov 1993 A
5262791 Tsuda et al. Nov 1993 A
5300936 Izadian Apr 1994 A
5307075 Huynh Apr 1994 A
5337063 Takahira Aug 1994 A
5337065 Bonnet Aug 1994 A
5347291 Moore Sep 1994 A
5355144 Walton Oct 1994 A
5355318 Dionnet et al. Oct 1994 A
5361061 Mays Nov 1994 A
5363114 Shoemaker Nov 1994 A
5373300 Jenness et al. Dec 1994 A
5394163 Bullen et al. Feb 1995 A
5402134 Miller et al. Mar 1995 A
5410322 Sonoda Apr 1995 A
5420599 Erkocevic May 1995 A
5422651 Chang Jun 1995 A
5438357 McNelley Aug 1995 A
5451965 Matsumoto Sep 1995 A
5451968 Emery Sep 1995 A
5453751 Tsukamoto et al. Sep 1995 A
5453752 Wang Sep 1995 A
5457469 Diamond et al. Oct 1995 A
5471224 Barkeshli Nov 1995 A
5493702 Crowley et al. Feb 1996 A
5495261 Baker et al. Feb 1996 A
5508709 Krenz et al. Apr 1996 A
5534877 Sorbello et al. Jul 1996 A
5537367 Lockwood et al. Jul 1996 A
5557293 McCoy Sep 1996 A
5559524 Takei et al. Sep 1996 A
5563882 Bruno et al. Oct 1996 A
5569879 Gloton Oct 1996 A
5572223 Phillips Nov 1996 A
H001631 Montgomery Feb 1997 H
5600844 Shaw et al. Feb 1997 A
5608417 De Vall Mar 1997 A
5619205 Johnson Apr 1997 A
5621913 Tuttle et al. Apr 1997 A
5627550 Sanad May 1997 A
5646635 Cockson et al. Jul 1997 A
5646637 Miller Jul 1997 A
5657028 Sanad Aug 1997 A
5672345 Curtiss Sep 1997 A
5680144 Sanad Oct 1997 A
5684672 Karidis et al. Nov 1997 A
5703600 Burrell et al. Dec 1997 A
5710458 Iwasaki Jan 1998 A
5712640 Andou et al. Jan 1998 A
5734352 Seward et al. Mar 1998 A
5742258 Kumpfbeck et al. Apr 1998 A
5764190 Murch et al. Jun 1998 A
5767811 Mandai et al. Jun 1998 A
5767814 Conroy et al. Jun 1998 A
5790080 Apostolos Aug 1998 A
5798688 Shofield Aug 1998 A
5805113 Ogino et al. Sep 1998 A
5808586 Phillips et al. Sep 1998 A
5809433 Thompson Sep 1998 A
5821907 Zhu et al. Oct 1998 A
5841403 West Nov 1998 A
5861845 Lee et al. Jan 1999 A
5870066 Asakura et al. Feb 1999 A
5872546 Ihara et al. Feb 1999 A
5898404 Jou Apr 1999 A
5903240 Kawahata et al. May 1999 A
5913174 Casarez et al. Jun 1999 A
5918183 Janky Jun 1999 A
5926139 Korisch Jul 1999 A
5926141 Lindenmeier et al. Jul 1999 A
5926208 Noonen et al. Jul 1999 A
5929822 Kumpfbeck et al. Jul 1999 A
5929825 Niu et al. Jul 1999 A
5936583 Sekine et al. Aug 1999 A
5936587 Gudilev Aug 1999 A
5943020 Liebendoerfer et al. Aug 1999 A
5945954 Johnson Aug 1999 A
5963871 Zhinong et al. Oct 1999 A
5966097 Fukasawa et al. Oct 1999 A
5966098 Qi et al. Oct 1999 A
5969689 Martek Oct 1999 A
5973648 Lindenmeier Oct 1999 A
5973651 Suesada et al. Oct 1999 A
5982337 Newman et al. Nov 1999 A
5986609 Spall Nov 1999 A
5986610 Miron Nov 1999 A
5986615 Westfall et al. Nov 1999 A
5990838 Burns et al. Nov 1999 A
5995052 Sadler et al. Nov 1999 A
5995064 Yanagisawa Nov 1999 A
6002367 Engblom et al. Dec 1999 A
6005524 Hayes et al. Dec 1999 A
6008764 Ollikainen et al. Dec 1999 A
6008774 Wu Dec 1999 A
6011518 Yamagishi Jan 2000 A
6011699 Murray Jan 2000 A
6014114 Westfall et al. Jan 2000 A
6018319 Lindmark Jan 2000 A
6028568 Asakura et al. Feb 2000 A
6031495 Simmons et al. Feb 2000 A
6031499 Dichter Feb 2000 A
6031505 Qi et al. Feb 2000 A
6034645 Legay et al. Mar 2000 A
6037902 Pinhas et al. Mar 2000 A
6037907 Ha Mar 2000 A
6039583 Korsunsky et al. Mar 2000 A
6040803 Spall Mar 2000 A
6043783 Endo et al. Mar 2000 A
6049314 Munson et al. Apr 2000 A
6054953 Lindmark Apr 2000 A
6057801 Declos et al. May 2000 A
6069592 Wass May 2000 A
6072434 Papatheodorou Jun 2000 A
6075485 Lilly et al. Jun 2000 A
6075494 Milroy Jun 2000 A
6075500 Kurz et al. Jun 2000 A
6078294 Mitarai Jun 2000 A
6081237 Sato et al. Jun 2000 A
6087990 Thill et al. Jul 2000 A
6091365 Derneryd et al. Jul 2000 A
6094179 Davidson Jul 2000 A
6097339 Filipovic Aug 2000 A
6097345 Walton Aug 2000 A
6100855 Vinson et al. Aug 2000 A
6104347 Snygg Aug 2000 A
6104349 Cohen Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6111545 Saari Aug 2000 A
6112102 Zhinong Aug 2000 A
6114674 Baugh et al. Sep 2000 A
6122533 Zhang et al. Sep 2000 A
6124830 Yuanzhu Sep 2000 A
6127977 Cohen Oct 2000 A
6130651 Yanagisawa et al. Oct 2000 A
6131042 Lee et al. Oct 2000 A
6133879 Grangeat Oct 2000 A
6133883 Munson et al. Oct 2000 A
6140966 Pankinaho Oct 2000 A
6140969 Lindenmeier et al. Oct 2000 A
6140975 Cohen Oct 2000 A
6141540 Richards et al. Oct 2000 A
6147652 Sekine Nov 2000 A
6147655 Roesner Nov 2000 A
6154176 Fathy et al. Nov 2000 A
6154180 Padrick Nov 2000 A
6157348 Openlander Dec 2000 A
6160513 Davidson et al. Dec 2000 A
6166694 Ying Dec 2000 A
6172618 Hakozaki et al. Jan 2001 B1
6175333 Smith et al. Jan 2001 B1
6181281 Desclos et al. Jan 2001 B1
6195048 Chiba et al. Feb 2001 B1
6198442 Rutkowski Mar 2001 B1
6198943 Sadler et al. Mar 2001 B1
6201501 Arkko et al. Mar 2001 B1
6204826 Rutkowski et al. Mar 2001 B1
6211824 Holden et al. Apr 2001 B1
6211826 Aoki Apr 2001 B1
6211834 Durham et al. Apr 2001 B1
6211889 Stoutamire Apr 2001 B1
6215447 Johnson Apr 2001 B1
6215474 Shah Apr 2001 B1
6218989 Schneider et al. Apr 2001 B1
6218991 Sanad Apr 2001 B1
6218992 Sadler et al. Apr 2001 B1
6222497 Hu et al. Apr 2001 B1
6236366 Yamamoto et al. May 2001 B1
6236372 Lindenmeier et al. May 2001 B1
6239752 Blanchard May 2001 B1
6239765 Johnson et al. May 2001 B1
6243592 Nakada et al. Jun 2001 B1
6255994 Saito Jul 2001 B1
6255995 Asano et al. Jul 2001 B1
6259407 Tran Jul 2001 B1
6260088 Gove et al. Jul 2001 B1
6266023 Nagy et al. Jul 2001 B1
6266538 Waldron Jul 2001 B1
6268836 Faulkner et al. Jul 2001 B1
6271794 Geeraert Aug 2001 B1
6281846 Puente Baliarda et al. Aug 2001 B1
6285326 Diximus et al. Sep 2001 B1
6285342 Brady et al. Sep 2001 B1
6288680 Tsuru et al. Sep 2001 B1
6292154 Deguchi et al. Sep 2001 B1
6297711 Seward et al. Oct 2001 B1
6300910 Kim Oct 2001 B1
6300914 Yang Oct 2001 B1
6304220 Herve et al. Oct 2001 B1
6304222 Smith et al. Oct 2001 B1
6307511 Ying et al. Oct 2001 B1
6307512 Geeraert Oct 2001 B1
6310578 Ying Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6320543 Ohata et al. Nov 2001 B1
6323811 Tsubaki et al. Nov 2001 B1
6326919 Diximus et al. Dec 2001 B1
6326927 Johnson et al. Dec 2001 B1
6327485 Waldron Dec 2001 B1
6329951 Wen et al. Dec 2001 B1
6329954 Fuchs et al. Dec 2001 B1
6329962 Ying Dec 2001 B2
6333716 Pontoppidan Dec 2001 B1
6333720 Gottl et al. Dec 2001 B1
6342861 Packard Jan 2002 B1
6343208 Ying Jan 2002 B1
6346914 Annamaa Feb 2002 B1
6348892 Annamaa et al. Feb 2002 B1
6351241 Wass Feb 2002 B1
6352434 Emmert Mar 2002 B1
6353443 Ying Mar 2002 B1
6360105 Nakada et al. Mar 2002 B2
6362790 Proctor, Jr. et al. Mar 2002 B1
6366243 Isohatala et al. Apr 2002 B1
6367939 Carter et al. Apr 2002 B1
6373447 Rostoker et al. Apr 2002 B1
6377217 Zhu et al. Apr 2002 B1
6380895 Moren et al. Apr 2002 B1
6380902 Duroux Apr 2002 B2
6381471 Dvorkin Apr 2002 B1
6384790 Dishart et al. May 2002 B2
6384793 Scordilis May 2002 B2
6388626 Gamalielsson et al. May 2002 B1
6396444 Goward May 2002 B1
6400339 Edvardsson et al. Jun 2002 B1
6407710 Keilen Jun 2002 B2
6408190 Ying Jun 2002 B1
6417810 Huels et al. Jul 2002 B1
6417816 Sadler et al. Jul 2002 B2
6421014 Sanad Jul 2002 B1
6421024 Stolle Jul 2002 B1
6424315 Glenn Jul 2002 B1
6429818 Johnson et al. Aug 2002 B1
6431712 Turnbull Aug 2002 B1
6445352 Cohen Sep 2002 B1
6452549 Lo Sep 2002 B1
6452553 Cohen Sep 2002 B1
6456249 Johnson et al. Sep 2002 B1
6470174 Schefte et al. Oct 2002 B1
6476766 Cohen Nov 2002 B1
6480158 Apostolos Nov 2002 B2
6483462 Weinberger Nov 2002 B2
6489925 Thursby Dec 2002 B2
6492952 Hu Dec 2002 B1
6496154 Gyenes Dec 2002 B2
6498586 Pankinaho Dec 2002 B2
6498588 Callaghan Dec 2002 B1
6525691 Varadan et al. Feb 2003 B2
6538604 Isohatala et al. Mar 2003 B1
6539608 McKinnon et al. Apr 2003 B2
6545640 Herve et al. Apr 2003 B1
6552690 Veerasamy Apr 2003 B2
6570538 Vaisanen May 2003 B2
6603434 Lindenmeier Aug 2003 B2
6628784 Montane Condemines Sep 2003 B1
6639560 Kadambi Oct 2003 B1
6650294 Ying et al. Nov 2003 B2
6683571 Ghosh Jan 2004 B2
6693603 Smith et al. Feb 2004 B1
6697024 Fuerst Feb 2004 B2
6707428 Gram Mar 2004 B2
6727855 Nalbandian Apr 2004 B1
6741210 Brachat et al. May 2004 B2
6756944 Tessier Jun 2004 B2
6812893 Waterman Nov 2004 B2
6831606 Sajadinia Dec 2004 B2
6897830 Bae May 2005 B2
6937191 Puente Aug 2005 B2
6937196 Korva Aug 2005 B2
6943730 Poilasne Sep 2005 B2
6977808 Lam Dec 2005 B2
6980158 Iguchi Dec 2005 B2
6995720 Shikata Feb 2006 B2
7015868 Puente Mar 2006 B2
7047040 Kim May 2006 B2
7072698 Underbrink Jul 2006 B2
7075483 Okado Jul 2006 B2
7091911 Qi Aug 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7102577 Richard Sep 2006 B2
7116273 Morikawa et al. Oct 2006 B2
7119748 Autti Oct 2006 B2
7123208 Puente Baliarda et al. Oct 2006 B2
7126537 Cohen Oct 2006 B2
7202818 Anguera Pros et al. Apr 2007 B2
7209081 Chang Apr 2007 B2
7256743 Korva Aug 2007 B2
7256751 Cohen Aug 2007 B2
7265724 Tan Sep 2007 B1
7312762 Puente Ballarda et al. Dec 2007 B2
7342553 Soler Mar 2008 B2
7388549 Chiang Jun 2008 B2
7394432 Baliarda et al. Jul 2008 B2
7397431 Baliarda et al. Jul 2008 B2
7403159 Gooshchin Jul 2008 B2
7403165 Qi Jul 2008 B2
7528782 Baliarda et al. May 2009 B2
7659864 Chen et al. Feb 2010 B2
7663556 Desclos Feb 2010 B2
7755546 Ishimiya Jul 2010 B2
7903034 Anguera Mar 2011 B2
7911014 Doan Mar 2011 B2
8369950 Rawat et al. Feb 2013 B2
8427373 Jiang et al. Apr 2013 B2
20010011964 Sadler Aug 2001 A1
20010018793 McKinnon et al. Sep 2001 A1
20010050635 Weinberger Dec 2001 A1
20010050636 Weinberger Dec 2001 A1
20010050638 Ishitobi et al. Dec 2001 A1
20020000940 Moren et al. Jan 2002 A1
20020000942 Duroux Jan 2002 A1
20020025839 Usui Feb 2002 A1
20020036594 Gyenes Mar 2002 A1
20020058539 Underbrink May 2002 A1
20020105468 Tessier Aug 2002 A1
20020109633 Ow Aug 2002 A1
20020126054 Fuerst et al. Sep 2002 A1
20020126055 Lindenmeier et al. Sep 2002 A1
20020140615 Carles et al. Oct 2002 A1
20020171601 Puente Nov 2002 A1
20020175866 Gram Nov 2002 A1
20020190904 Cohen Dec 2002 A1
20030160723 Cohen Aug 2003 A1
20030201942 Poilasne et al. Oct 2003 A1
20040145529 Iguchi et al. Jul 2004 A1
20060001576 Contopanagos Jan 2006 A1
20060033664 Soler Feb 2006 A1
20060077101 Puente Apr 2006 A1
20080252536 Anguera Oct 2008 A1
Foreign Referenced Citations (226)
Number Date Country
2438199 Sep 1999 AU
2416437 Jan 2002 CA
2224466 Apr 1996 CN
1559093 Dec 2004 CN
3337941 May 1985 DE
4313397 Nov 1994 DE
19511300 Oct 1996 DE
19929689 Jan 2001 DE
10206426 Nov 2002 DE
10138265 Jul 2003 DE
10204079 Aug 2003 DE
0096847 Dec 1983 EP
0297813 Jan 1989 EP
0358090 Mar 1990 EP
0431764 Jun 1991 EP
0543645 May 1993 EP
0590671 Sep 1993 EP
0571124 Nov 1993 EP
0688040 Dec 1995 EP
0765001 Sep 1996 EP
0753897 Jan 1997 EP
0814536 Dec 1997 EP
0856907 Aug 1998 EP
0871238 Oct 1998 EP
0892459 Jan 1999 EP
0902472 Mar 1999 EP
0929121 Jul 1999 EP
0932219 Jul 1999 EP
0938158 Aug 1999 EP
0942488 Sep 1999 EP
0969375 Jan 2000 EP
1024552 Jan 2000 EP
0986130 Mar 2000 EP
0997972 Mar 2000 EP
0993070 Apr 2000 EP
0997974 May 2000 EP
1018777 Jul 2000 EP
1018779 Jul 2000 EP
1026774 Aug 2000 EP
1063721 Dec 2000 EP
1067627 Jan 2001 EP
1071161 Jan 2001 EP
1077508 Feb 2001 EP
1079462 Feb 2001 EP
1083624 Mar 2001 EP
1094545 Apr 2001 EP
1096602 May 2001 EP
1148581 Oct 2001 EP
1198027 Oct 2001 EP
0749176 Sep 2002 EP
1237224 Sep 2002 EP
1258054 Nov 2002 EP
1267438 Dec 2002 EP
1326302 Nov 2003 EP
1378961 Jan 2004 EP
1317018 Feb 2004 EP
1396906 Mar 2004 EP
1401050 Mar 2004 EP
1414106 Apr 2004 EP
1424747 Jun 2004 EP
1443595 Aug 2004 EP
1453140 Sep 2004 EP
1465291 Oct 2004 EP
0843905 Dec 2004 EP
1515392 Mar 2005 EP
2112163 Mar 1998 ES
2142280 May 2000 ES
2156832 Jan 2002 ES
2543744 Oct 1984 FR
2704359 Nov 1994 FR
2837339 Sep 2003 FR
2112579 Jul 1983 GB
2161026 Jan 1986 GB
2215136 Sep 1989 GB
2289163 Nov 1995 GB
2317994 Apr 1998 GB
2330951 May 1999 GB
2355116 Apr 2001 GB
2361584 Oct 2001 GB
53009451 Jan 1978 JP
55123203 Sep 1980 JP
5129816 Oct 1991 JP
5007109 Jan 1993 JP
5147806 Jun 1993 JP
5267916 Oct 1993 JP
5308223 Nov 1993 JP
5347507 Dec 1993 JP
6037531 Feb 1994 JP
6085530 Mar 1994 JP
6204908 Jul 1994 JP
6252629 Sep 1994 JP
1997-246852 Sep 1997 JP
9252214 Sep 1997 JP
10093332 Apr 1998 JP
10163748 Jun 1998 JP
10-209744 Aug 1998 JP
10-303637 Nov 1998 JP
11-004113 Jan 1999 JP
11-027042 Jan 1999 JP
11088032 Mar 1999 JP
11136015 May 1999 JP
11-220319 Aug 1999 JP
11317610 Nov 1999 JP
2002-158529 May 2002 JP
3449484 Sep 2003 JP
2003283230 Oct 2003 JP
508835 Nov 2002 NZ
2170478 Jul 2001 RU
518988 Dec 2002 SE
554571 Sep 2003 TW
8809065 Nov 1988 WO
9312559 Jun 1993 WO
9424722 Oct 1994 WO
9424723 Oct 1994 WO
9505012 Feb 1995 WO
9511530 Apr 1995 WO
9603783 Feb 1996 WO
9604691 Feb 1996 WO
9610276 Apr 1996 WO
9627219 Sep 1996 WO
9629755 Sep 1996 WO
9638881 Dec 1996 WO
9706578 Feb 1997 WO
9711507 Mar 1997 WO
9732355 Sep 1997 WO
9733338 Nov 1997 WO
9735360 Nov 1997 WO
9747054 Dec 1997 WO
9805088 Feb 1998 WO
9812771 Mar 1998 WO
9820578 May 1998 WO
9831067 Jul 1998 WO
9833234 Jul 1998 WO
9836469 Aug 1998 WO
9839814 Sep 1998 WO
9903166 Jan 1999 WO
9903167 Jan 1999 WO
9903168 Jan 1999 WO
9922420 May 1999 WO
9925042 May 1999 WO
9925044 May 1999 WO
9927607 Jun 1999 WO
9927608 Jun 1999 WO
9931757 Jun 1999 WO
9935691 Jul 1999 WO
9943048 Aug 1999 WO
9956345 Nov 1999 WO
9956347 Nov 1999 WO
9957785 Nov 1999 WO
9960665 Nov 1999 WO
9962139 Dec 1999 WO
9965102 Dec 1999 WO
0001028 Jan 2000 WO
0003451 Jan 2000 WO
0003453 Jan 2000 WO
0008712 Feb 2000 WO
0022695 Apr 2000 WO
0030267 May 2000 WO
0031825 Jun 2000 WO
0036700 Jun 2000 WO
0049680 Aug 2000 WO
0052784 Sep 2000 WO
0052787 Sep 2000 WO
0055939 Sep 2000 WO
0057511 Sep 2000 WO
0067342 Nov 2000 WO
0074172 Dec 2000 WO
0077884 Dec 2000 WO
0103238 Jan 2001 WO
0105048 Jan 2001 WO
0106594 Jan 2001 WO
0108255 Feb 2001 WO
0108257 Feb 2001 WO
0108260 Feb 2001 WO
0109976 Feb 2001 WO
0111721 Feb 2001 WO
0113464 Feb 2001 WO
0115270 Mar 2001 WO
0115271 Mar 2001 WO
0117061 Mar 2001 WO
0117063 Mar 2001 WO
0117064 Mar 2001 WO
0118904 Mar 2001 WO
0118909 Mar 2001 WO
0120714 Mar 2001 WO
0120927 Mar 2001 WO
0122528 Mar 2001 WO
0124314 Apr 2001 WO
0124316 Apr 2001 WO
0126182 Apr 2001 WO
0128035 Apr 2001 WO
0129927 Apr 2001 WO
0131739 May 2001 WO
0133665 May 2001 WO
0135491 May 2001 WO
0137369 May 2001 WO
0137370 May 2001 WO
0139321 May 2001 WO
0141252 Jun 2001 WO
0148861 Jul 2001 WO
0154225 Jul 2001 WO
0165636 Sep 2001 WO
0173890 Oct 2001 WO
0178192 Oct 2001 WO
0182410 Nov 2001 WO
0186753 Nov 2001 WO
0189031 Nov 2001 WO
0201668 Jan 2002 WO
0235646 May 2002 WO
0235652 May 2002 WO
02054538 Jul 2002 WO
02065583 Aug 2002 WO
02071535 Sep 2002 WO
02078123 Oct 2002 WO
02078124 Oct 2002 WO
02080306 Oct 2002 WO
02087014 Oct 2002 WO
02089254 Nov 2002 WO
02091518 Nov 2002 WO
02096166 Nov 2002 WO
02103843 Dec 2002 WO
03003503 Jan 2003 WO
03017421 Feb 2003 WO
03023900 Mar 2003 WO
03026064 Mar 2003 WO
2004075011 Sep 2004 WO
Non-Patent Literature Citations (1622)
Entry
Infringement Chart—Samsung SCH-R600. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-R800. Fractus, 2009.
Infringement Chart—Samsung SCH-R800. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-R800. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-R800. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-R800. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U310. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U310. Fractus, 2009.
Infringement Chart—Samsung SCH-U310. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U310. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U310. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U430. Fractus, 2009.
Infringement Chart—Samsung SCH-U430. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U430. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U430. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U430. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U470. Fractus, 2009.
Infringement Chart—Samsung SCH-U470. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U470. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U470. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U470. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U520. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U740. Fractus, 2009.
Infringement Chart—Samsung SCH-U740. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U740. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U740. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U740. U.S. Pat. No. 7,728,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U750. Fractus, 2009.
Infringement Chart—Samsung SCH-U750. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U750. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U750. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U750. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-U940. Fractus, 2009.
Infringement Chart—Samsung SCH-U940. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-U940. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-U940. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-U940. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH A127. Fractus, 2009.
Infringement Chart—Samsung SCH U340. Fractus, 2009.
Infringement Chart—Samsung SCH U340. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH U340. U.S. Pat. No. 7,123,208 Fractus, 2009.
Infringement Chart—Samsung SCH U340. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH U340. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH U410. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH U410. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCHU410. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH U410. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH U700. Fractus, 2009.
Infringement Chart—Samsung SCH U700. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH U700. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH U700. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SCH U700. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH U700. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH U410. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-A237. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-A257. Fractus, 2009.
Infringement Chart—Samsung SGH-A257. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-A257. U.S. Pat. No. 7,397,431 Fractus, 2009.
Infringement Chart—Samsung SGH-A257. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-A630. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-A837. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-A887. Fractus, 2009.
Infringement Chart—Samsung SGH-A887. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-A887. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-A887. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-I907. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-I907. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-I907. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-I907. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-I907. U.S. Pat. No. 7,528,782 Fractus, 2009.
Infringement Chart—Samsung SGH-T219. Fractus, 2009.
Infringement Chart—Samsung SGH-T219. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-T219. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T219. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T219. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T219. U.S. Pat. No. 7,528,782 Fractus, 2009.
Infringement Chart—Samsung SGH-T239. Fractus, 2009.
Infringement Chart—Samsung SGH-T239. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T239. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T239. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T239. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-T559. Fractus, 2009.
Infringement Chart—Samsung SGH-T559. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T559. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T559. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG VX5500. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8350. Fractus, 2009.
Infringement Chart—LG VX8350. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8350. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8350. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX8350. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8360.. Fractus, 2009.
Infringement Chart—LG VX8360. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8360. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8360. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX8360. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8360. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG VX8500. Fractus, 2009.
Infringement Chart—LG VX8500. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8500. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8500. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX8500. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8560 Chocolate 3. Fractus, 2009.
Infringement Chart —LG VX8560 Chocolate 3. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8560 Chocolate 3. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8560 Chocolate 3. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG VX8560 Chocolate 3. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX8560 Chocolate 3. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8610. Fractus, 2009.
Infringement Chart—LG VX8610. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8610. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8610. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX8610. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX8800. Fractus, 2009.
Infringement Chart—LG VX8800. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX8800. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX8800. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX9400. Fractus, 2009.
Infringement Chart—LG VX9400. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX9400. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX9400. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG VX9400. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX9400. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Xenon GR500. Fractus, 2009.
Infringement Chart—LG Xenon GR500. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Xenon GR500. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Xenon GR500. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG Xenon GR500. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Xenon GR500. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Palm Centro 685. Fractus, 2009.
Infringement Chart—Palm Centro 685. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Palm Centro 685. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Palm Centro 685. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Palm Centro 685. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Palm Centro 685. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8130. Fractus, 2009.
Infringement Chart—RIM Blackberry 8130. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8130. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8130. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8220. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8310. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8320. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8330. Fractus, 2009.
Infringement Chart—RIM Blackberry 8330. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8330. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8330. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8330. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8820. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8830. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8900. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 9630. Fractus, 2009.
Infringement Chart—LG 300G. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG 300G. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Aloha LX140. Fractus, 2009.
Infringement Chart—LG Aloha LX140. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Aloha LX140. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Aloha LX140. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Aloha LX140. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG AX155. Fractus, 2009.
Infringement Chart—LG AX155. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG AX155. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG AX155. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG AX155. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG AX300. Fractus, 2009.
Infringement Chart—LG AX300. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG AX300. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG AX300. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG AX300. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG AX380. Fractus, 2009.
Infringement Chart—LG AX380. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG AX380. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG AX380. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG AX380. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG AX380. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG AX585. Fractus, 2009.
Infringement Chart—LG AX585. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG AX585. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG AX585. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG AX585. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG AX585. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG AX8600. Fractus, 2009.
Infringement Chart—LG AX8600. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG AX8600. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG AX8600. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG AX8600. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG AX8600. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG CF360. Fractus, 2009.
Infringement Chart—LG CF360. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG CF360. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG CF360. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG CF360. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG CF360. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Chocolate VX8550. Fractus, 2009.
Infringement Chart—LG Chocolate VX8550. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Chocolate VX8550. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Chocolate VX8550. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Chocolate VX8550. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG CU515. Fractus, 2009.
Infringement Chart—LG CU515. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG CU515. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG CU515. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Dash. Fractus, 2009.
Infringement Chart—HTC Dash. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Dash. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Dash. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Dash. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Dash. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Diamond. Fractus, 2009.
Infringement Chart—HTC Diamond. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Diamond. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Diamond. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Diamond. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC G1 Google. Fractus, 2009.
Infringement Chart—HTC G1 Google. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC G1 Google. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC G1 Google. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC G1 Google. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC G1 Google. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC My Touch. Fractus, 2009.
Infringement Chart—HTC My Touch. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC My Touch. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC My Touch. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC My Touch. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Ozone. Fractus, 2009.
Infringement Chart—HTC Ozone. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Ozone. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Ozone. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Ozone. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Ozone. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Pure. Fractus, 2009.
Infringement Chart—HTC Pure. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Pure. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Pure. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Pure. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Pure. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Snap. Fractus, 2009.
Infringement Chart—HTC Snap. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Snap. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Snap. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Snap. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC TILT 8925. Fractus, 2009.
Infringement Chart—HTC TILT 8925. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC TILT 8925. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC TILT 8925. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC TILT 8925. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC TILT 8925. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG CU515. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG CU515. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Dare VX9700. Fractus, 2009.
Infringement Chart—LG Dare VX9700. U.S. Pat. No. 7,015,868. Fractus, 2009.
Inlnfringement Chart—LG Dare VX9700. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Dare VX9700. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG enV Touch VX1100. Fractus, 2009.1.
Infringement Chart—LG enV Touch VX1100. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG enV Touch VX1100. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG enV Touch VX1100. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG enV Touch VX1100. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG enV Touch VX1100. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG enV VX-9900. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG enV VX-9900. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG enV VX-9900. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG enV VX-9900. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG enV VX-9900. Fractus, 2009.
Infringement Chart—LG EnV2 VX9100. Fractus, 2009.
IInfringement Chart—LG EnV2 VX9100. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG EnV2 VX9100. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG EnV2 VX9100. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG EnV2. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG EnV3 VX9200. Fractus, 2009.
Infringement Chart—LG ENV3 VX9200. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG EnV3 VX9200. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG EnV3 VX9200. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG EnV3 VX9200. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG EnV3 VX9200. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Flare LX165. Fractus, 2009.
Infringement Chart—LG Flare LX165. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Flare LX165. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Flare LX165. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Flare LX165. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG GT365 NEON. Fractus, 2009.
Infringement Chart—LG GT365 NEON. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG GT365 NEON. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG GT365 NEON. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG GT365 NEON. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG GT365 NEON. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Lotus. Fractus, 2009.
Infringement Chart—LG Lotus. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Lotus. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Lotus. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Lotus. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG MUZIQ LX. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG MUZIQ LX570. Fractus, 2009.
Infringement Chart—LG MUZIQ LX570. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG MUZIQ LX570. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG MUZIQ LX570. U.S. Pat. No. 7,397,341. Fractus, 2009.
Infringement Chart—Palm Centro 690. Fractus, 2009.
Infringement Chart—Palm Centro 690. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Palm Centro 690. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Palm Centro 690. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Palm Centro 690. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Palm Pre. Fractus, 2009.
Infringement Chart—Palm Pre. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Palm Pre. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Palm Pre. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Palm Pre. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Pantech Breeze C520. Fractus, 2009.
Infringement Chart—Pantech Breeze C520. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Pantech Breeze C520. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Pantech C610. Fractus, 2009.
Infringement Chart—Pantech C610. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Pantech C610. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Pantech C610. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Pantech C610. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Pantech C610. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Pantech C740. Fractus, 2009.
Infringement Chart—Pantech C740. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Pantech C740. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Pantech C740. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Pantech C740. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Pantech C740. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Pantech DUO C810. Fractus, 2009.
Infringement Chart—Pantech DUO C810. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Pantech DUO C810. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Pantech DUO C810. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Pantech DUO C810. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Pantech DUO C810. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Pantech Slate C530. Fractus, 2009.
Infringement Chart—Pantech Slate C530. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Pantech Slate C530. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Pantech Slate C530. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Pantech Slate C530. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Pantech Slate C530. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8100. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8100. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 8100. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8100. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8100. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8110. Fractus, 2009.
Infringement Chart—RIM Blackberry 8110. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 8110. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 8110. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry 8110. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. Fractus, 2009.
Infringement Chart—RIM Blackberry 8120. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Magnet (SGH-A257). U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung Messager. Fractus, 2009.
Infringement Chart—Samsung Messager. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Messager. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung Messager. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung Messager. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung Messager. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung Omnia SGH-I900. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-A630. Fractus, 2009.
Infringement Chart—Samsung SCH-A630. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-A630. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-A630. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. U.S. Pat. No. 7,394,32. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-A645. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-A870. Fractus, 2009.
Infringement Chart—Samsung SCH-A870. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-A870. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-A870. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-A870. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-A887. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-I910. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-R430. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-R500.. Fractus, 2009.
Infringement Chart—Samsung SCH-R500. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-R500. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-R500. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SCH-R500. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SCH-R600. Fractus, 2009.
Infringement Chart—Samsung SCH-R600. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SCH-R600. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SCH-R600. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Touch Pro Fuze. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Touch Pro. Fractus, 2009.
Infringement Chart—HTC Touch Pro. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Touch Pro. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Touch Pro. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Touch Pro. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—HTC Wing. Fractus, 2009.
Infringement Chart—HTC Wing. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—HTC Wing. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Wing. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—HTC Wing. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—HTC Wing. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Kyocera Jax. Fractus, 2009.
Infringement Chart—Kyocera Jax. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Kyocera Jax. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Kyocera Jax. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Kyocera Jax. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Kyocera Jax. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Kyocera MARBL. Fractus, 2009.
Infringement Chart—Kyocera MARBL. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Kyocera MARBL. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Kyocera MARBL. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Kyocera MARBL. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Kyocera NEO E1100. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Kyocera S2400. Fractus, 2009.
Infringement Chart—Kyocera S2400. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Kyocera S2400. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Kyocera S2400. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Kyocera S2400. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Kyocera S2400. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Kyocera Wildcard M1000. Fractus, 2009.
Infringement Chart—Kyocera Wildcard M1000. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Kyocera Wildcard M1000. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Kyocera Wildcard M1000. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Kyocera Wildcard M1000. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG 300G. Fractus, 2009.
Infringement Chart—LG 300G. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG 300G. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—HTC Touch Pro 2. U.S. Pat. No. 7,015,868. Fractus. Nov. 5, 2009.
Infringement Chart—Samsung SGH-T559. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T559. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T639. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T739. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T819. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH-T929. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A 437. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH A 437. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH A117. Fractus, 2009.
Infringement Chart—Samsung SGH A117. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH A117. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH A117. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH A117. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A127. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH A127. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH A127. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH A127. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A437. Fractus, 2009.
Infringement Chart—Samsung SGH A437. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH A437. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH A437. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A737. Fractus, 2009.
Infringement Chart—Samsung SGH A737. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH A737. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH A737. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH A737. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SGH A737. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A867. Fractus, 2009.
Infringement Chart—Samsung SGH A867. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH A867. U.S. Pat. No. 7,123,208. Fractus, 2009.
Carver , K. R. et al. Microstrip antenna technology. in “Microstrip antennas” to D.M. Pozar; IEEE Antennas and Propagation Society.. pp. 3-26. Jan. 1, 1995.
Carver , K. R. et al. Microstrip antenna technology. Antennas and Propagation, IEEE Transactions on. vol. 29. No. 1. Jan. 1, 1981.
Caswell , W. E. Invisible errors in dimensions calculations: geometric and systematic effects. Dimensions and Entropies in Chaotic Systems.. pp. 123-136. Jan. 1, 1986.
Chang , Jungming et al Hybrid fractal cross antenna. Microwave and Optical Technology Letters. Jun. 20, 2000.
Chen , H. Dual frequency microstrip antenna with embedded reactive loading. Microwave and Optical Technology Letters. vol. 23. No. 3. Nov. 5, 1999.
Chen , M.H. A compact EHF/SHF dual frequency antenna. IEEE International Symposium on Antennas and Propagation. May 7, 1990.
Chen , S. et al. On the calculation of Fractal features from images. IEEE Transactions on Pattern Analysis and Machine Intelligence. vol. 15. No. 10. Oct. 1, 1993.
Chen , Wen-Shyang Square-ring microstrip antenna with a cross strip for compact circular polarization operation. Antennas and Propagation, IEEE Transactions on. Oct. 1, 1999.
Chen , X. ; Ying , Z. Small Antenna Design for Mobile Handsets (part I). Sony Ericsson. Mar. 25, 2009.
Chen , Zhi Ning ; Chia , Michael Y.W. Broadband rectangular slotted plate antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Chiba , N. et al Dual frequency planar antenna for handsets. Electronic Letters. Dec. 10, 1998.
Cho , M. et al Modified slot-loaded triple-band microstrip patch antenna. Antennas and Propagation Society International Symposium, 2002. IEEE. Jun. 16, 2002.
Cohen , N. Fractal element antennas. Journal of Electronic Defense. Jul. 1, 1997.
Cohen, N. Fractal and shaped dipoles—Some simple fractal dipoles, their benefits and limitations. Communications Quarterly. Mar. 1, 1996.
Cohen, N. Fractal antenna applications in wireless telecommunications. IEEE Electronic Industries Forum of New England. Professional Program Proceedings Boston. . pp. 43-49. May 6, 1997.
Cohen, N. Fractal antennas—Part 1—Introduction and the fractal quad. Communications quarterly. Jul. 1, 1995.
Cohen, N. Fractal antennas—Part 2—A discussion of relevant, but disparate, qualities. Communications quarterly. Jul. 1, 1996.
Cohen, N. NEC4 analysis of a fractalized monofiliar helix in an axial mode. ACES Conference Procedings. . p. 1051. Apr. 1, 1998.
Cohn , S. B. Flush airborne radar antennas. Symposium on the USAF antenna research and development program, 3rd. Oct. 18, 1953.
Collier , C. P. Geometry for teachers. Waveland Press, Inc.. Jan. 1, 1984.
Collier , D. ; Shnitkin , H. The monopole as a wideband array antenna element. Antenna Applications Symposium. Sep. 22, 1993.
Counter , V. A. Flush, re-entrant, impedance phased, circularly polarized cavity antenna for missiles. Symposium on the USAF antenna research and development program, 2nd. Oct. 19, 1952.
Counter , V. A. ; Margerum , D. L. Flush dielectric disc antenna for radar. Symposium on the USAF antenna research and development program, 2nd. Oct. 19, 1952.
Cristal , E. G. et al Hairpin-line and hybrid hairpin-line / Half-wave parallel-coupled-line filers. Microwave Theory and Techniques, IEEE Transactions on. Nov. 1, 1972.
Croq , F. ; Pozar , David M. Multifrequency operation of microstrip antennas using aperture coupled parallel resonators. Antennas and Propagation, IEEE Transactions on Nov. 1, 1992.
Daniel , A. E. ; Kumar , G. Rectangular microstrip antennas with stub along the non-radiating edge for dual band operation. IEEE Antennas and Propagation Society International Symposium Digest. vol. 4. pp. 2136-2139. Jun. 18, 1995.
Deng , Sheng-Ming A t-strip loaded rectangular microstrip patch antenna for dual-frequency operation. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 1, 1999.
Deschamps , G. Microstrip Microwave Antenna. Symposium on the USAF Antenna Research and Development Program. Oct. 18, 1953.
Dickstein , Harold D. Antenna system for a ground passive electronic reconnaissance facility. Symposium on the USAF Antenna Research and Development Program. Oct. 20, 1958.
Du Plessis , M. ; Cloete , J. H. Tuning stubs for microstrip patch antennas. AP-S. Digest Antennas and Propagation Society International Symposium. vol. 2. pp. 964-967. Jun. 28, 1993.
Dubost , G. Wideband flat dipole and short-circuit microstrip patch elements and arrays. In Handbook of microstrip antennas—Chapter 7. Peter Peregrinus Ltd. James , J. R. ; Hall , P. S. (ed.). vol. 1. pp. 354-359. Jan. 1, 1989.
DuHamel , R. H. Broadband logarithmically periodic antenna structures. IRE International Convention Record. vol. 5. pp. 119-128. Mar. 14, 1957.
Durgun , A. C. ; Reese , M. S. ; Balanis , C. A. et al Flexible bow-tie antennas with reduced metallization. IEEE Radio and Wireless Symposium (RWS). . pp. 50-53. Jan. 16, 2011.
Dyson , J. D. The equiangular spiral antenna. Antennas and Propagation, IRE Transactions on Apr. 1, 1959.
Dyson , J. D. The non-planar equiangular spiral antenna. Symposium on the USAF Antenna Research and Development Program. Oct. 20, 1958.
Ellis , A. R. Airborne UHF antenna pattern improvements. Symposium on the USAF antenna research and development program, 3rd. Oct. 18, 1953.
Esteban , J. ; Rebollar , J. M. Design and optimization of a compact Ka-Band antenna diplexer. AP-S. Digest Antennas and Propagation Society International Symposium. Jun. 18, 1995.
Falconer , K. Fractal geometry—Full. John Wiley Sons—2nd ed. Jan. 1, 2003.
Falconer , K. Fractal geometry. Mathematical foundations and applications. John Wiley and Sons. . pp. 38-41. Jan. 1, 1990.
Falconer , K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. . pp. 38-44. Jan. 1, 1990.
Feder, J. Fractals. Plenum Press. . pp. 10-11, 15-17, and 25. Jan. 1, 1988.
Feng , J. Fractional box-counting approach to fractal dimension estimation. Pattern Recognition, 1996., Proceedings of the 13th International Conference on. Jan. 1, 1996.
Fenwick , R. C. A new class of electrically small antennas. Antennas and Propagation, IEEE Transactions on. May 1, 1965.
Ferris , J. E. A status report of an Azimuth and elevation direction finder. Symposium on the USAF Antenna Research and Development Program. Oct. 15, 1968.
Fleishmann , M. ; Tildesley , DJ ; Balls , RC Fractals in the natural sciences. Royal Society of London. Jan. 1, 1999.
Force , R. et al. Synthesis of multilayer walls for radomes of aerospace vehicles. Symposium on the USAF Antenna Research and Development Program. Nov. 14, 1967.
Foroutan-pour , K. ; Dutilleul , P. ; Smith , D.L. Advances in the implementation of the box-counting method of fractal dimension estimation. Applied Mathematics and Computation ; Elsevier. vol. 105. pp. 195-210. May 1, 1999.
Fuhl , J. et al Improved internal antenna for handheld terminal. Electronic Letters. Oct. 27, 19945.
George , J. ; Aanandan , C. K. ; Mohanan , P. et al Analysis of a new compact microstrip antenna. Antennas and Propagation, IEEE Transactions on. Nov. 1, 1998.
Gianvittorio , John Paul et al. Fractal antenna research at UCLA. UCLA Antenna Lab. Nov. 19, 1999.
Kim , K. et al Integrated dipole antennas on silicon substrates for intra-chip communication. Antennas and Propagation, IEEE Transactions on. Jan. 1, 1999.
Kim , Kyu-Sung et al. Dual-frequency aperture-coupled square patch antenna with double notches. Microwave and Optical Technology Letters. vol. 24. No. 6. Mar. 20, 2000.
Kobayashi , K. Estimation of 3D fractal dimension of real electrical tree patterns. Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials. Jul. 1, 1994.
Kraus , John D. Antennas. McGraw-Hill Book Company.. Contents. Jan. 1, 1988.
Kraus , John D. Antennas—Chapter 2. McGraw-Hill Book Company. . pp. 17-19 , 723-749. Jan. 1, 1988.
Kronberger , R. et al. Multiband planar inverted-F car antenna for mobile phone and GPS. Antennas and Propagation Society International Symposium, 1999. IEEE. Aug. 2, 1999.
Kuhlman , E. A. A directional flush mounted UHF communications antenna for high performance jet aircraft for the 225-400 MC frequency range. Symposium on The USAF Antenna Research and Development Program, 5th. Oct. 1, 1955.
Kumar , G. ; Gupta , K. Nonradiating edges and four edges gap-coupled multiple resonator broadband microstrip antennas. Antennas and Propagation, IEEE Transactions on. Feb. 1, 1985.
Kumar , G. ; Gupta , K. Directly coupled multiple resonator wide-band microstrip antennas. IEEE Transactions on Antennas and Propagation. Jun. 6, 1985.
Kumprasert , N. Theoretical study of dual resonant frequency and circular polarization of elliptical microstrip antennas. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 1, 2000.
Kuo , Sam Frequency-independent log-periodic antenna arrays with increased directivity and gain. Symposium on USAF Antenna Research and Development, 21th Annual. Oct. 12, 1971.
Kurpis , G. P. The New IEEE standard dictionary of electrical and electronics terms. IEEE Standards. . pp. 90, 352, 393. Jan. 1, 1993.
Kutter , R. E. Fractal antenna design. University of Dayton. Jan. 1, 1996.
Kyriacos , S. ; Buczkowski , S. et al. A modified box-counting method. Fractals—World Scientific Publishing Company. vol. 2. No. 2. pp. 321-324. Jan. 1, 1994.
Lancaster , M. J. et al Superconducting filters using slow-wave transmission lines. Advances in superconductivity. New materials, critical current and devices. Proceedings of the international symposium. New age int, New Delhi, India. Jan. 1, 1996.
Lancaster , M. J. et al. Miniature superconducting filters. Microwave Theory and Techniques, IEEE Transactions on. Jul. 1, 1996.
Lauwerier , H. Fractals. Endlessly repeated geometrical figures. Princeton University Press. Jan. 1, 1991.
Lee, J. C. Analysis of differential line lenght diplexers and long-stub filters. Symposium on the USAF Antenna Research and Development, 23th. Oct. 12, 1971.
Liang , Xu Multiband characteristics of two fractal antennas. Microwave and Optical Technology Letters. Nov. 20, 1999, 1993.
Liu , D. A multi-branch monopole antenna for dual-band cellular applications. IEEE Antennas and Propagation Society International Symposium. Sep. 3, 1999.
Liu , Duixian A dual band antenna for cellular applications. Antennas and Propagation Society International Symposium, 1998. AP-S. Digest. Jun. 21, 1998.
Liu , Z. ; Hall , P.S. A novel dual-band antenna for hand-held portable telephone. Antennas and Propagation Society International Symposium, 1996. AP-S. Digest. Jul. 21, 1996.
Liu , Z. D. et al Dual band antenna for handheld portable telephones. Electronic Letters. Mar. 28, 1996.
Liu , Zi Dong ; Hall , Peter S. ; Wake , David Dual-frequency planar inverted-f antenna. Antennas and Propagation, IEEE Transactions on. Oct. 1, 1997.
Lo , Y. T. ; Solomon , D. ; Richards , W. F. Theory and experiment on microstrip antennas. Antenna Applications Symposium. Sep. 20, 1978.
Locus , Stanley S. Antenna design for high performance missile environment. Symposium on the USAF Antenna Research and Development Program, 5th. Oct. 16, 1955.
Lu , J. H. ; Wong , K. L. Dual-frequency rectangular microstrip antenna with embedded spur lines and integrated reactive loading. Microwave and Optical Technology Letters. May 20, 1999.
Lu , J. H. ; Wong , K. L. Single-feed dual-frequency equilateral-triangular microstrip antenna with pair of spur lines. Electronic Letters. Jun. 11, 1998.
Lu , J.H. ; Tang , C. L. ; Wong , K. L. Novel dual-frequency and broad-band designs of slot-loaded equilateral triangular ; microstrip antennas. IEEE Transactions on Antennas and Propagation. Jul. 1, 2000.
Lu , Jui Han Single-feed circularly polarized triangular microstrip antenna with triangular slot for compact operation. Microwave and Optical Technology Letters. Aug. 20, 2002.
Lu , Jui Han Slot loaded rectangular microstrip antenna for dual frequency operation. Microwave and Optical Technology Letters. Feb. 20, 2000.
Lu , Jui-Han Single feed circularly polarized triangular microstrip antennas. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Lu , Jui-Han Single-feed dual-frequency rectangular microstrip antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 1, 2000.
Lu , Jui-Han ; Tang , Chia-Luan ; Wong , Kin-Lu Single-feed slotted equilateral triangular microstrip antenna for circular polarization. Antennas and Propagation, IEEE Transactions on. Jul. 1, 1999.
Lu , Jui-Han et al. Slot-loaded, Meandered Rectangular Microstrip Antenna With Compact Dualfrequency Operation. IEEE Electronics Letters. vol. 34. No. 11. May 28, 1998.
Luk, K. M. ; Guo , K. F. et al. L-probe proximity fed U-slot patch antenna. Electronic Letters. vol. 34. No. 19. pp. 1806-1807. Sep. 17, 1998.
Lyon , J. ; Rassweiler , G. ; Chen , C. Ferrite-loading effects on helical and spiral antennas. 15th Annual Symposium on the USAF antenna reserach and development program. Oct. 12, 1965.
Maci , S. et al. Dual-band Slot-loaded patch antenna. IEE Proceedings Microwave Antennas Propagation. vol. 142. pp. 225-232. Jun. 1, 1995.
Maci , S. et al. Dual-frequency patch antennas. Antennas and Propagation Magazine, IEEE. Dec. 1, 1997.
Maci , S. et al. Single-layer dual frequency patch antenna. Electronic letters. Aug. 3, 1993.
Mandelbrot , B. B. Opinions (Benoit B. Mandelbrot). World Scientific Publishing Company—Case 6:09-cv-00203-LED-JDL. Jan. 1, 1993.
Mandelbrot , B. B. The fractal geometry of nature. H. B. Fenn and Company. . Contents. Jan. 1, 1977.
Mandelbrot, B. B. The fractal geometry of nature. Freeman and Company. . pp. 32-35. Jan. 1, 1982.
Martin , R. W. ; Stangel , J. J. An unfurlable, high-gain log-periodic antenna for space use. Symposium on The USAF Antenna Research and Development Program. Nov. 14, 1967.
Martin, W. R. Flush vor antenna for c-121 aircraft. Symposium on The USAF Antenna Research and Development Program, 2nd. Oct. 19, 1952.
Matthaei , George L. Microwave filters impedance-matching networks and coupling structures. Artech House. . p. 1096. Jan. 1, 1980.
Matthaei , George L. et al. Hairpin-comb filters for HTS and other narrow-band applications. Microwave Theory and Techniques, IEEE Transactions on. vol. 45. No. 3. Aug. 1, 1997.
May , M. Aerial magic. New Scientist. Jan. 31, 1998.
Mayes , P. Some broadband , low-profile antennas. Antenna Applications Symposium. Sep. 18, 1985.
Mayes , P. E. High gain log-periodic antennas. Symposium on the USAF antenna research and development program, 10th. Oct. 3, 1960.
Pozar , David M. Microwave Engineering—Chapter 12: Introduction to Microwave Systems. Addison-Wesley. pp. 663-666 , 675-676. Jan. 1, 1990.
Pozar , David M. ; Newman , E. Analysis of a Monopole Mounted near or at the Edge of a Half-Plane. IEEE Transactions on Antennas and Propagation. vol. 29. No. 3. May 1, 1981.
Pozar , David M. ; Schaubert , Daniel H. Microstrip antennas. The analysis and design of microstrip antennas and arrays. IEEE Press; Pozar, Schaubert. . p. 431. Jan. 1, 1995.
Pribetich , P. ; Combet , Y. et al Quasifractal planar microstrip resonators for microwave circuits. Microwave and Optical Technology Letters. vol. 21. No. 6. pp. 433-436. Jun. 20, 1999.
Puente , C. Fractal antennas. Universitat Politecnica de Catalunya. May 1, 1997.
Puente , C. Fractal design of multiband antenna arrays. University of Illinois at Urbana-Champaign—Universitat Politècnica de Catalunya. Jan. 1, 1994.
Puente , C. Fractal multiband antenna based on the Sierpinski gasket. Electronic letters. Jan. 4, 1996.
Puente , C. ; Anguera , J. ; Romeu , J.; Borja , C. ; Navarro , M. ; Soler , J. Fractal-shaped antennas and their application to gsm 900 1800. Antennas and Propagation Society International Symposium, 2000. IEEE. Apr. 1, 2000.
Puente , C. ; Borja , C. ; Navarro , M. et al an iterative model for fractal antennas—application to the Sierpinski gasket antenna. Antennas and Propagation, IEEE Transactions on. May 1, 2000.
Puente , C. ; Claret , J. ; Sagues , F. et al Multiband properties of a fractal tree antenna generated by electrochemical deposition. Electronic Letters. vol. 32. No. 25. pp. 2298-2299. Dec. 5, 1996.
Puente , C. ; Navarro , M. ; Romeu , J. ; Pous , R. Variations on the fractal sierpinski antenna flare angle. Antennas and Propagation Society International Symposium, 1998. AP-S. Digest. Jun. 1, 1998.
Puente , C. ; Navarro , M. ; Romeu , J. et al Efecto de la variacion angular del vertice de alimentacion en la antena fractal de Sierpinski. XII Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) :Bilbao , 1997. Sep. 1, 1997.
Puente , C. ; Pous , R. Diseño fractal de agrupaciones de antenas—Fractal design of antenna arrays. IX Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : La Palma , 1994. Sep. 1, 1994.
Puente , C. ; Pous , R. Fractal design of multiband and low side-lobe arrays. Antennas and Propagation, IEEE Transactions on. vol. 44. No. 5. May 1, 1996.
Puente , C. ; Romeu , J. ; Bartolome , R. ; Pous , R. Perturbation of the Sierpinski antenna to allocate operating bands. Electronic Letters. vol. 32. No. 24. Nov. 21, 1996.
Puente , C. ; Romeu , J. ; Cardama , A. Fractal-shaped antennas. Frontiers in electromagnetics—IEEE Press. Chapter 2. pp. 48-50. Jan. 1, 2000.
Puente , C. ; Romeu , J. ; Cardama , A. ; Pous , R. Multiband fractal antennas and arrays. Fractals engineering—from theory to industrial applications. Jan. 1, 1997.
Puente , C. ; Romeu , J. ; Cardama , A. ; Pous , R. On the behavior of the Sierpinski multiband fractal antenna. Antennas and Propagation, IEEE Transactions on. vol. 46. No. 4. Apr. 1, 1998.
Puente , C. ; Romeu , J. ; Cardama, A. The Koch monopole—a small fractal antenna. Antennas and Propagation, IEEE Transactions on. vol. 48. No. 11. Nov. 1, 2000.
Puente , C. et al Small but long Koch fractal monopole. Electronic Letters. vol. 34. pp. 9-10. Jan. 8, 1998.
Qing , Xianming ; Chia , Y.W.M. A novel single feed circular polarized slotted loop antenna. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Rademacher , H. ; Toeplitz , O. The Enjoyment of Math. Princeton Science Library. . pp. 164-169. Jan. 1, 1957.
Rahman , M. et al Dual band strip sleeve monopole for handheld telephones. Microwave and Optical Technology Letters. Apr. 20, 1999.
Rathi , Vivek ; Kumar , Girish ; Ray , K. P. Improved coupling for aperture coupled microstrip antennas. Electronic Letters. Jun. 20, 1991.
Ray , K. ; Kumar , G. Multi-frequency and broadband hybrid-coupled circular microstrip antennas. Electronic Letters. Mar. 13, 1997.
Rensh , Y. A. Broadband microstrip antenna. Proceedings of the Moscow International Conference on Antenna Theory and Tech. vol. 28. pp. 420-423. Sep. 22, 1998.
Rich , Barnett Review of Elementary Mathematics 2d ed.1997. McGraw—Hill—Case 6:09-cv-00203-LED-JDL.. pp. 245-247. Jan. 1, 1997.
Rikuta , Yuko ; Arai , Hiroyuki A self-diplexing antenna using stacked patch antennas. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 1, 2000.
Romeu , J. ; Blanch , S. A three dimensional hilbert antenna. Antennas and Propagation Society International Symposium, 2002. IEEE. Jun. 16, 2002.
Romeu , J. ; Navarro , M. ; Puente , C. ; Berenguer , J. Dual fractal antennas for cellular telephony . Dual monopole microcell application. Fractus II. Electromagnetic and Photonic Engineering Group (EEF) Dept. of Signal Theory and Communications. Polythecnic University of Catalonia. May 28, 1998.
Romeu , J. ; Navarro , M. ; Puente , C. ; Berenguer , J. Dual Fractal antennas for cellular telephony. Correction of truncation effect (CET). Electromagnetic and photonic engineering group (EEF). Dept. of Signal Theory and Communications. Polytechnic University of Catalonia. Nov. 20, 1997.
Romeu , J. ; Navarro , M. ; Puente , C. ; Berenguer , J. Dual fractal antennas for cellular telphony—Adjustment of input impedance. P2/3SPK dual monopole. Electromagnetic and Photonic Engineering Group (EEF). Dep. of Signal Theory and Communications. Polytechnic University of Catalonia. Apr. 2, 1998.
Romeu , J. ; Puente , C. ; Cardama , J. Small fractal antennas. Fractals in engineering conference, India.. pp. 35-36. Jun. 1, 1999.
Romeu , J. ; Rahmat-Samii , Y. Dual band FSS with fractal elements. Electronic Letters. Apr. 29, 1999.
Romeu , J. ; Rahmat-Samii , Yahya A fractal based FSS with dual band characteristics. Antennas and Propagation Society International Symposium, 1999. IEEE. Aug. 1, 1999.
Rosa , J. ; Case E. W. A wide angle circularly polarized omnidirectional array antenna. Symposium on the USAF antenna Research and Development Program , 18th. Oct. 15, 1968.
Roscoe , D. J. et al Tunable dipole antennas. Antennas and Propagation Society International Symposium, 1993. AP-S. Digest. Jun. 28, 1993.
Rotman , W. Problems encountered in the design of flush-mounted antennas for high speed aircraft. Symposium on the USAF Antenna Research and Development Program, 2nd. Oct. 19, 1952.
Rouvier , R. et al. Fractal analysis of bidimensional profiles and application to electromagnetic scattering from soils. IEEE. Jan. 1, 19960.
Rowell , C. R. ; Murch , R.D. A capacitively loaded PIFA for compact mobile telephone handsets. Antennas and Propagation, IEEE Transactions on. May 1, 1997.
Rowell , Corbett R. ; Murch , R. D. A compact PIFA suitable for dual-frequency 900-1800-MHz operation. Antennas and Propagation, IEEE Transactions on. Apr. 1, 1998.
Rumsey , V. Frequency independent antennas. Academic Press. . pp. 2-3. Jan. 1, 1996.
Russell , D. A. et al. Dimension of strange attractors. Physical Review Letters. vol. 45. No. 14. Oct. 6, 1980.
Salvador , C. et al. Dual frequency planar antenna at S and X bands. Electronic Letters. vol. 31. pp. 1706-1707. Sep. 1, 1995.
Samavati , Hirad ; Hajimiri , Ali et al Fractal capacitors. IEEE Journal of solid state circuits. vol. 33. No. 12. pp. 2035-2041. Dec. 1, 1998.
Sanad , Mohamed A compact dual broadband microstrip antenna having both stacked and planar parasitic elements. Antennas and Propagation Society International Symposium, 1996. AP-S. Digest. . pp. 6-9. Jul. 21, 1996.
Sanad , Mohamed et al. An internal integrated microstrip antenna for PCS/cellular telephones and other hand-held portable communication equipment. Microwave Journal. Jul. 1, 1998.
Sanad , Mohamed et al. Compact internal multiband microstrip antennas for portable GPS, PCS, cellular and satellite phones. Microwave Journal. Jan. 1, 1999.
Sanchez Hernandez , David Single-fed dual band circularly polarised microstrip patch antennas. 28th EuMC. Sep. 9, 1996.
Sanchez Hernandez , David A survey of broadband microstrip patch antennas. Microwave Journal. Sep. 1, 1996.
Infringement Chart—LG MUZIQ LX570. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Rumor. Fractus, 2009.
Infringement Chart—LG Rumor 2. Fractus, 2009.
Infringement Chart—Rumor 2. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Rumor 2. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Rumor 2. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG Rumor 2. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Rumor 2. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Rumor. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Rumor. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Rumor. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Rumor. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Shine CU720. Fractus, 2009.
Infringement Chart—LG Shine CU720. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Shine CU720. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Shine CU720. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG Shine CU720. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Shine CU720. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG UX280. Fractus, 2009.
Infringement Chart—LG UX280. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG UX280. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG UX280. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG UX280. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG UX280. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Versa VX9600. Fractus, 2009.
Infringement Chart—LG Versa VX9600. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Versa VX9600. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Versa VX9600. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG Versa VX9600. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Voyager VX 10000. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG Voyager VX10000. Fractus, 2009.
Infringement Chart—LG Voyager VX10000. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Voyager VX10000. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG Voyager VX10000. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VU CU920. Fractus, 2009.
Infringement Chart—LG Vu CU920. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG Vu CU920. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VU CU920. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—LG VU CU920. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VU CU920. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX 8800. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX5400. Fractus, 2009.
Infringement Chart—LG VX5400. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX5400. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX5400. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—LG VX5400. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—LG VX5500. Fractus, 2009.
Infringement Chart—LG VX5500. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—LG VX5500. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—LG VX5500. U.S. Pat. No. 7,397,431. Fractus, 2009.
CN00818542—Response to Office Action dated on Nov. 5, 2004. Herrero Asociados. Mar. 31, 2005.
CN01823716—Office action dated on Feb. 16, 2007. CCPIT Patent and Trademark Law Office—Chinese Patent Office. Feb. 16, 2007.
CN01823716—Response to the office action dated on Feb. 16, 2007. CCPIT Patent and Trademark Law Office—Chinese Patent Office. Aug. 21, 2007.
CN01823716—Office action dated Sep. 21, 2007. CCPIT Patent and Trademark Law Office—Chinese Patent Office. Sep. 21, 2007.
CN01823716—Response to the office action dated on Sep. 21, 2007. CCPIT Patent and Trademark Law Office—Chinese Patent Office. Dec. 3, 2007.
EP00909089—Office Action dated on Feb. 7, 2003. European Patent Office EPO. Feb. 7, 2003.
EP00909089—Response to Office Action dated on Feb. 7, 2003. Herrero y Asociados. Aug. 14, 2003.
EP00909089—Summons to attend oral proceedings. EPO. Oct. 28, 2004.
EP00909089—Written submissions. Herrero y Asociados. Dec. 15, 2004.
EP00909089—Response to the Office Action dated on Oct. 28, 2004. European Patent Office. Dec. 16, 2004.
EP00909089—Claims. Herrero y Asociados. Jan. 28, 2005.
EP00909089—Minutes from Oral Proceedings. EPO. Jan. 28, 2005.
EP05012854—Notice of appeal. Herrero y Asociados. Dec. 19, 2007.
EP05012854—Statement setting out the Grounds of appeal. Herrero y Asociados. Nov. 3, 2008.
EP99974041—European Patent Office Communication dated on Aug. 27, 2002, 4 pages EPO. Aug. 27, 2002.
EP99974041—European Patent Office Communication dated on Oct. 22, 2003, 4 pages EPO. Oct. 22, 2003.
EP99974041—European Patent Office communication dated on Feb. 9, 2004. 3 pages EPO. Feb. 9, 2004.
PCT/EP00/00411—International preliminary examination report dated Aug. 29, 2002—Invitation to restrict or to pay additional fees. EPO. Aug. 29, 2002.
PCT/ES99/00296—International Search Report. OEPM. Mar. 29, 2001.
PCT/ES99/00296—Reply to the Written Opinion dated on Nov. 15, 2001—Declaration of J. Baxter—Exhibit FFF-. Herrero & Asociados. Nov. 15, 2001.
PCT/ES99/00296—International Preliminary Examination Report. EPO. Dec. 19, 2001.
PCT/ES99/00296—Russian Patent Office Communication (with its English translation) from the corresponding Russian Patent Application, 10 pages Russian Patent Office. Aug. 4, 2003.
U.S. Appl. No. 10/102,568—Preliminary Amendment—Exhibit CCCC. Rosenman & Colin LLP. Mar. 18, 2002.
U.S. Appl. No. 10/102,568—Office Action dated on Jan. 23, 2004. USPTO. Jan. 23, 2004.
U.S. Appl. No. 10/102,568—Amendment and response to the Office Action dated on Jan. 23, 2004. Jones Day. May 26, 2004.
U.S. Appl. No. 10/102,568—Supplemental Amendment to correct and inadvertent typographical error in the amendment filed in May 24, 2004. USPTO. Jun. 14, 2004.
U.S. Appl. No. 10/102,568—Notice of allowance dated Jun. 28, 2004. USPTO. Jun. 28, 2004.
U.S. Appl. No. 10/181,790—Office action dated on Aug. 27, 2004. USPTO. Aug. 27, 2004.
U.S. Appl. No. 10/181,790—Response to office action dated on Aug. 27, 2004. Jones Day. Dec. 8, 2004.
U.S. Appl. No. 10/181,790—Office action dated on Mar. 2, 2005. USPTO. Mar. 2, 2005.
U.S. Appl. No. 10/181,790—Response to the office action dated on Mar. 2, 2005. Jones Day. Mar. 14, 2005.
U.S. Appl. No. 10/181,790—Office action dated on Jun. 2, 2005. USPTO. Jun. 2, 2005.
U.S. Appl. No. 10/181,790—Response to the office action dated on Jun. 2, 2005. Jones Day. Jul. 20, 2005.
U.S. Appl. No. 10/181,790—Office action dated on Aug. 4, 2005. USPTO. Aug. 4, 2005.
U.S. Appl. No. 10/182,635—Office action dated on Oct. 4, 2004. USPTO. Oct. 4, 2004.
U.S. Appl. No. 10/182,635—Amendment and response to office action dated on Oct. 4, 2004. Jones Day. Nov. 12, 2004.
U.S. Appl. No. 10/182,635—Office Action dated on Dec. 13, 2004. USPTO. Dec. 13, 2004.
U.S. Appl. No. 10/182,635—Amendment and response to office action dated on Dec. 13, 2004. Jones Day. Mar. 17, 2005.
U.S. Appl. No. 10/182,635—Notice of Allowance dated on Apr. 11, 2005. USPTO. Apr. 11, 2005.
U.S. Appl. No. 10/422,578—Office Action dated on Oct. 4, 2004. USPTO. Oct. 4, 2004.
U.S. Appl. No. 10/422,578—Response to the Office Action dated on Oct. 4, 2004. Jones Day. Jan. 6, 2005.
U.S. Appl. No. 10/422,578—Office Action dated on Apr. 7, 2005. USPTO. Apr. 7, 2005.
U.S. Appl. No. 10/422,578—Response to the Office Action dated on Apr. 7, 2005. Jones Day. May 31, 2005.
U.S. Appl. No. 10/422,578—Advisory Action before the filing of an Appeal Brief. USPTO. Jun. 23, 2005.
U.S. Appl. No. 10/422,578—Office Action dated on Jun. 23, 2005. USPTO. Jun. 23, 2005.
U.S. Appl. No. 10/422,578—Request for Continued Examination with response to the office action dated on Apr. 7, 2005 and the advisory action dated on Jun. 23, 2005. Jones Day. Aug. 8, 2005.
U.S. Appl. No. 10/422,578—Office Action dated on Aug. 24, 2005. USPTO. Aug. 24, 2005.
U.S. Appl. No. 10/422,578—Office Action dated on Jan. 26, 2006. USPTO. Jan. 26, 2006.
U.S. Appl. No. 10/422,578—Office Action dated on Mar. 12, 2007. USPTO. Mar. 12, 2007.
U.S. Appl. No. 10/422,578—Office Action dated on Aug. 23, 2007. USPTO. Aug. 23, 2007.
U.S. Appl. No. 10/422,578—Office action dated on Mar. 26, 2008. USPTO. Mar. 26, 2008.
U.S. Appl. No. 10/797,732—Office action dated on Aug. 9, 2007. USPTO. Aug. 9, 2007.
U.S. Appl. No. 10/822,933—Office Action dated on Oct. 5, 2006. USPTO. Oct. 5, 2006.
U.S. Appl. No. 10/822,933—Response to Office Action dated on Oct. 5, 2006. Jenkens & Gilchrist. Jan. 4, 2007.
U.S. Appl. No. 10/822,933—Notice of allowance dated on Oct. 18, 2007. USPTO. Oct. 18, 2007.
U.S. Appl. No. 10/963,080—Preliminary amendment—Declaration of J. Baxter—Exhibit W. Jones Day. Case 6:09-cv-00203-LED-JDL. Dec. 10, 2004.
U.S. Appl. No. 10/963,080—Office Action dated on Jun. 15, 2005. USPTO. Jun. 15, 2005.
U.S. Appl. No. 10/963,080—Amendment and response to Office Action dated on Jun. 15, 2005. Howison and Arnott. Aug. 8, 2005.
U.S. Appl. No. 10/963,080—Notice of allowance dated on Sep. 1, 2005.. USPTO. Sep. 1, 2005.
U.S. Appl. No. 11/021,597—Office Action dated on Mar. 12, 2007. USPTO. Mar. 12, 2007.
U.S. Appl. No. 11/021,597—Response to the Office Action dated Mar. 12, 2007. Winstead. Aug. 9, 2007.
U.S. Appl. No. 11/021,597—Office action dated Oct. 30, 2007. USPTO. Oct. 30, 2007.
U.S. Appl. No. 11/021,597—Response to the office action dated Oct. 30, 2007. Winstead. Dec. 28, 2007.
U.S. Appl. No. 11/033,788—Response to Office Action dated Feb. 7, 2006. Jenkens & Gilchrist. Jun. 1, 2006.
U.S. Appl. No. 11/102,390—Notice of allowance dated on Jul. 6, 2006.. USPTO. Jun. 25, 2006.
U.S. Appl. No. 11/110,052—Preliminary amendment dated on Apr. 18, 2005. Howison & Arnott. Apr. 18, 2005.
U.S. Appl. No. 11/110,052—Notice of Allowance dated on May 30, 2006. USPTO. May 30, 2006.
U.S. Appl. No. 11/124,768—Amendment in response to non-final office action dated Aug. 23, 2006. Jenkens & Gilchrist. Nov. 13, 2006.
U.S. Appl. No. 11/179,250—Response office action. Howison & Arnott—Case 6:09-cv-00203-LED-JDL. Jul. 12, 2005.
U.S. Appl. No. 11/179,257—Office Action dated on Aug. 23, 2006. USPTO. Aug. 23, 2006.
U.S. Appl. No. 11/179,257—Response to office action dated Aug. 23, 2006. Howison and Arnott. Sep. 12, 2006.
U.S. Appl. No. 11/179,257—Office Action dated on Sep. 21, 2006. USPTO. Sep. 21, 2006.
U.S. Appl. No. 11/179,257—Amendment and response to office action dated Sep. 21, 2006. Howison and Arnott. Oct. 4, 2006.
U.S. Appl. No. 11/179,257—Notice of allowance dated on Oct. 19, 2006. USPTO. Oct. 19, 2006.
U.S. Appl. No. 11/179,257—Notice of allowance dated on Apr. 23, 2007. USPTO. Apr. 23, 2007.
U.S. Appl. No. 11/179,257—Notice of Allowance dated on Jun. 18, 2007. USPTO. Jun. 18, 2007.
U.S. Appl. No. 11/179,257—Notice of allowance dated on Aug. 2, 2007. USPTO. Aug. 2, 2007.
U.S. Appl. No. 11/179,257—Notice of allowance dated on Nov. 26, 2007. USPTO. Nov. 26, 2007.
U.S. Appl. No. 11/179,257—Office Action dated on Feb. 4, 2008. USPTO. Feb. 4, 2008.
U.S. Appl. No. 11/179,257—Amendment and response to office action dated on Feb. 4, 2008. Howison and Arnott. Feb. 27, 2008.
U.S. Appl. No. 11/179,257—Notice of allowance dated on Apr. 15, 2008. United States Patent and Trademark Office. Apr. 15, 2008.
U.S. Appl. No. 11/550,256—Office Action dated on Jan. 15, 2008. USPTO. Jan. 15, 2008.
U.S. Appl. No. 11/550,256—Amendment and response to office action dated on Jan. 15, 2008. Howison and Arnott. Feb. 27, 2008.
U.S. Appl. No. 11/550,256—Notice of allowance dated on Mar. 28, 2008.. USPTO. Mar. 28, 2008.
U.S. Appl. No. 11/550,276—Office Action dated on Jun. 9, 2008. USPTO. Jun. 9, 2008.
U.S. Appl. No. 11/550,276—Amendment and response to Office Action dated on Jun. 9, 2008. Howison and Arnott. Jul. 7, 2008.
U.S. Appl. No. 11/550,276—Notice of allowance dated on Sep. 17, 2008.. USPTO. Sep. 17, 2008.
U.S. Appl. No. 11/550,276—Notice of allowance dated on Jan. 13, 2009.. USPTO. Jan. 13, 2009.
U.S. Appl. No. 11/780,932—Preliminary amendment dated on Jul. 20, 2007. Howison & Arnott—Case 6:09-cv-00203-LED-JDL. Jul. 20, 2007.
U.S. Appl. No. 11/780,932—Office Action dated on Jul. 22, 2008. USPTO. Jul. 22, 2008.
U.S. Appl. No. 11/780,932—Amendment and response to Office Action dated on Jul. 22, 2008. Howison and Arnott. Aug. 6, 2008.
U.S. Appl. No. 11/780,932—Notice of allowance dated on Oct. 1, 2008. USPTO. Oct. 1, 2008.
U.S. Appl. No. 11/780,932—Notice of allowance dated on Jan. 28, 2009.. USPTO. Jan. 28, 2009.
U.S. Appl. No. 11/796,368—Office Action dated on Jun. 25, 2010. USPTO. Jun. 25, 2010.
U.S. Appl. No. 11/796,368—Office Action dated on Aug. 10, 2010. USPTO. Aug. 10, 2010.
U.S. Appl. No. 12/347,462—Office Action dated on Oct. 28, 2009. USPTO. Oct. 28, 2009.
U.S. Appl. No. 12/400,888—Office action dated on Oct. 5, 2010. USPTO. Oct. 5, 2010.
U.S. Appl. No. 12/400,888—Response to Office Action dated on Oct. 5, 2010. Howison & Arnott. Nov. 2, 2010.
U.S. Appl. No. 12/400,888—Office action dated on Dec. 10, 2010. United States Patent and Trademark Office. Dec. 12, 2010.
U.S. Appl. No. 12/400,888—Amendment and response to Office Action dated on Dec. 10, 2010. Howison & Arnott, LLP. Dec. 22, 2010.
Document 1113—Memorandum Opinion and Order, dated Jun. 28, 2012.
Document 1114—Final Judgement, dated Jun. 28, 2012.
Document 1143—Notice of appeal dated on Aug. 23, 2012.USPTO. Aug. 8, 2012.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/000,591—Response to the Action Closing Prosecution mailed on Apr. 27, 2012 for U.S. Pat. No. 7,123,208, dated on Jun. 27, 2012.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/000,591—Action Closing Prosecution for U.S. Pat. No. 7,123,208, dated Jul. 26, 2012.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Patent owner's reply to action closing prosecution mailed on Jul. 26, 2012.Edell , Shapiro & Finnan , LLC. Aug. 27, 2012.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Third party requesters comments to patent owner's ACP reply of Aug. 27, 2012 dated on Aug. 31, 2012.Edell Shapiro & Finnan , LLC. Aug. 31, 2012.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Petition for suspension of inter-partes reexamination proceedings including exhibits O-1 through O-19.Edell , Shapiro & Finnan , LLC. Oct. 1 , 2012.
U.S. Appl. No. 95/001,390 , U.S. Appl. No. 95/000,589—Response to the Action Closing Prosecution mailed on Apr. 26, 2012 for U.S. Pat. No. 7,015,868, dated Jun. 26, 2012.
U.S. Appl. No. 95/001,390 , U.S. Appl. No. 95/000,589—Action Closing Prosecution for U.S. Pat. No. 7,015,868, dated Jul. 26, 2012.
U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Patent owner's reply to action closing prosecution mailed on Jul. 26, 2012.Edell , Shapiro & Finnan , LLC. Aug. 27, 2012.
U.S. Appl. No. 95/001,390 , U.S. Appl. No. 95/000,589—Third party requester's comments to patent owner's ACP reply of Aug. 27, 2012. Edell , Shapiro & Finnan LLC. Aug. 31, 2012.
U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Petition for suspension of interpartes reexamination proceedings including exhibits O-1 through O-19.Edell , Shapiro & Finnan , LLC. Oct. 1 , 2012.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595—Response to the Action Closing Prosecution mailed on Apr. 26, 2012 for U.S. Pat. No. 7,528,782, dated Jun. 26, 2012.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595—Action Closing Prosecution for U.S. Pat. No. 7,528,782, dated Jul. 27, 2012.
U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Patent owner's reply to action closing prosecution mailed on Jul. 27, 2012. Edell , Shapiro & Finnan , LLC. Aug. 27, 2012.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/001,595—Third party requester's comments to patent owner's reply of Aug. 27, 2012. Defendants. Sep. 26, 2012.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586—Right of Appeal Notice for U.S. Pat. No. 7,397,431, dated Jun. 1, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Patent Owner amendment in response to the right of appeal notice mailed on Jun. 1, 2012.Edell , Shapiro & Finnan , LLC. Jul. 2, 2012.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586—Third party requester's notice of cross-appeal US7397431, dated Jul. 6, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Petition to terminate Inter Partes Reexamination dated on Jul. 31, 2012.Edell, Shapiro and Finnan, LLC. Jul. 31, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Petition for suspension of inter partes reexamination proceedings dated on Aug. 1, 2012.Edell, Shapiro & Finnan , LLC. Aug. 1, 2012.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586—Right of appeal notice for U.S. Pat. No. 7,397,431, dated Aug. 9, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Third party requester's opposition to patent owner's petition for suspension for U.S. Pat. No. 7,397,431 dated on Aug. 30, 2012.Defendants. Aug. 30, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Response to the Right of Appeal Notice (RAN) mailed on Aug. 9, 2012.Edell , Shapiro & Finnan , LLC. Sep. 10, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Third party requesters notice of cross-appeal. Defendants. Sep. 11, 2012.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588—Corrected Third party requester's comments to patent owner's reply of Apr. 9, 2012 for the U.S. Pat. No. 7,394,432, dated May 9, 2012.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 951/000,588—Action closing prosecution for U.S. Pat. No. 7,394,432, dated Aug. 2, 2012.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Reply to ACP including exhibits O-1 through O-10.Edell , Shapiro & Finnan , LLC. Oct. 2 , 2012.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Petition for suspension of Interpartes Reexamination Proceedings including exhibits O-1 through O-19.Edell , Shapiro & Finnan, LLC. Oct. 5 , 2012.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Right of appeal notice. USPTO. Dec. 10, 2012.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Patent owner's notice of appeal in interpartes reexamination for the U.S. Pat. No. 7,123,208. Edell , Finnan & Shapiro. Jan. 10, 2013.
U.S. Appl. No. 951/001,390—U.S. Appl. No. 95/000,589—Right of appeal notice. USPTO. Dec. 10, 2012.
U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Right of appeal notice. USPTO. Dec. 10, 2012.
U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Patent owner's notice of appeal in inter partes reexamination for the U.S. Pat. No. 7,528,782. Edell , Finnan & Shapiro. Jan. 10, 2013.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Third party requester's petition for limited waiver. USPTO. Dec. 13, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Patent owner's Appeal Brief for U.S. Pat. No. 7,397,431. Edell, Shapiro & Finnan , LLC. Nov. 13, 2012.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Patent owner's Appeal Brief—Exhibits—for U.S. Pat. No. 7,397,431. Edell, Shapiro & Finnan , LLC. Nov. 13, 2012.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Right of appeal notice. USPTO. Dec. 10, 2012.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Response to the right of appeal notice for the U.S. Pat. No. 7,394,432. Edell , Shapiro & Finnan. Jan. 13, 2013.
U.S. Appl. No. 13/411,212—Amendment and response to office action dated on May 31, 2012. Howison and Arnott, Jun. 21, 2012.
U.S. Appl. No. 13/411,212—Notice of allowance dated on Aug. 8, 2012. USPTO. Aug. 8, 2012.
U.S. Appl. No. 13/411,212—Office action dated on May 31, 2012. USPTO. May 31, 2012.
EP10185339—Grounds for decision at the oral proceedings dated on Nov. 20 , 2012. EPO. Jan. 2, 2013.
U.S. Appl. No. 13/669,916—Notice of allowance. USPTO. Dec. 17, 2012.
Miltenyi , P. EP10185339—Substantiation of appeal. Grunecker. Apr. 24, 2013.
Menefee , J. A. U.S. Appl. No. 95/000,595—U.S. Appl. No. 95/001,455—Inter partes reexamination examiner's answer for the U.S. Pat. No. 7,528,782. USPTO. Jun. 7, 2013.
Finnan, P. J. U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Patents owner's appeal brief for the U.S. Pat. No. 7,123,208. Edell, Shapiro & Finnan. May 6, 2013.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Third party requester's respondent brief for the U.S. Pat. No. 7,123,208. Samsung -Kyocera. Jun. 6, 2013.
Menefee , J. A. U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Inter partes reexamination examiner's answer for the U.S. Pat. No. 7,123,208. USPTO. Jun. 25, 2013.
Finnan , P. J. U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Patents owner's appeal brief for the U.S. Pat. No. 7,015,868. Edell, Shapiro & Finnan. May 6, 2013.
U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Third party requester's respondent brief for the U.S. Pat. No. 7,015,868. Samsung—Kyocera. Jun. 6, 2013.
Menefee , J. A. U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Interpartes reexamination examiner's answer for the U.S. Pat. No. 7,015,868. USPTO. Jun. 21, 2013.
U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Third party requester's respondent brief for the U.S. Pat. No. 7,528,782. Samsung—Kyocera. Apr. 25, 2013.
Menefee, J. A. U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Interpartes reexamination examiner's answer for the U.S. Pat. No. 7,528,782. USPTO. Jun. 7, 2013.
Finnan , P. P J. U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Patents owner's appeal brief for the U.S. Pat. No. 7,394,432. Edell, Shapiro & . Finnan. May 6, 2013.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Third party requesters respondent brief for the U.S. Pat. No. 7,394,432.Samsung—Kyocera Jun. 6, 2013.
Infringement Chart—LG Dare VX9700 . U.S. Pat. No. 7,528,782. Fractus. Nov. 5, 2009.
Document 0256—Plaintiff Fractus, S. A.'s answer to the counterclaims of defendants Research in Motion LTD. and Research in Motion Corporation to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0257—Plaintiff Fractus, S. A.'s answer to counterclaims of defendant Pantech Wireless, Inc. to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0258—Plaintiff Fractus, S. A.'s answer to defendant Kyocera Communications, Inc's Counterclaims to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0259—Plaintiff Fractus, S. A.'s answer to defendant Kyocera Wireless Corp's Counterclaims to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0260—Plaintiff Fractus, S. A.'s answer to defendant Palm, Inc's Counterclaims to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0261—Plaintiff Fractus, S. A.'s answer to defendant UTStarcom, Inc's Counterclaims to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0262—Plaintiff Fractus, S. A.'s answer to counterclaims of defendant Samsung Telecommunications America LLC to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0263—Plaintiff Fractus, S. A.'s answer to counterclaims of defendants LG Electronics Inc., Electronics USA, Inc., and LG Electronics Mobilecomm USA, Inc. to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
Document 0273—Plaintiff Fractus, S. A.'s answer to counterclaims of defendants HTC America, Inc to the Second Amended Complaint. Susman Godfrey. Jan. 14, 2010.
Document 0286—Amended answer of the Sharp defendants to plaintiff's second amended complaint. Defendants. Feb. 24, 2010.
Document 0287—Defendants Samsung Electronics Co., Ltd.'s; Samsung Electronics Research Institute's and Samsung Semiconductor Europe GMBH' s first amended answer; and Samsung Telecommunications America LLC' s first amended answer. Defendants. Feb. 24, 2010.
Document 0288—Defendants LG Electronics Inc., LG Electronics USA, Inc., and LG Electronics Mobilecomm USA Inc. First amended answer and counterclaim to second amended complaint. Defendants. Feb. 24, 2010.
Document 0290—Defendant HTC America, Inc.'s amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 24, 2010.
Document 0291—Defendant HTC Corporation's amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 24, 2010.
Document 0297—Defendant HTC Corporation's amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 25, 2010.
Document 0298—Defendant HTC America, Inc.'s amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 25, 2010.
Document 0351—Plaintiff Fractus, S. A.'s answer to amended counterclaims of defendant Samsung Telecommunications America LLC's to Fractus's Second Amended Complaint. Susman Godfrey. Apr. 1, 2010.
Document 0352—Plaintiff Fractus, S. A.'s answer to amended counterclaims of defendant HTC Corporation to Fractus's Second Amended Complaint. Susman Godfrey. Apr. 1, 2010.
Document 0353—Plaintiff Fractus, S. A.'s answer to amended counterclaims of defendant HTC America, Inc. To Fractus's Second Amended Complaint. Susman Godfrey. Apr. 1, 2010.
Document 0354—Plaintiff Fractus, S. A.'s answer to amended counterclaims of defendant LG Electronics Inc., LG Electronics USA, Inc., and LG Electronics Mobilecomm USA Inc's to Fractus's Second Amended Complaint. Susman Godfrey. Apr. 1, 2010.
Document 0415—P.R. 4-3 joint claim construction statement. Susman Godfrey. Jun. 14, 2010.
Document 0423—Fractus SA's Opening Claim Construction Brief with Parties' Proposed and Agreed Constructions in the case of Fractus SA v. Samsung Electornics Co. Ltd. et al.. Susman Godfrey. Jul. 16, 2010.
Document 0428—Response of defendants Kyocera Communications, Inc; Palm Inc. and UTStarcom, Inc. to plaintiff Fractus SA's opening claim construction brief in “Case 6:09-cv-00203-LED-JDL”. Defendants. Jul. 30, 2010.
Document 0429—Declaration of Jeffery D. Baxter—Including Exhibits: J, K, L, M ,N ,O, P, Q, R, S, T, U, Z, AA, KK, LL. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 1—Chart of Agreed Terms and Disputed Terms. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 2—Family Tree of Asserted Patents. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 33—Excerpt from Plaintiff's '868 pat. inf.cont.for Samsung SPH M540. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 34—Excerpts from Plaintiffs '431 patent Infringement Contentions of HTC Diamond. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 41—Demonstrative re: counting segments. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 42—Demonstrative showing how straight segments can be fitted over a curved surface. Defendants. Jul. 30, 2010.
Document 0430—Defendants RIM, Samsung, HTC, LG and Pantech's response to plaintiff Fractus SA's opening claim construction brief—Exhibit 57—Excerpts from Plaintiffs '868 and '762 Pat. Int. cont. for RIM 8310. Defendants. Jul. 30, 2010.
Document 0440—Fractus's opposition to defendants' motion for summary judgement of invalidity based on indefiniteness and lack of written description for certain terms. Susman Godfrey. Aug. 16, 2010.
Document 0440-1—Expert declaration by Dr. D. Jaggard including exhibits (curriculum and datasheets from Cushcraft, Antenova, Ethertronics and Taoglas). Susman Godfrey. Aug. 16, 2010.
Document 0440-2—Declaration of Micah Howe in support of Fractus SA opposition to defendants' motion for summary judgement of invalidity based on indefiniteness and lack of written description for certain terms. Heim , Payne and Chorus LLP. Aug. 16, 2010.
Document 0452—Defendant's reply in support of their motion for summary judgment of invalidity based on indefiniteness and lack of written description for certain terms with exhibits WW, BBB, EEE, GGG, HHH, III, KKK, MMM, NNN, OOO, PPP, Q. Defendants. Aug. 30, 2010.
Document 0475—Order. Provisional claim construction and motion for summary judgement. Provisional markman order. Court. Nov. 9, 2010.
Document 0526—Memorandum order and opinion. Court. Dec. 17, 2010.
Document 0575—Fractus 's Objections to claim construction memorandum and order. Susman Godfrey. Jan. 14, 2011.
Document 0582—Memorandum opinion and order. Court. Jan. 20, 2011.
Document 0583—Defendant's notice of compliance regarding second amended invalidity contentions. Defendants. Jan. 21, 2011.
Document 0607—Declaration of Thomas E. Nelson—Exhibit A—Antenna photos. Defendants. Feb. 3, 2011.
Document 0609—Fractus' reply to defendant's motion for reconsideration of, and objections to, magistrate Judge Love's markman order. Susman Godfrey. Feb. 4, 2011.
Document 0611—Report and recommendation of United States magistrate judge. Court. Feb. 8, 2011.
Document 0622—Order adopting report and recommendation of magistrate judge. Court. Feb. 11, 2011.
Document 0624—Notice of compliance with motion practice orders. Susman Godfrey. Feb. 14, 2011.
Document 0641—Defendant HTC America, Inc's second amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 25, 2011.
Document 0642—Defendant HTC Corporation's second amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Feb. 25, 2011.
Document 0645—Reply brief in support of Defendant's motion for reconsideration of the court's ruling on the term “at least a portion” in the court's Dec. 17, 2010 claim construction order based on newly-available evidence. Defendants. Feb. 25, 2011.
Document 0647—Defendants Samsung Electronics Co LTD (et al) second amended answer and counterclaims to the second amended complaint of plaintiff Fractus SA—Document 647. Defendants. Feb. 28, 2011.
Consent order. Court. Nov. 15, 2011.
Oral and videotaped deposition of Dr. Stuart Long—vol. 1. . Mar. 11, 2011.
Oral and videotaped deposition of Dr. Stuart Long—vol. 2. . Mar. 13, 2011.
Oral and videotaped deposition of Dr. Stuart Long—vol. 3. . Mar. 14, 2011.
Oral and videotaped deposition of Dr. Warren L. Stutzman—vol. 1. Fractus. Mar. 3, 2011.
Oral and videotaped deposition of Dr. Warren L. Stutzman—vol. 2. Fractus. Mar. 4, 2011.
Claim construction and motion for summary judgement—Markman Hearing—[Defendants]. Defendants. Sep. 2, 2010.
Claimant's notice to admit facts. Hogan Lovells International. Jan. 14, 2011.
Defence. Taylor Wessing. Nov. 10, 2010.
Defendants' invalidity contentions including appendix A and exhibits 1, 2, 3, 4, 5, 10, 11 referenced Multilevel Antenna patent. Defendants. Feb. 24, 2010.
Demonstratives presented by Dr. Steven Best during trial. Defendants. May 19, 2011.
Demonstratives presented by Dr. Stuart Long during trial. Fractus. May 18, 2011.
Document 0001—Complaint for patent infringement. Susman Godfrey. May 5, 2009.
Document 0014—Amended complaint for patent infringement. Fractus. May 6, 2009.
Document 0032—Defendants LG Electronics Mobilecomm USA., Inc.'s answer and counterclaim to complaint. Defendants. Oct. 1, 2009.
Document 0064—Defendant Pantech Wireless, Inc.'s answer, affirmative defenses and counterclaims to Fractus SA's Amended complaint. Defendants. Jun. 4, 2009.
Document 0066—Defendant UTStarcom, Inc's answer affirmative defenses and counterclaims to plaintiff's amended complaint. Defendants. Jun. 8, 2009.
Document 0073—Plaintiff Fractus SA' s answer to defendant Pantech Wireless, Inc's counterclaims. Defendants. Jun. 24, 2009.
Document 0079—Plaintiff Fractus SA's answer to defendant UTStarcom, Inc' s counterclaims. Fractus. Jun. 29, 2009.
Document 0091—Answer, affirmative defenses and counterclaims to the amended complaint for patent infringement on behalf of Defendant Personal Communications Devices Holdings, LLC. Defendants. Jul. 20, 2009.
Document 0099—Defendant Sanyo North America Corporation's partial answer to amended complaint for patent infringement. Defendants. Jul. 20, 2009.
Document 0106—Kyocera Communications Inc's answer, affirmative defenses and counterclaims to plaintiff's amended complaint. Defendants. Jul. 21, 2009.
Document 0107—Kyocera Wireless Corp's answer, affirmative defenses and counterclaims to plaintiff's amended complaint. Defendants. Jul. 21, 2009.
Document 0108—Palm Inc.'s answer, affirmative defenses and counterclaims to plaintiffs amended complaint. Defendants. Jul. 21, 2009.
Document 0111—Civil cover sheet. Susman Godfrey. May 5, 2009.
Document 0175—Defendant HTC Corporation's amended answer and counterclaim to plaintiffs second amended complaint. Defendants. Sep. 25, 2009.
Document 0176—Defendant HTC America Inc's answer and counterclaim to plaintiffs amended complaint. Defendants. Sep. 25, 2009.
Document 0180—Defendants Samsung Electronics Co., Ltd.'s; Samsung Electronics Research Institute's and Samsung Semiconductor Europe GMBS's answer; and Samsung Telecommunications America LLC' s answer and counterclaim. Defendants. Oct. 1, 2009.
Document 0185—Defendants Research in Motion LTD, and Research in Motion Corporation's answers, defenses and counterclaims to plaintiff's amended complaint. Defendants. Oct. 1, 2009.
Document 0187—Defendants LG Electronics Inc., LG Electronics USA, Inc., and LG Electronics Mobilecomm USA Inc. answer and counterclaim to amended complaint. Defendants. Oct. 1, 2009.
Document 0190—Defendant HTC Corporation's First amended answer and counterclaim to plaintiffs amended complaint. Defendants. Oct. 2, 2009.
Document 0191—Defendant HTC America, Inc's first amended answer and counterclaims to plaintiff's amended complaint. Defendants. Oct. 2, 2009.
Document 0217—Defendants Research in Motion LTD, and Research in Motion Corporation's amended answer, defenses and counterclaims to plaintiff's amended complaint. Defendants. Nov. 24, 2009.
Document 0222—Second amended complaint for patent infringement. Susman Godfrey. Dec. 2, 2009.
Document 0227—Second amended complaint for patent infringement—Case 6:09-cv-00203. Fractus. Dec. 8, 2009.
Document 0235—Answer, affirmative defenses and counterclaims to the second amended complaint for patent infringement on behalf of Defendant Personal Communications Devices Holdings, LLC. Defendants. Dec. 17, 2009.
Document 0238—Defendant HTC America, Inc's answer and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 21, 2009.
Document 0239—Defendant HTC Corporation's answer and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 21, 2009.
Document 0241—Defendant Research in Motion LTD and Research in Motion Corporation's second answer, defenses and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 21, 2009.
Document 0242—Defendant Pantech Wireless, Inc's answer, affirmative defenses and counterclaims to Fractus SA's second amended complaint. Defendants. Dec. 21, 2009.
Document 0243—Defendant Sanyo Electric Co. LTD's answer to second amended complaint for patent infringement. Defendants. Dec. 22, 2009.
Document 0244—Defendant Sanyo North America Corporation's answer to second amended complaint for patent infringement. Defendants. Dec. 22, 2009.
Document 0246—Defendant UTStarcom, Inc's answer, affirmative defenses and counterclaims to Fractus SA's second amended complaint. Defendants. Dec. 22, 2009.
Document 0247—Palm, Inc's answer, affirmative defenses and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 22, 2009.
Document 0248—Kyocera Communications, Inc's answer, affirmative defenses and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 22, 2009.
Document 0249—Kyocera Wireless Corp's answer, affirmative defenses and counterclaims to plaintiffs second amended complaint. Defendants. Dec. 22, 2009.
Document 0250—Defendants Samsung Electronics Co., Ltd.'s; Samsung Electronics answer and counterclaim to the second amended complaint of plaintiff Fractus. Defendants. Dec. 23, 2009.
Document 0251—Defendants LG Electronics Inc., LG Electronics USA, Inc., and LG Electronics Mobilecomm USA Inc. answer and counterclaim to second amended complaint. Defendants. Dec. 28, 2009.
Document 0252—Answer of the Sharp Defendants to plaintiffs second amended complaint. Defendants. Dec. 29, 2009.
Document 0255—Plaintiff Fractus, S. A.'s answer to defendant Personal Communications Devices Holdings, LLC's counterclaims to the Second Amended Complaint. Susman Godfrey. Jan. 4, 2010.
U.S. Appl. No. 12/400,888—Notice of allowance dated on Feb. 7, 2011. United States Patent and Trademark Office. Feb. 7, 2011.
U.S. Appl. No. 12/400,888—Notice of allowance dated on Apr. 18, 2011. United States Patent and Trademark Office. Apr. 18, 2011.
U.S. Appl. No. 12/400,888—Notice of allowance dated on Jun. 28, 2011. USPTO. Jun. 28, 2011.
U.S. Appl. No. 13/036,819—Notice of allowance dated on Jun. 27 , 2011. USPTO. Jun. 27, 2011.
U.S. Appl. No. 13/036,819—Notice of allowance dated on Sep. 6, 2011. USPTO. Sep. 6, 2011.
U.S. Appl. No. 13/036,819—Notice of allowance dated on Sep. 21, 2011. USPTO. Sep. 21, 2011.
U.S. Appl. No. 13/036,819—Notice of allowance dated on Dec. 28, 2011. USPTO. Dec. 28, 2011.
U.S. Appl. No. 13/036,819—Notice of allowance dated on Feb. 15, 2012. USPTO. Feb. 15, 2012.
U.S. Appl. No. 13/044,189—Office action dated on Aug. 8, 2011. USPTO. Aug. 8, 2011.
U.S. Appl. No. 13/044,189—Amendment and response to office action dated Aug. 8, 2011. Howison & Arnott. Sep. 1, 2011.
U.S. Appl. No. 13/044,189—Notice of allowance dated on Oct. 11, 2011. USPTO. Oct. 11, 2011.
U.S. Appl. No. 13/044,189—Notice of Allowance dated on Dec. 28, 2011. USPTO. Dec. 28, 2011.
U.S. Appl. No. 13/044,189—Notice of allowance dated on Feb. 15, 2012. USPTO. Feb. 15, 2012.
U.S. Appl. No. 95/000,586—Request for inter partes reexamination of U.S. Pat. No. 7,397,431 including exhibits CC1-CC6. Kyocera Communication Inc.. Nov. 12, 2010.
U.S. Appl. No. 95/000,586 , U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/001,497—Office Action in inter partes reexamination dated on May 13, 2011 for the U.S. Pat. No. 7,397,431. USPTO. May 13, 2011.
U.S. Appl. No. 95/000,588—Request for inter partes reexamination of U.S. Pat. No. 7,394,432 including exhibits CC1-CC6. Kyocera Communications Inc.. Nov. 12, 2010.
U.S. Appl. No. 95/000,589—Request for inter partes reexamination of U.S. Pat. No. 7,015,868 including exhibits CC1-CC5. Kyocera Communications Inc.. Nov. 16, 2010.
U.S. Appl. No. 95/000,591—Request for inter partes reexamination of U.S. Pat. No. 7,123,208 including exhibits CC1-CC4. Kyocera Communication Inc.. Nov. 16, 2010.
U.S. Appl. No. 95/000,595—Request for inter partes reexamination of U.S. Pat. No. 7,528,782 including exhibits CC1-CC4. Kyocera Communications Inc.. Nov. 17, 2010.
U.S. Appl. No. 95/000,595 , U.S. Appl. No. 95/001,499 , U.S. Appl. No. 95/001,455—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,528,782. USPTO. May 24, 2011.
U.S. Appl. No. 95/001,389—Request for inter partes reexamination of U.S. Pat. No. 7,123,208 including exhibits CC-A—CC-C and OTH-B. Samsung Electronics Co. Ltd.. Jul. 1, 2010.
U.S. Appl. No. 95/001,389—Office Action for the U.S. Pat. No. 7,123,208 dated on Aug. 12, 2010. USPTO. Aug. 12, 2010.
U.S. Appl. No. 95/001,389—Response to the Office Action dated on Aug. 12, 2010. Sterne, Kessler, Goldstein & Fox PLLC. Nov. 12, 2010.
U.S. Appl. No. 95/001,389—Third party requester's replacement comments to patent owner's reply of Nov. 12, 2010 for U.S. Pat. No. 7,123,208. Samsung. Mar. 7, 2011.
U.S. Appl. No. 95/001,389—Corrected patent owner's response to first office action dated on Aug. 12, 2010 with exhibit. Sterne, Kessler, Goldstein & Fox. Apr. 11, 2011.
U.S. Appl. No. 95/001,389—Third party requester's comments to patent owner's reply of Apr. 11, 2011 for U.S. Pat. No. 7,123,208. Samsung. Apr. 29, 2011.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/001,501 , U.S. Appl. No. 95/000,591—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,123,208. USPTO. Jun. 1, 2011.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/001,501 , U.S. Appl. No. 95/000,591—Office action for U.S. Pat. No. 7,123,208 dated on Jul. 1, 2011. USPTO. Jul. 1,2011.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/000,591 , U.S. Appl. No. 95/001,501—Patent owner's response to first office action dated on Jul. 1, 2011 of U.S. Pat. No. 7,123,208. Sterne Kessler. Oct. 3, 2011.
U.S. Appl. No. 95/001,389—Third party requester's comments to patent owner's reply of Oct. 3, 2011 for U.S. Pat. No. 7,123,208. Defendants. Dec. 19, 2011.
U.S. Appl. No. 95/001,390—Request for inter partes reexamination of U.S. Pat. No. 7,015,868 including exhibits CC-A—CC-G and Oth-A —OTH-B. Samsung Electronics Co. Ltd.. Jul. 2, 2010.
U.S. Appl. No. 95/001,390—Office Action for the U.S. Pat. No. 7,015,868 dated Aug. 19, 2010. USPTO. Aug. 19, 2010.
U.S. Appl. No. 95/001,390—Response to the Office Action for the U.S. Pat. No. 7,015,868 dated on Aug. 19, 2010. Sterne, Kessler, Goldstein & Fox PLLC. Nov. 19, 2010.
U.S. Appl. No. 95/001,390—Third party requester's replacement comments to patent owner's reply of Nov. 19, 2010 for U.S. Pat. No. 7,015,868. Samsung. Mar. 7, 2011.
U.S. Appl. No. 95/001,390—Corrected response to office action dated on Aug. 19, 2010. Sterne Kessler Goldstein & Fox, PLLC ; Fractus. Apr. 11, 2011.
U.S. Appl. No. 95/001,390—Corrected response to office action dated on Aug. 19, 2010—Exhibit 1. Sterne Kessler ; Fractus. Apr. 11, 2011.
U.S. Appl. No. 95/001,390—Third party requester's comments to patent owner's reply of Apr. 11, 2011 for U.S. Pat. No. 7,015,868. Samsung. May 2, 2011.
U.S. Appl. No. 95/001,390 , U.S. Appl. No. 95/001,498 , U.S. Appl. No. 95/000,589—Office action for U.S. Pat. No. 7,015,868 dated on Jul. 1, 2011. USPTO. Jul. 1,2011.
U.S. Appl. No. 95/001,390—Exhibits of patent owner's reponse to first office action of U.S. Pat. No. 7,015,868 dated on Jul. 1, 2011. Sterne Kessler. Oct. 3, 2011.
U.S. Appl. No. 95/001,390—Patent owner's reponse to first office action of U.S. Pat. No. 7,015,868 dated on Jul. 1, 2011. Sterne Kessler. Oct. 3, 2011.
U.S. Appl. No. 95/001,390—Third party requester's comments to patent owner's reply of Apr. 11, 2011 for U.S. Pat. No. 7,015,868. Defendants. Dec. 19, 2011.
U.S. Appl. No. 95/001,414—Third party requester's comments to patent owner's reply dated on Jan. 10, 2011 for U.S. Pat. No. 7,202,822. Samsung. Feb. 9, 2011.
U.S. Appl. No. 95/001,455—Request for inter partes reexamination of U.S. Pat. No. 7,528,782 including exhibits CCA-CCN. Samsung Electronics Co. Ltd. Sep. 30, 2010.
U.S. Appl. No. 95/001,455—Office action dated on Nov. 19, 2010. USPTO. Nov. 19, 2010.
U.S. Appl. No. 95/001,455—Response to office action dated on Nov. 19, 2010. Sterne Kessler. Feb. 22, 2011.
U.S. Appl. No. 95/001,455—Response to office action for U.S. Pat. No. 7,528,782 dated on Nov. 19, 2010—Exhibits. Sterne Kessler. Feb. 22, 2011.
U.S. Appl. No. 95/001,455—Third party requester's comments to patent owner's reply of Feb. 22, 2011 for U.S. Pat. No. 7,528,782—. Samsung. Mar. 24, 2011.
U.S. Appl. No. 95/001,455—Corrected patent owner's response to office action dated on Nov. 19, 2010. Sterne Kessler. Apr. 12, 2011.
U.S. Appl. No. 95/001,455—Corrected patent owner's response to office action dated on Nov. 19, 2010—Exhibit 1. Sterne Kessler. Apr. 12, 2011.
U.S. Appl. No. 95/001,455—Third party requester's comments to patent owner's reply of Feb. 22, 2011 for U.S. Pat. No. 7,528,782. Defendants. Apr. 28, 2011.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595 , U.S. Appl. No. 95/001,499—Office Action for U.S. Pat. No. 7,528,782 dated on Jul. 29, 2011. USPTO. Jul. 29, 2011.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595 , U.S. Appl. No. 95/001,499—Response to office action dated on Jul. 29, 2011 of U.S. Pat. No. 7,528,782. Fractus. Oct. 31, 2011.
U.S. Appl. No. 95/001455 , U.S. Appl. No. 95/000595—Third party requester's comments to patent owner's reply of Oct. 31, 2011 pursant to 37 CFR 1947 for U.S. Pat. No. 7,528,782. Defendants. Feb. 1, 2012.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595—Third party requester's comments to patent owner's reply of Oct. 31, 2011 pursant to 37 CFR 1947 for U.S. Pat. No. 7,528,782—Exhibits. Defendants. Feb. 1, 2012.
U.S. Appl. No. 95/001,482—Request for inter partes reexamination of U.S. Pat. No. 7,397,431 including exhibits CC-A—CC-L. Samsung Electronics Co. Ltd. Nov. 11, 2010.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000586 , U.S. Appl. No. 95/001,497—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,397,431. USPTO. May 4, 2011.
U.S. Appl. No. 95/001482 , U.S. Appl. No. 95/000586 , U.S. Appl. No. 95/001497—Exhibits of response to first office action dated on May 13, 2011 for U.S. Pat. No. 7,397,431. Sterne Kessler. Aug. 15, 2011.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586 , U.S. Appl. No. 95/001,497—Response to first office action dated on May 13, 2011 for U.S. Pat. No. 7,397,431. Sterne Kessler. Aug. 15, 2011.
U.S. Appl. No. 95/001,482—Third party requester's comments to patent owner's reply of Aug. 15, 2011 for U.S. Pat. No. 7,397,431. Defendants. Sep. 14, 2011.
U.S. Appl. No. 95/001,482—Action closing prosecution for U.S. Pat. No. 7,397,431 dated on Dec. 1, 2011. USPTO. Dec. 1, 2011.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586—Patent owner's response to the Action Closing Prosecution of Dec. 1, 2011 for U.S. Pat. No. 7,397,431. Sterne Kessler. Jan. 3, 2012.
U.S. Appl. No. 95/001,482 , U.S. Appl. No. 95/000,586 , U.S. Appl. No. 95/001,497—Third party requester's comments to patent owner's reply of Jan. 3, 2012 for U.S. Pat. No. 7,397,431. Defendants. Feb. 2, 2012.
U.S. Appl. No. 95/001,483—Request for inter partes reexamination of U.S. Pat. No. 7,394,432 including exhibits CC-A —CC-L. Samsung Electronics Co. Ltd. Nov. 11, 2010.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,394,432. USPTO. Mar. 17, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Office action in inter partes reexamination for the U.S. Pat. No. 7,394,432. USPTO. Apr. 7, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Response to office action dated on Apr. 7, 2011 for U.S. Pat. No. 7,394,432. Sterne Kessler. Jul. 7, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Third party requester's comments to patent owner's reply of Jul. 7, 2011 of U.S. Pat. No. 7,394,432. Samsung. Aug. 8, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Exhibits from Third party requester's comments to patent owner's reply of Jul. 7, 2011 of U.S. Pat. No. 7,394,432. Defendants. Aug. 8, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , US001500—Action closing prosecution for U.S. Pat. No. 7,394,432 dated on Nov. 4, 2011. USPTO. Nov. 4, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588—Patent owner's response to the Action Closing Prosecution of Nov. 4, 2011 for U.S. Pat. No. 7,394,432. Sterne Kessler. Jan. 4, 2012.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Third party requester's comments to patent owner's reply of Jan. 4, 2012 pursant to 37 CFR 1947 for U.S. Pat. No. 7,394,432. Defendants. Feb. 3, 2012.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/001,500 , U.S. Appl. No. 95/000,588—Action closing prosection for U.S. Pat. No. 7,394,432 dated on Mar. 7, 2012.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588—Reply to the action closing prosecution dated on Mar. 7, 2012 for the U.S. Pat. No. 7,394,432. Sterne Kessler. Apr. 9, 2012.
U.S. Appl. No. 95/001,497—Request for inter partes reexamination of U.S. Pat. No. 7,397,431 including exhibits C1-05. Htc Corporation—HTC America Inc. Dec. 3, 2010.
U.S. Appl. No. 95/001,498—Request for inter partes reexamination of U.S. Pat. No. 7,015,868 including exhibits C1-C6. HTC Corporation—HTC America Inc. Dec. 3, 2010.
U.S. Appl. No. 95/001,498 , U.S. Appl. No. 95/000,589 , U.S. Appl. No. 95/001,390—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,015,868. USPTO. May 23, 2011.
U.S. Appl. No. 95/001,499—Request for inter partes reexamination of U.S. Pat. No. 7,528,782 including exhibits C1-C6. HTC Corporation—HTC America Inc. Dec. 3, 2010.
U.S. Appl. No. 95/001,500—Request for inter partes reexamination of U.S. Pat. No. 7,394,432 including exhibits C1-05. HTC Corporation—HTC America Inc. Dec. 3, 2010.
U.S. Appl. No. 95/001,501—Request for inter partes reexamination of U.S. Pat. No. 7,123,208 including exhibits C1-C7. Htc Corporation—HTC America Inc. Dec. 3, 2010.
Infringement Chart—RIM Blackberry 9630. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry 9630. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry 9630. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry 9630. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000.. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry Bold 9000. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry Pearl 8100. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—RIM Blackberry Storm 9530. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—RIM Blackberry Tour 9630. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617.. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG Blackjack II SGH-i617. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH-T729. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH-T729. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH-T729. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH-T729. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH T729. Fractus, 2009.
Infringement Chart—SAMSUNG Blast SGH T729. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG EPIX SGH-I907. Fractus, 2009.
Infringement Chart—SAMSUNG FlipShot SCH-U900. Fractus, 2009.
Infringement Chart—SAMSUNG FlipShot SCH-U900. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart —SAMSUNG FlipShot SCH-U900. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG FLipShot SCH-U900. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG FlipShot SCH-U900. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG FlipShot SCH-U900. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG Instinct M800. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG M320. Fractus, 2009.
Infringement Chart—SAMSUNG M320. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG M320. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG M320. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG M320. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG M320. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG Magnet (SGH-A257). U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG SGH A867. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG SGH A867. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG SGH A867. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T 919. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T229. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG SGH T439. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—SAMSUNG SGH 1459. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH T919. Fractus, 2009.
Infringement Chart—Samsung SGH T919. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SGH T919. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH T919. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH T919. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung Solstice (SGH-A887). U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung Spex R210a. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SPH-A523. Fractus, 2009.
Infringement Chart—Samsung SPH-A523. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SPH-A523. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SGH-A523. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SPH-A523. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SPH-M550. Fractus, 2009.
Infringement Chart—Samsung SPH-M550. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SPH-M550. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SPH-M550. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SPH-M550. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SPH M520. Fractus, 2009.
Infringement Chart—Samsung SPH M520. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SPH M520. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SPH M520. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SPH M520. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Samsung SGH M520. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SPH M540.. Fractus, 2009.
Infringement Chart—Samsung SPH M540. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SPH M540. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung SPH M540. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung SPH M540. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung SPH-A523. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung Sway SCH-U650. Fractus, 2009.
Infringement Chart—Samsung Sway SCH-U650. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Samsung Sway SCH-U650. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Samsung Sway SCH-U650. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Samsung Sway SCH-U650. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sanyo Katana II. Fractus, 2009.
Infringement Chart—Sanyo Katana II. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sanyo Katana II. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sanyo Katana II. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Sanyo Katana II. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sanyo Katana II. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sanyo Katana LX. Fractus, 2009.
Infringement Chart—Sanyo Katana LX. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sanyo Katana LX. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sanyo Katana LX. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sanyo Katana LX. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sanyo S1. Fractus, 2009.
Infringement Chart—Sanyo S1. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sanyo S1. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sanyo S1. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sanyo S1. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sanyo SCP 2700.. Fractus, 2009.
Infringement Chart—Sanyo SCP 2700. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sanyo SCP 2700. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sanyo SCP 2700. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sanyo SCP 2700. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sharp Sidekick 3. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. U.S. Pat. No. 7,015,868 Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sharp Sidekick 2008. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX . U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009.. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX 2009. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX. U.S. Pat. No. 7,148,850. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—Sharp Sidekick LX. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,123,208. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,411,556. Fractus, 2009.
Infringement Chart—UTStarcom CDM7126. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. U.S. Pat. No. 7,015,868. Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. U.S. Pat. No. 7,123,208 Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. U.S. Pat. No. 7,394,432. Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. U.S. Pat. No. 7,397,431. Fractus, 2009.
Infringement Chart—UTStarcom Quickfire GTX75. U.S. Pat. No. 7,528,782. Fractus, 2009.
Infringement Chart—Samsung SGH A867. U.S. Pat. No. 7,394,432. Fractus. Nov. 5, 2009.
Infringement Chart—Samsung SGH A867. U.S. Pat. No. 7,397,431. Fractus. Nov. 5, 2009.
Infringement Chart—Samsung SGH A867. U.S. Pat. No. 7,528,782. Fractus. Nov. 5, 2009.
Infringement Chart—RIM Blackberry 8110. U.S. Pat. No. 7,394,432. Fractus. Nov. 5, 2009.
Letter from Baker Boils to Howison & Arnott LLP including exhibits. Defendants—Baker Boils. Aug. 5, 2010.
Letter from Baker Boils to Kenyon & Kenyon LLP, Winstead PC and Howison & Arnott LLP including exhibits.. Defendants—Baker Botts. Oct. 28, 2009.
Rebuttal expert report of Dr. Dwight L. Jaggard (redacted version). Fractus. Feb. 16, 2011.
Rebuttal expert report of Dr. Stuart A. Long (redacted version). Fractus. Feb. 16, 2011.
Rebuttal expert report of Dr. Warren L. Stutzman (redacted version). Fractus. Feb. 16, 2011.
The oral and videotaped deposition of Dwight Jaggard. vol. 1. Defendants. Mar. 8, 2011.
The oral and videotaped deposition of Dwight Jaggard. vol. 2. Defendants. Mar. 9, 2011.
The oral and videotaped deposition of Dwight Jaggard. vol. 3. Defendants. Mar. 10, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 18, 2011—1:00 PM. Court. May 18, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 18, 2011—8:45 AM. Court. May 18, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 19, 2011—1:00 PM. Court. May 19, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 19, 2011—8:45 AM. Court. May 19, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 20, 2011—12:30 PM. Court. May 20, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 20, 2011—8:30 AM. Court. May 20, 2011.
Transcript of jury trial before the Honorable Leonard Davis—May 23, 2011—8:55 Am. Court. May 23, 2011.
Transcript of jury trial before the Honorable Leonard Davis US District Judge—May 17, 2011—8:00 AM. Court. May 17, 2011.
Transcript of jury trial before the Honorable Leonard Davis, US District Judge—May 17, 2011—1:10 PM. Court. May 17, 2011.
Transcript of pretrial hearing before the Honorable Leonard Davis, US District Judge—May 16, 2011—2:00 PM. Court. May 16, 2011.
Adcock , M. D New type feed for high speed conical scanning. Symposium on the USAF Antenna Research and Development Program, 2nd. Aug. 11, 1952.
Addison , P. S. Fractals and Chaos—An illustrated course—Full. Institute of Physics Publising Bristol and Philadelphia. Jan. 1, 1997.
Ali , M. ; Hayes , G. J. et al A triple band internal antenna for mobile handheld terminals. Antennas and Propagation Society International Symposium, 2002. IEEE. Jun. 16, 2002.
Andersen , J. B. The handbook of antenna design—Low- and medium-gain microwave antennas. Rudge , A. W. et al—IEE Eletromagnetic Waves Series; Peter Peregrinus Ltd. (2nd ed.). Volumes 1 and 2. pp. 526-543. Jan. 1, 1986.
Ando , A. A novel electromagnetically coupled microstrip antenna with a rotatable patch for personal handy phone system units. Antennas and Propagation, IEEE Transactions on. Jun. 1, 1998.
Anguera , J. ; Font , G. ; Puente , C. ; Borja , C. ; Soler , J. Multifrequency microstrip patch antenna using multiple stacked elements. Microwave and Wireless Components Letters. vol. 13. No. 3 Mar. 1, 2003.
Anguera , J. ; Puente , C. ; Borja , C. A procedure to design stacked microstrip patch antennas on a simple network model. Microwave and Optical Technology Letters. Aug. 1, 2001.
Anguera , J. ; Puente , C. ; Borja , C. A procedure to design wide-band electromagnetically-coupled stacked microstrip antennas based on a simple network model. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Anguera , J. ; Puente , C. ; Borja , C. ; Font , G. ; Romeu , J. Diseño de antenas impresas de banda ancha alimentadas mediante acoplo capacitivo. XV Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Zaragoza , 2000. Sep. 1, 2000.
Anguera , J. ; Puente , C. ; Borja , C. ; Montero , R. ; Soler , J. Antena microstrip miniatura y de alta directividad basada en el fractal de Sierpinski. XVI Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Villaviciosa de Odón , 2001. Sep. 1, 2001.
Anguera , J. ; Puente , C. ; Borja , C. ; Romeu , J. Miniature wideband stacked microstrip patch antenna based on the sierpinski fractal geometry. Antennas and Propagation Society International Symposium, 2000. IEEE. vol. 3. pp. 1700-1703. Jul. 1, 2000.
Anguera J. ; Puente , C. ; Romeu , J. An optimum method to design probe-fed single-layer single-path wideband microstrip antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Apr. 1, 2000.
Azadegan , R. ; Sarabandi , K. Design of miniaturized slot antennas. IEEE Antennas and Propagation Society International Symposium. vol. 4. pp. 565-568. Jul. 8, 2001.
Bach Andersen , J. et al. On closely coupled dipoles in a random field. Antennas and Wireless Propagation Letters, IEEE. Dec. 1, 2006.
Bahar , E. ; Son Lee , B. Full wave vertically polarized bistatic radar cross sections for random rough surfaces. Antennas and Propagation, IEEE Transactions on. Feb. 1, 1995.
Balanis , C. Antenna Theory—Analysis and design—Chapter 1.4—Current distribution on the thin wire antenna. John Wiley & Sons. Jan. 1, 2005.
Balanis , Constantine a. Antenna Theory—Analysis and design—Chapter 10—Travelling wave and broadband antennas. Hamilton Printing. pp. 498-502. Jan. 1, 1982.
Balanis , Constantine A. Antenna theory—Analysis and Design—Chapter 9 / Chapter 14—Broadband dipoles and matching techniques / Microstrip antennas. Hamilton Printing. Jan. 1, 1982.
Barnsley , M. Fractals Everywhere. Academic Press Professional. Jan. 1, 1993.
Barreiros , J. ; Cameirao , P. ; Peixeiro , C. Microstrip patch antenna for gsm 1800 handsets. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Barrick , W. A helical resonator antenna diplexer. Symposium on the USAF antenna research and development program, 10th. Oct. 3, 1960.
Batson , D. D. et al VHF unfurlable turnstile antennas. Symposium USAF antenna research and development program, 19th. Oct. 14, 1969.
Berizzi , F. Fractal analysis of the signal scattered from the sea surface. Antennas and Propagation, IEEE Transactions on. vol. 47. No. 2. Feb. 1, 1999.
Best , S. On the significance of self-similar fractal geometry in determining the multiband behaviour of the Sierpinski gasket antenna. IEEE Antennas and wireless propagation letters. Jan. 1, 2002.
Best , S. R. The fractal loop antenna : understanding the significance of fractal geometry in determining antenna performance. QEX Magazine. Mar. 1, 2002.
Besthom 1.0 to 21.0 GHz Log-periodic dipole antenna. Symposium on the USAF Antenna Research and Development Program, 18th. Oct. 15, 1968.
Blackband , W. T. The handbook of antenna design—Chapter 18—Coaxial transmisison lines and components. Rudge , A. W. et al.Peter Peregrinus. vol. 1 and vol. 2. pp. 1612-1623. Jan. 1, 1986.
Bokhari , S. A. ; archer , J.-F. ; Mosig , Juan R. et al a small microstrip patch antenna with a convenient tuning option. Antennas and Propagation, IEEE Transactions on. Nov. 1, 1996.
Borja , C. Fractal microstrip antennas : Antenas fractales microstrip. Universitat Politecnica de Catalunya. Jul. 1, 1997.
Borja , C. High directivity fractal boundary microstrip patch antenna. Electronic Letters. vol. 36. No. 9. Apr. 27, 2000.
Borja , C. Mspk product. Fractus—Telefonica. Jan. 1, 1998.
Borja , C. Panel 01. Fractus—Telefonica. Jan. 1, 1998.
Borja , C. ; Puente , C. ; Medina , A. Iterative network models to predict the performance of Sierpinski fractal antennas and networks. Electronic Letters. vol. 34. No. 15. pp. 1443-1445. Jul. 23, 1998.
Borja , C. ; Puente , C. Iterative network models to predict the performance of Sierpinski fractal antennas and networks. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Borja , C. ; Puente , C. ; Anguera , J. et al Estudio experimental del parche de Sierpinski. XIV Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Santiago de Compostela , 1999. Sep. 1, 1999.
Borja , C. ; Puente , C. ; Medina , A. et al Modelo sencillo para el estudio de los parametros de entrada de una antena fractal de Sierpinski. Xii Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) :Bilbao , 1997. Sep. 1, 1997.
Borja , C. ; Puente , C. ; Medina , A. et al Traslacion de la propiedad de autosemejanza de los fractales al comportamiento electromagnetico de parches con geometria fractal. XIII Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Pamplona , 1997. Sep. 1, 1998.
Borja , C. ; Puente , C. ; Romeu , J , Anguera , J. Fractal multiband patch antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Apr. 1, 2000.
Borja , C. ; Romeu , J. Multiband Sierpinski fractal patch antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Borja , C. ; Romeu , J. Parche de Sierpinski perturbado. XV Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Zaragoza , 2000. Sep. 13, 2000.
Borowski , E. J. Dictionary of Mathematics. Collins—Case 6:09-cv-00203-LED-JDL.. Jan. 1, 1989.
Boshoff , H. A fast box counting algorithm for determining the fractal dimension of sampled continuous functions. IEEE. Jan. 1, 1992.
Breden , R. et al. Multiband printed antenna for vehicles. University of Kent. Jan. 3, 2000.
Breden , R. et al. Printed fractal antennas. National conference on antennas and propagation. Apr. 1, 1999.
Brown, A. A high-performance integrated K-band diplexer. Transactions on Microwave Theory and Techniques. Aug. 8, 1999.
Buczkowski , Stephane ; Kyriacos , Soula ; Nekka , Fahima ; Cartilier , Louis The modified box-countig method: analysis of some characteristic paramenters. Pattern Recognition—ElServier Science. vol. 31. pp. 411-418(8). Apr. 20, 1998.
Burnett , G. F. Antenna installations on super constellation airbone early warning and control aircraft. Symposium on the USAF antenna research and development program, 4th. Oct. 17, 1954.
Bushman , F.W The boeing B-52 all flush antenna system. Symposium on the USAF Antenna Reseach and Development Program, 5th. Oct. 16, 1955.
Campi , M. Design of microstrip linear array antennas. Antenna Applications Symposium. Aug. 8, 1981.
Campos , O. Multiband and miniature fractal antennas study : Estudi d'antenes fractal multibanda i en miniatura. Universitat Politecnica de Catalunya. Jan. 1, 1998.
Mayes , P.E. Multi-arm logarithmic spiral antennas. Symposium on the USAF Antenna Research and Development Program, 10th. Oct. 3, 1960.
McCormick , J. A Low-profile electrically small VHF antenna. 15th Annual Symposium on the USAF antenna reserach and development program. Oct. 12, 1965.
McDowell , E. P. Flush mounted X-band beacon antennas for aircraft. Symposium on Usaf antenna Research and Development, 3th. Oct. 18, 1953.
McDowell , E. P. High speed aircraft antenna problems and some specific solutions for MX-1554. Symposium on the USAF Antenna Research and Development Program, 2nd. Oct. 19, 1952.
McSpadden , J. O. Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Transactions on Microwave Theory and Techniques. Dec. 1, 1998.
Mehaute, A. Fractal Geometrics. CRC Press—Case 6:09-cv-00203-LED-JDL.. pp. 3-35. Jan. 1, 1990.
Meier , K. ; Burkhard , M. ; Schmid , T. et al Broadband calibration of E-field probes in Lossy Media. IEEE Transactions on Microwave Theory and Techniques. vol. 44. No. 10. Oct. 1, 1996.
Meinke , H. ; Gundlah , F. V. Radio engineering reference book—vol. 1—Radio components. Circuits with lumped parameters . . . State energy publishing house. Jan. 1, 1961.
Misra , S. Experimental investigations on the impedance and radiation properties of a three-element concentric microstrip square-ring antenna. Microwave and Optical TEchnology Letters. vol. 11. No. 2. Feb. 5, 1996.
Misra , S. ; Chowdhury , S. K. Study of impedance and radiation properties of a concentric microstrip triangular-ring antenna and Its modeling techniques using Fdtd method. IEEE Transactions on Antennas and Propagation. vol. 46. No. 4. Apr. 1, 1998.
Moheb , H. Design and development of co-polarized ku-band ground terminal system for very small aperture terminal (VSAT) application. IEEE International Symposium on Antennas and Propagation Digest. Jul. 11, 1999.
Moleiro , Alexandre et al Dual band microstrip patch antenna element with parasitic for gsm. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 1, 2000.
Moosavi Bafrooei , Pedram Characteristics of single and double layer microstrip square-ring antennas. Antennas and Propagation, IEEE Transactions on. Oct. 1, 1999.
Morioka , T. et al Slot antenna with parasitic element for dual band operation. Electronic Letters. Dec. 4, 1997.
Munson , R. Antenna Engineering Handbook—Chapter 7—Microstrip Antennas. Johnson , R. C.—McGraw-Hill—Third Edition. Jan. 1, 1993.
Munson , R. Conformal microstrip array for a parabolic dish. Symposium on the USAF Antenna Research and Development Program. Oct. 1, 1973.
Munson , R. Microstrip phased array antennas. Symposium on the USAF Antenna Research and Development Program, 22th. Oct. 11, 1972.
Munson , R. E. Conformal microstrip communication antenna. Symposium on USAF antenna Research and Development, 23th. Oct. 10, 1973.
Mushiake, Yasuto Self-Complementary Antennas : Principle of Self Complementarity for Constant Impedance. Springer-Verlag. pp. 81-86. Jan. 1, 1996.
Nadan , T. ; coupez , J. P. Integration of an antenna filter device, using a multi-layer, multi-technology process. European Microwave Conference, 28th. Oct. 1, 1988.
Nagai , K. ; Mikuni , Y. ; Iwasaki , H. A mobile radio antenna system having a self-diplexing function. IEEE Transactions on Vehicular Technology. Nov. 1, 1979.
Nagy , L. L Antenna engineering handbook—Chapter 39—Automobile antennas. Volakis , J.—McGraw-Hill; 4th edition. Jan. 1, 2007.
Naik , A. ; Bathnagar , P. S. Experimental study on stacked ring coupled triangular microstrip antenna. Antenna Applications Symposium, 1994. Sep. 21, 1994.
Nakano ; Vichien Dual-frequency square patch antenna with rectangular notch. Electronic Letters. Aug. 3, 1989.
Navarro , M. Original and translation in English of Final Degree Project—Diverse modifications applied to the Sierpinski antenna, a multi-band fractal antenna. Universitat Politecnica de Catalunya. Oct. 1, 1997.
Navarro , M. ; Gonzalez , J. M. ; Puente , C. ; Romeu , J. Comprobacion del comportamiento autosimilar de la distribucion de corrientes sobre la superficie de la antena fractal de Sierpinski mediante termografias de infrarojos. XIII Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Pamplona , 1997. Sep. 1, 1998.
Navarro , M. ; Gonzalez , J. M. ; Puente , C. ; Romeu , J. ; Aguasca , A. Self-similar surface current distribution on fractal Sierpinski antenna verified infra-red thermographs. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Navarro , M. ; Puente , C. et al Modificacion de la antenna de Sierpinski para el ajuste de las bandas operativas—Perturbation of the Sierpinski antenna to allocate operating bands. XII Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) :Bilbao , 1997. Sep. 1, 1997.
Nelson , Thomas R. ; Jaggard , Dwight L. Fractals in the Imaging Sciences. J. Optical Society AM.. Jan. 1, 1999.
Ng , V. Diagnosis of melanoma with fractal dimesions. IEEE Tencon. Jan. 1, 1993.
Nishikawa , T., Ishikawa , Y., Hattori , J. and Wakino , K. Dielectric receiving filter with Sharp stopband using an active feedback resonator method for cellular base stations. IEEE Transactions on Microwave Theory and Techniques. Dec. 1, 1989.
Nurnberger , M.W. ; Volakis , J. L. A new planar feed for slot spiral antennas. Antennas and Propagation, IEEE Transactions on Jan. 1, 1996.
Ollikainen , J. et al. Thin dual resonant stacked shorted patch antenna for mobile communications. Electronic Letters. Mar. 18, 1999.
Omar, Amjad A. ; Antar , Y. M. M. A new broad band dual frequency coplanar waveguide fed slot antenna. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Ou , J. D. An analysis of annular, annular sector, and circular sector microstrip antennas. Antenna Applications Symposium. Sep. 23, 1981.
Palit , S. K. ; Hamadi , A. ; Tan , D. Design of a wideband dual-frequency notched microstrip antenna. Antennas and Propagation Society International Symposium, 1998. IEEE. Jun. 1, 1998.
Pan , Shang-Chen ; Wong , Kin-Lu Dual frequency triangular microstrip antenna with a shorting pin. Antennas and Propagation, IEEE Transactions on. Dec. 1, 1997.
Pan, S. et al. Single-feed dual-frequency microstrip antenna with two patches. Antennas and Propagation Society International Symposium, 1999. IEEE. Aug. 1, 1999.
Papapolymerou , Ioannis ; Franklin Drayton , Rhonda ; Katehi , Linda P.B. Micromachined patch antennas. Antennas and Propagation, IEEE Transactions on. vol. 46. No. 2. Feb. 1, 1998.
Parker , E. A. ; A. N. A. El Sheikh Convoluted array elements and reduced size unit cells for frequency selective surfaces. IEE Proceedings H. pp. 19-22. Feb. 1, 1991.
Parker , S. McGraw-Hill Dictionary of Scientific and Technical Terms (5th ed. 1994). McGraw-Hill—Case 6:09—cv-00203-LED-JDL. p. 1542. Jan. 1, 1994.
Parker, E. A. ; A. N. A. El Sheikh Convoluted dipole array elements. Electronic Letters. Feb. 14, 1991.
Paschen , D. A. Broadband microstrip matching techniques. Antenna Applications Symposium. Sep. 21, 1983.
Paschen , D. A. Structural stopband elimination with the monopole-slot antenna. Antenna Applications Symposium. Sep. 22, 1982.
Paschen , D. A. ; Olson , S. A crossed-slot antenna with an infinite balun feed. Antenna Applications Symposium, 1995.. Sep. 20, 1995.
Peitgen & D. Saupe, H The science of fractal images. Springer-Verlag. . pp. 1-3, 24-27, 58-61. Jan. 1, 1988.
Peitgen et al, H O Chaos and fractals : new frontiers of science. Springer-Verlag. . pp. 22-26, 62-66, 94-105, 212-219, 229-243. Jan. 1, 1992.
Peitgen, Heinz-Otto; Jürgens, Hartmut; Saupe, Dietmar Chaos and fractals. New frontiers of science. Springer-Verlag.. pp. 212-216 ; 387-388. Feb. 12, 1993.
Penn , A. Fractal dimension of low-resolution medical images. Engineering in Medicine and Biology Society, 1996. Proceedings of the 18th Annual International Conference of the IEEE. Jan. 1, 1996.
Phelan , R. A wide-band parallel-connected balun. Microwave Theory and Techniques, IEEE Transactions on. May 1, 1970.
Sanchez Hernandez , David et al Analysis and design of a dual-band circularly polarized microstrip patch antenna. Antennas and Propagation, IEEE Transactions on. Feb. 1, 1995.
Sanchez Hernandez , David et al Triple band microstrip patch antenna using a spur-line filter and a perturbation segment technique. Electronics Letters. Aug. 19, 1993.
Sandlin , B. ; Terzouli , A. J. A genetic antenna desig for improved radiation over earth. Antenna Applications Symposium , Program for 1997—Allerton Conference Proceedings. Sep. 17, 1997.
Sarkar , N. An efficient differential box-counting approach to compute fractal dimension of image. IEEEn Transactions on System, Man and Cybernetics. vol. 24. No. 1. Jan. 3, 1994.
Saunders , S. R. Antennas and Propagation for Wireless Communication Systems—Chapter 4. John Wiley & Sons. Jan. 1, 1999.
Sawaya , K. ; Ishizone , T. ; Mushiake , Y. A simplified Expression of Dyadic Green's Function for a Conduction Half Sheet vol. AP-29, No. 5 (Sep. 1981). IEEE Transactions on Antennas & Propagation. vol. 29. No. 5. Sep. 1, 1981.
Scharfman , W. Telemetry antennas for high altitude missiles. Symposium on the USAF antenna research and development program, 8th. Oct. 20, 1958.
Schaubert , D. H. ; Chang , W. C. ; Wunsch , G. J. Measurement of phased array performance at arbitrary scan angles. Antenna Applications Symposium. Sep. 21, 1994.
Sclater , N. ; Markus , J. McGraw-Hill Electronics Dictionary. Mc-Graw Hill. . pp. 21, 35, 183, 263, 298, 300. Jan. 1, 1997.
Seavey , John C-band paste-on and floating ring reflector antennas. Symposium on the USAF Antenna Research and Development Program, 23th. Oct. 10, 1973.
Serrano-Vaello , A. et al Printed antennas for dual-band GSM/DCS 1800 mobile handsets. Electronic Letters. Jan. 22, 1998.
Shen , Z. ; Sze , Chen Tat ; Law , Choi Look a circularly polarized microstrip-fed T-slot antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Shenoy , A. et al. Notebook satcom terminal technology development. International Conference on Digital Satellite Communications, 10th. May 15, 1995.
Shibagaki , N. Saw antenna duplexer module using saw-resonator-coupled filter for PCN system. IEEE Ultrasonics symposium. Oct. 5, 1998.
Shibagaki , N. ; Sakiyama , K. ; Hikita , M. Miniature saw antenna duplexer module for 1.9GHz PCN systems using saw-resonator-coupled filters. IEEE Ultrasonics Symposium. Oct. 5, 1998.
Shimoda , R. Y. A variable impedance ratio printed circuit balun. Antenna Applications Symposium. Sep. 26, 1979.
Shnitkin , H. Analysis of log-periodic folded dipole array. Antenna Applications Symposium. Sep. 10, 1992.
Sinclair, G. Theory of models of electromagnetic systems. Proceedings of the IRE. Nov. 1, 1948.
Sindou , M. et al Multiband and wideband properties of printed fractal branched antennas. Electronic Letters. Feb. 4, 1999.
Snow , W. L. Ku-band planar spiral antenna. Symposium on The USAF Antenna Research and Development Program, 19th. Oct. 14, 1969.
Snow , W. L. UHF crossed-slot antenna and applications. Symsposium on the USAF Antenna Research and Development program, 19th. Sep. 1, 1963.
So , P. et al Box-counting dimension without boxes—Computing D0 from average expansion rates. Physical Review E. vol. 60. No. 1. Jul. 1, 1999.
Soler , J. ; Garcia , D. ; Puente , C. ; Anguera , J. Novel combined mod-p multiband antenna structures inspired by fractal geometries. Microwave and Optical Technology Letters. vol. 41. No. 5. Jun. 5, 2004.
Soler , J. ; Puente , C. Analysis of the Sierpinski fractal multiband antenna using the muitiperiodic traveling wave v model. 24th European Space agency (ESA) Antenna Workshop on Innovative Periodic Antennas.. pp. 53-57. Jun. 1, 2001.
Soler , J. ; Puente , C. ; Anguera , J. Results on a new extended analytic model to understand the radiation performance of mod-p Sierpinski fractal multiband antennas. Antennas and Propagation Society International Symposium, 2003. IEEE. Jun. 22, 2003.
Soler , J. ; Puente , C. ; Anguera , J. Solutions to tailor the radiation patterns of 2D and 3D multiband antennas based on the Sierpinski fractal. Antennas and Propagation Society International Symposium, 2003. IEEE. Jun. 22, 2003.
Soler , J. ; Puente , C. ; Munduate , A. Novel broadband and multiband solutions for planar monople antenas. Antennas and Propagation Society International Symposium, 2002. IEEE. Jun. 16, 2002.
Soler , J. ; Romeu , J. Antenas de Sierpinski de modulo-p. XV Simposium Nacional de la Unión Cientifica Internacional de la Radio (URSI) : Zaragoza , 2000. Sep. 1, 2000.
Soler , J. ; Romeu , J. ; Puente , C. Mod-P Sierpinski fractal multiband antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Apr. 4, 2000.
Soler Castany , J. Multi-band antennas for wireless communication systems : Antenes multibanda per sistemes de comunicaions inalàmbriques. Universitat Politècnica de Catalunya. Sep. 1, 1999.
Song , C. T. P. et al Sierpinski monopole antenna with controlled band spacing and input impedance. Electronic Letters. Jun. 24, 1999.
Song , C. T. P. et al Triple band planar inverted F antennas for handheld devices. Electronic Letters. Jan. 20, 2000.
Song, C. T. P. Fractal stacked monopole with very wide bandwidth. Electronic Letters. vol. 35. pp. 945-946. Jun. 1, 1999.
Song, C. T. P. Triple-band planar inverted F antenna. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Srivastava , G. P. et al Dual band tunable microstrip patch antenna. Electronic Letters. Aug. 19, 1999.
Stang , P. F. Balanced flush mounted log-periodic antenna for aerospace vehicles—in Abstracts of the Twelfth Annual Symposium USAF antenna research. Symposium on USAF antenna Research and Development, 12th. Oct. 16, 1962.
Strugatsky , A. et al Multimode multiband antenna. Tactical communications: Technology in transition. Proceedings of the tactical communications conference. Apr. 28, 1992.
Stutzman , W. L. ; Thiele , G. Antenna theory and design. John Wiley and Sons.. pp. 18, 36. Jan. 1, 1981.
Stutzman , W. L. ; Thiele , G. A. Antenna theory and design. John Wiley and Sons. . pp. 8-9 , 43-48 , 210-219. Jan. 1, 1998.
Stutzman , W. L. ; Thiele , G. A. Antenna theory and design—Chapter 5—Resonant Antennas: Wires and Patches. Wiley. Chapter 5 (selected page). p. 210. Jan. 1, 1998.
Sze , Jia-Yi ; Wong , Kin-Lu Designs of broadband microstrip antennas with embedded slots. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 11, 1999.
Taga , T. Performance analysis of a built-in planar inverted F antenna for 800 MHz band portable radio units. IEEE Journal on Selected Areas in Communications. vol. 5. No. 5. Jan. 1, 1987.
Tai , Chen to ; Long , Stuart. Antenna engineering handbook—Chapter 4—Dipoles and Monopoles. Johnson , R. McGraw Hill—(3rd Ed.). pp. 4-26-4-33. Jan. 1, 1993.
Tang , Y. The application of fractal analysis to feature extraction. IEEE. Jan. 1, 1999.
Tanidokoro , Hiroaki ; Konishi , Nozomi et al I-wavelength loop dielectric chip antennas. Antennas and Propagation, IEEE Transactions on. Jan. 1, 1998.
Tanner , R. L. ; O'Reilly , G. A. Electronic counter measure antennas for a modern electronic reconnaissance aircraft. Symposium on the USAF antenna research and development program, 4th. Oct. 17, 1954.
Targonski , S. D. ; Pozar , David M. Dual band dual polarised printed antenna element. Electronic Letters. vol. 34. pp. 2193-2194. Nov. 1, 1998.
Teeter , W. L. ; Bushore , K. R. A variable-ratio microwave power divider and multiplexer. IRE Transactions on microwave theory and techniques. Oct. 1, 1957.
Tehrani , Hooman ; Chang , Kai A multifrequency microstrip fed annular slot antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 1, 2000.
Terman , F. E. Radio engineering. McGraw-Hill Book Company, Inc . . . pp. 73-74, 690-691, 730. Jan. 1, 1947.
The Glenn L. Martin Company Antennas for USAF B-57 series bombers. Symposium on the USAF antenna research and development program, 2nd. Oct. 19, 1952.
Theiler , J. Estimating fractal dimension. J. Opt. Soc. Am. A. Case 6:09-cv-00203-LED-JDL. vol. 7. No. 6. pp. 1055-1073. Jun. 1, 1990.
Turner , E. M. Broadband passive electrically small antennas for TV application. Proceedings of the 1977 Antenna Applications Symposium. Apr. 27, 1977.
Turner , E. M. ; Richard , D. J. Development of an electrically small broadband antenna. Symposium on the USAF antenna research and development program, 18th. Oct. 15, 1968.
Verdura, O. Miniature fractal antenna : Antena fractal miniatura. Universitat Politecnica de Catalunya. Sep. 1, 1997.
Viratelle , D. ; Langley , R. J. Dual band Pifa antenna. IEE Proceedings—Microwaves, Antennas and Propagation. Jan. 3, 2000.
Virga , K. L. Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging. Microwave Theory and Techniques, IEEE Transactions on. Oct. 10, 1997.
Volgov , V. A. Parts and units of radio electronic equipment. Energiya. Jan. 1, 1967.
Walker , G. J. et al Fractal volume antennas. Electronic Letters. Aug. 6, 1998.
Wall , H. ; Davies , H. W. Communications antennas for mercury space capsule. Symposium on the USAF antenna research and development program, 11th. Oct. 16, 1961.
Watanabe , T. ; Furutani , K. ; Nakajima , N. et al Antenna switch duplexer for dualband phone (GSM / DCS) using LTCC multilayer technology. IEEE MTT-S International Microwave Symposium Digest. Jun. 19, 1999.
Waterhouse , R. B. Printed antenna suitable for mobile communication handsets. Electronic Letters. Oct. 23, 1997.
Watson , T. ; Friesser , J. A phase shift direction finding technique. Annual Symposium on the USAF antenna research and development program. Oct. 21, 1957.
Weeks , W. L. Antenna engineering. McGraw-Hill Book Company. . pp. 167-180. Jan. 1, 1968.
Weeks , W. L. Eletromagnetic theory for engineering applications. John Wiley & Sons. . pp. 46-50. Jan. 1, 1964.
Wegner , D. E. B-70 antenna system. Symposium on the USAF antenna research and development program, 13th. Oct. 14, 1963.
Werner , D. H. Fractal antenna engineering—The theory and design of fractal antenna arrays. Antennas and Propagation Magazine, IEEE. Oct. 1, 1999.
Werner , D. H. Frequency independent features of self-similar fractal antennas. Radio Science. Nov. 1, 1996.
Werner , D. H. Radiation characteristics of thin-wire ternary fractal trees. Electronic Letters. Apr. 15, 1999.
Werner , D. H. ; Werner , P. L. ; Ferrare , A. J. Frequency independent features of self-similar fractal antennas. Antennas and Propagation Society International Symposium, 1996. AP-S. Digest. Jul. 21, 1996.
Werner , D. H. et al On the synthesis of fractal radiation patterns. Radio Science. Feb. 1, 1995.
Werner , D. H. et al. Frontiers in electromagnetics—The theory and design of fractal antenna arrays. IEEE Press. Chapter 3. pp. 94-95. Jan. 1, 1999.
West , B.H. et al. The Prentice-Hall Encyclopedia of Mathematics (1982). Prentice-Hall . pp. 404-405. Jan. 1, 1982.
Wheeler , H. A. Fundamental limitations of small antennas. Proceedings of the I.R.E. Jan. 1, 1947.
Wheeler , H. A. Small antennas. Symposium on the USAF antenna research and development program, 23rd. Oct. 10, 1973.
Wheeler , H. A. The radiansphere around a small antenna. Proceedings of the IRE. Aug. 1, 1959.
Wikka , K. Letter to FCC that will authorize the appointment of MORTON FLOM and/or FLOMASSOCIATES INC to act as their Agent in all FCC matters. Nokia Mobile Phones. Aug. 5, 1999.
Williams , T. et al Dual band meander antenna for wireless telephones. Microwave and Optical Technology Letters. Jan. 20, 2000.
Wong , K. L. ; Sze , J. Y. Dual-frequency slotted rectangular microstrip antenna. Electronic Letters. Jul. 9, 1998.
Wong , Kin-Lu Broadband triangular microstrip antenna with U-shaped slot. Electronic Letters. vol. 33. No. 25. Dec. 4, 1997.
Wong , Kin-Lu Modified planar inverted F antenna. Electronic Letters. Jan. 8, 1998.
Wong , Kin-Lu Single-feed small circularly polarised square microstrip antenna. IEEE. Electronics Letters. vol. 33. No. 22. pp. 1833-1834. Oct. 28, 1997.
Wong , Kin-Lu ; Chiou , Tzung-Wern Single patch broadband circularly polarized microstrip antennas. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Wong , Kin-Lu ; Yang , Kai-Ping Small dual-frequency microstrip antenna with cross slot. Electronic Letters. vol. 33. No. 23. Nov. 6, 1997.
Wu , Chun-Kun et al. Slot-coupled Meandered Microstrip Antenna for Compact Dual-frequency Operation. Electronics Letters. vol. 34. No. 11. May 28, 1998.
Wu , D. I. Dual-Frequency Microstrip Reflectarray. Antennas and Propagation Society International Symposium, 1995. AP-S. Digest. Jan. 1, 1995.
Yang , Kai-Ping Compact dual-frequency operation of rectangular microstrip antennas. Antennas and Propagation Society International Symposium, 1999. IEEE. Jul. 1, 1999.
Yang , X. ; Chiochetti , J. ; Papadopoulos , D. et al Fractal antenna elements and arrays. Applied microwave and wireless. May 1, 1999.
Yang , X. H. ; Shafai , L. Multifrequency operation technique for aperture coupled microstrip antennas. Antennas and Propagation Society International Symposium, 1994. AP-S. Digest. Jun. 20, 1994.
Zhang , Dawei ; Liang , G.C. ; Shih , C.F. Narrowband lumped element microstrip filters using capacitively loaded inductors. Microwave Symposium Digest, 1995., IEEE MTT-S International. . pp. 379-382. May 16, 1995.
Zhong , Shun-Shi ; Cui , Jun-Hai Compact dual frequency microstrip antenna. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Zurcher , J. F. A compact dual-port dual-frequency SSFIP /PIFA antenna with high decoupling. Microwave and Optical Technology Letters. Sep. 20, 1999.
American Heritage College Dictionary (1997). pp. 340 and 1016. Mifflin Comp. pp. 340 , 1016. Jan. 1, 1997.
Collins Dictionary. Collins. p. 608. Jan. 1, 1979.
Digital cellular telecommunications system (Phase 2) : Types of Mobile Stations (MX) (GSM 02.06). ETSI. May 9, 1996.
Digital cellular telecommunications system (Phase 2+) ; Radio transmission and reception (GSM 05.05). ETSI Jul. 1, 1996.
Digital cellular telecommunications system (Phase2) : Abbreviations and acronyms (GSM01.04) GSM Technical Specification vs. 5.0.0. ETSI. Mar. 1, 1996.
Digital cellular telecommunications system (Phase2). Mobile Station MS Conformance specifiaction Part 1 Conformance Specification GSM11.10-1). ETSI. Mar. 1, 1996.
Digital cellular telecommunications system (Phase2); Mobile Station (MS) conformance specification; Part 1: Conformance specification (GSM 11.10-1 version 4.21.1). ETSI. Aug. 1, 1998.
FCC—United States table of frequency allocations. Federal Communications Commission. pp. 377-538. Oct. 1, 1999.
U.S. Appl. No. 95/001,389—U.S. Appl. No. 95/000,591—Patent owner's petition requesting continued reexamination for U.S. Pat. No. 7,123,208. Edell , Shpairo & Finnan. Feb. 8, 2013.
U.S. Appl. No. 95/001,390—U.S. Appl. No. 95/000,589—Patent owner's petition requesting continued reexamination for U.S. Pat. No. 7,015,868. Edell , Shapiro & Finnan. Feb. 8, 2013.
U.S. Appl. No. 95/001,455—Patent owner's appeal brief for the U.S. Pat. No. 7,528,782. Edell, Shapiro & Finnan, LLC. Mar. 25, 2013.
U.S. Appl. No. 95/001,455—U.S. Appl. No. 95/000,595—Third party requester's notice of cross-appeal for the U.S. Pat. No. 7,528,782. Samsung—Kyocera. Janaury 24, 2013.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Corrected patent owner's Appeal Brief for U.S. Pat. No. 7,397,431. Edell, Shapiro & Finnan , LLC. Feb. 22, 2013.
U.S. Appl. No. 95/001,482—U.S. Appl. No. 95/000,586—Third party requester's respondent brief for the U.S. Pat. No. 7,397,431. Samsung—Kyocera. Mar. 8, 2013.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,586—Third party requester's notice of cross-appeal for the U.S. Pat. No. 7,394,432. Samsung—Kyocera. Jan. 22, 2013.
U.S. Appl. No. 95/001,483—U.S. Appl. No. 95/000,588—Patent owner's petition requesting continued reexamination for U.S. Pat. No. 7,394,432. Edell , Shapiro & Finnan. Feb. 8, 2013.
U.S. Appl. No. 95/,001,482 , U.S. Appl. No. 95/000,586 , U.S. Appl. No. 95/001,497—Third party requester's comments to patent owner's reply of Jan. 3, 2012 for U.S. Pat. No. 7,397,431. Defendants. Feb. 2, 2012.
U.S. Appl. No. 95/001,483—Request for inter partes reexamination of U.S. Pat. No. 7,394,432 including exhibits CC-A—CC-L. Samsung Electronics Co. Ltd. Nov. 11, 2010.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95000,588 , U.S. Appl. No. 95/001,500—Decision sua sponte to merge reexamination proceedings of U.S. Pat. No. 7,394,432. USPTO. Mar. 17, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Response to office action dated on Apr. 7 , 2011 for U.S. Pat. No. 7,394,432. Sterne Kessler. Jul. 7, 2011.
U.S. Appl. No. 95/001,483 , U.S. Appl. No. 95/000,588 , U.S. Appl. No. 95/001,500—Action closing prosecution for U.S. Pat. No. 7,394,432 dated on Nov. 4, 2011. USPTO. Nov. 4, 2011.
Gianvittorio , John Paul et al. Fractal element antennas—a compilation of configurations with novel characteristics. Antennas and Propagation Society International Symposium, 2000. IEEE. Jul. 16, 2000.
Gilbert , R. ; Pirrung , A. ; Kopf , D. et al. Structurally-integrated optically-reconfigurable antenna array. Antenna Applications Symposium. Sep. 20, 1995.
Gillespie , E. S. Glide slope antenna in the nose radome of the F-104 A and B. Symposium on the USAF antenna research and development program, 7th. Oct. 21, 1957.
Gobien , A. T. Investigation of low profile antenna designs for use in hand-held radios—Master of Science. Virginia Polytechnic Institute and State University. Aug. 1, 2007.
Gonzalez , J. M. ; Navarro , M. ; Puente , C. et al Active zone self-similarity of fractal-sierpinski antenna verified using infra-red thermograms. Electronic Letters. vol. 35. No. 17. Aug. 19, 1999.
Gough , C. E. ; Porch , A. ; Lancaster , M. J. et al High Tc coplanar resonators for microwave applications and scientific studies. Physics. vol. 282-287. pp. 395-398. Aug. 1, 1997.
Graf, R Modern dictionary of electronics. Butterworth-Heinemann (6th Ed.).. pp. 209, 644. Jan. 1, 1984.
Gray , D. ; Lu , J. W. ; Thiel , D. V. Electronically steerable Yagi-Uda microstrip patch antenna array. IEEE Transactions on antennas and propagation. May 1, 1998.
Greiser , J. W. And Brown , G. S. A 500:1 scale model of warla : A wide aperture radio location array. Symposium on the USAF Antenna Research and Development Program, 13th. Oct. 14, 1963.
Griffin , D. W. ; Parfitt , A. J. Electromagnetic design aspect of packages for monolithic microwave integrated circuit based arrays with integrated antenna elements. Antennas and Propagation, IEEE Transactions on. vol. 43. No. 9. Sep. 1, 1995.
Guo , Y. Dual band slot loaded short circuited patch antenna. Electronic Letters. Feb. 17, 2000.
Guo , Y. X. ; Luk , K. F. Lee ; Chow , Y. L. Double U-slot rectangular patch antenna. Electronic Letters. Sep. 17, 1998.
Gupta , K. C. ; Benalla , A. Microstrip antenna design. Artech House. Jan. 1, 1988.
Gupta , K.C. Broadbanding techniques for microstrip patch antennas—a review. Antenna Applications Sysmposium. Sep. 21, 1988.
Haapala , P. ; Vainikainen , P. Helical antennas for multi-mode mobile phones. European Microwave Conference, 1996. 26th. Sep. 9, 1996.
Hagström , P. Novel ceramic antenna filters for GSM / DECT and GSM / PCN network terminals. The 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1997. 'Waves of the Year 2000'. PIMRC '97. Sep. 1, 1997.
Hall , P. S. System applications—the challenge for active integrated antennas. AP2000 Millenium conference on antennas and propagation. Apr. 1, 2000.
Halloran , T. W. A dual channel VHF telemetry antenna system for re-entry vehicle applications. Symposium on the USAF Antenna Research and Development Program, 11th. Oct. 16, 1961.
Hammad , H. F. et al Dual band aperture coupled antenna using spur line. Antennas and Propagation Society International Symposium, 1997. AP-S. Digest. Jul. 24, 19973.
Hansen , R. C. Fundamental limitations in antennas. IEEE Proceedings. vol. 69. No. 2. pp. 170-182. Feb. 1, 1981.
Hara Prasad , R. V. Microstrip fractal patch antenna for muitiband communication. IEEE Electromagnetic Letters. vol. 36. No. 14. pp. 1179-1180. Jul. 6, 2000.
Hart , N. ; Chalmers , A. Fractal element antennas. Digital Image Computing and Applications 97 in New Zealand. Jun. 2, 1997.
Heberling , D. ; Geisser , M. Trends on handset antennas. Microwave Conference, 1999. 29th European. Mar. 3, 1999.
Henderson West , B The Prentice-Hall encyclopedia of mathematics. Prentice-Hall. . pp. 404-425. Jan. 1, 1982.
Herscovici , Naftali New considerations in the design of microstrip antennas. Antennas and Propagation, IEEE Transactions on Jun. 1, 1998.
Nikita , M. ; Shibagaki , N. ; Asal , K. et al New miniature saw antenna duplexer used in GHz-band digital mobile cellular radios. IEEE Ultrasonics Symposium. Nov. 7, 1995.
Hikita ' M. M et al Miniature SAW antenna duplexer for 800-Mhz portable telephone used in cellular radio systems. . Microwave Theory and Techniques, IEEE Transactions on Jun. 1, 1988.
Hill , J. E. ; Bass , J. F. An integrated strip-transmission-line antenna system for J-band. Symposium on the USAF Antenna Research and Development Program, 23th. Oct. 10, 1973.
Hofer , D. A. ; Kesler , Dr. O. B. ; Loyet , L. L. A compact multi-polarized broadband antenna. Proceedings of the 1989 antenna applications symposium. Sep. 20, 1989.
Hofmeister , M. The dual-frequency-inverted-F monopole antenna for mobile communications. N/A. Jan. 6, 1999.
Hohlfeld , R. G. ; Cohen N. Self-similarity and the geometric requirements for frequency independence in antennae. Fractals. vol. 7. No. 1. pp. 79-84. Jan. 17, 1999.
Holtum , A. G. A dual frequency dual polarized microwave antenna. Symposium on the USAF Antenna Research and Development Program, 16. Oct. 11, 1966.
Holzschuh , D. L. Hardened antennas for atlas and titan missile site communications. Symposium on the USAF Antenna Research and Development Program, 13th. Oct. 14, 1963.
Hong , J. S. ; Lancaster , M. J. Compact microwave elliptic function filter using novel microstrip meander open-loop resonators. Electronic Letters. vol. 32. pp. 563-564. Mar. 14, 1996.
Hong , J. S. ; Lancaster , M. J. Recent advances in microstrip filters for communications and other applications. Iee Colloquium on Advances in Passive Microwave Components (Digest No. 1997/154). May 22, 1997.
Hsieh , Gui-Bin ; Pan , Shan-Cheng Dual-frequency slotted triangular microstrip antenna with an inset microstrip-line feed. Microwave and Optical Technology Letters. vol. 27. No. 5. Dec. 5, 2000.
Huynh , T ; Lee , K. F. Single-layer single-patch wideband microstrip antenna. Electronic Letters. Aug. 3, 1995.
Hyneman , R. F. ; Mayes , P. E. ; Becker , R. C. Homing antennas for aircraft ( 450-2500 MC ). Symposium on the USAF antenna research and development program, 5th. Oct. 16, 1955.
Ikata , O. ; Satoh , Y. ; Uchishiba , H. et al Development of small antenna duplexer using saw filters for handheld phones. IEEE Ultrasonics Symposium. Oct. 31, 1993.
Ingerson , P. G. ; Mayes , P. E. Asymmetrical feeders for log-periodic antennas. Symposium on the USAF antenna research and development program, 17th. Nov. 14, 1967.
Isbell , D. E. Multiple terminal log-periodic antennas. Symposium on the USAF antenna research and development program, 8th. Oct. 20, 1958.
Isbell , D. E. Non-planar logarithmically periodic antenna structures. Symposium on the USAF antenna research and development program, 7th. Oct. 21, 1957.
Ishikawa , Y. ; Hattori , J. ; Andoh , M. et al. 800 MHz High Power Bandpass Filter Using TM Dual Mode Dielectric Resonators. European Microwave Conference , 21th. Sep. 9, 1991.
Iwasaki , Hisao ; Suzuki , Yasuo Electromagnetically coupled circular patch antenna consisting of multilayered configuration. Antennas and Propagation, IEEE Transactions on. Jun. 1, 1996.
Jaggard , D. Diffraction by Band limited Fractal Screens. Optical Society AM. vol. 4. No. 6. Jun. 1, 1987.
Jaggard , D. L. Fractal electrodynamics and modeling. Directions in electromagnetic wave modeling.. pp. 435-446. Jan. 1, 1991.
James , J. R. ; Hall , P. S. Handbook of microstrip antennas. Peter Peregrinus Ltd.. vol. 1. pp. 3-4 , 205-207. Jan. 1, 1989.
Johnson , R. C. Antenna engineering handbook—Table of contents. McGraw-Hill. Jan. 1, 1993.
Jones , H. S. Conformal and Small antenna designs. Proceedings of the Antennas Applications Symposium. Aug. 1, 1981.
Katsibas , K. D. ; Balanis , C. A. ; Panayiotis , A. T. ; Birtcher , C. R. Folded loop antenna for mobile hand-held units. IEEE Transactions on antennas and propagation. vol. 46. No. 2. Feb. 1, 1998.
Document 0649—Defendants LG Electronics Inc, LG Electronics USA, and LG Electronics Mobilecomm USA Inc's second amended answer and counterclaim to second amended complaint. Defendants. Feb. 28, 2011.
Document 0657—Defendant Pantech Wireless Inc amended answer, affirmative defenses, and counterclaims to Fractus' second amended complaint. Defendants. Feb. 28, 2011.
Document 0666—Fractus's sur-reply to defendants' motion for reconsideration of the court's december 17, 2010 claim construction order based on newly-available evidence. Susman Godfrey. Mar. 8, 2011.
Document 0670—Order. Court. Mar. 9, 2011.
Document 0678—Plaintiff Fractus SA's answer to second amended counterclaims of defendant HTC Corporation to Fractus's second amended complaint. Susman Godfrey. Mar. 14, 2011.
Document 0680—Plaintiff Fractus SA's answer to second amended counterclaims of defendant HTC to Fractus's second amended complaint. Susman Godfrey. Mar. 14, 2011.
Document 0694—Plaintiff Fractus SA's answer to second amended counterclaims of defendant LG Electronics to Fractus's second amended complaint. Susman Godfrey. Mar. 15, 2011.
Document 0695—Plaintiff Fractus SA's answer to second amended counterclaims of defendant Samsung to Fractus's second amended complaint. Susman Godfrey. Mar. 15, 2011.
Document 0696—Plaintiff Fractus SA's answer to amended counterclaims of defendant Pantech Wireless Inc to Fractus's second amended complaint. Susman Godfrey. Mar. 15, 2011.
Document 0715—Letter to John D. Love—Permission to file a summary judgment motion of no indefiniteness on the issues wher the Court's Report and Recommendation already has held that the claim term is not indefinite. Susman Godfrey. Mar. 18, 2011.
Document 0716—Letter to John D. Love—Permission to file a partial summary judgement motion on infringement.. Susman Godfrey , LLP. Mar. 18, 2011.
Document 0721—Letter to John D. Love—Permission to file a motion for summary judgment of invalidity of the following 7 asserted claims from the MLV, patent family . . . Defendants —Baker Botts, LLP. Mar. 18, 2011.
Document 0768—Fractus, S.A.'s objections to the Court's Mar. 9, 2011, Order. Susman Godfrey. Mar. 25, 2011.
Document 0780—Defendants' opposition to Fractus SA objections to the Court's Mar. 9, 2011 Order. Defendants—Baker Botts, LLP. Mar. 31, 2011.
Document 0783—Order. Court. Apr. 1, 2011.
Document 0841—Stipulation of Dismissal of all Claims and Counterclaims re '850 and '822. Defendants. Apr. 15, 2011.
Document 0843—Joint Motion to Dismiss Claims and Counterclaims re '850 and '822. Defendants. Apr. 15, 2011.
Document 0854—Defendants' Motion to Clarify Claim Construction. Defendants. Apr. 18, 2011.
Document 0868—Order. Court. Apr. 19, 2011.
Document 0876—Fractus's surreply to defendants' Motion for Summary Judgment re publication dates of three references. Susman Godfrey. Apr. 20, 2011.
Document 0887—Fractus's Response to Defendants' Motion to Clarify Claim Construction. Susman Godfrey. Apr. 25, 2011.
Document 0889—Reply in support of defendants' motion to clarify claim construction. Defendants. Apr. 27, 2011.
Document 0893—Fractus SA's surreply to defendant's motion to clarify claim construction. Susman Godfrey. Apr. 29, 2011.
Document 0900—Order. Court. Apr. 29, 2011.
Document 0901—Report and recommendation of United States Magistrate Judge. Court. May 2, 2011.
Document 0902—Fractus Sa's objections to defendants' prior art notice. Susman Godfrey. May 2, 2011.
Document 0915—Defendants' response to plaintiff's objections to defendants notice of prior art. Defendants. May 5, 2011.
Document 0933—Defendants' motion for reconsideration of, and objections to, the May 2, 2011 report and recommendation clarifying claim construction. Defendants. May 9, 2011.
Document 0939—Fractus's response to defendants' motion for reconsideration of and objections to the May 2, 2011, report and recommendations clarifying claim construction. Susman Godfrey. May 10, 2011.
Document 0968—Order. Court. May 13, 2011.
Document 0971—Order. Court. May 13, 2011.
Document 1082—Joint motion to dismiss HTC. Susman Godfrey LLP. Sep. 13, 2011.
Document 1083—Order—Final consent judgement HTC. Court. Sep. 15, 2011.
Document 1088—Samsung's motion to determine intervening rights in view of new Federal Circuit case law or, in the alternative, to stay the case pending the outcome of reexamination. Defendants. Oct. 19, 2011.
Document 1091—Fractus's response to Samsung's motion to determine intervening rights or to stay the case pending the outcome of reexamination. Susman Godfrey LLC. Nov. 2, 2011.
Document 1092—Samsung's reply in support of its motion to determine intervening rights in view of new Federal Circuit case law or, in the alternative, to stay the case pending the outcome of reexamination. Defendants. Nov. 14, 2011.
Expert report of Dr. Warren L. Stutzman (redacted)—expert witness retained by Fractus. Fractus. Feb. 23, 2011.
Expert report of Dwight L. Jaggard (redacted)—expert witness retained by Fractus. Fractus. Feb. 23, 2011.
Expert report of Stuart Long (redacted)—expert witness retained by Fractus. Fractus. Feb. 23, 2011.
Fractus' Claim Construction Presentation—Markman Hearing. Fractus. Sep. 2, 2010.
Grounds of Invalidity. Hogan Lovells International LLP. Sep. 15, 2010.
U.S. Appl. No. 95/001,389 , U.S. Appl. No. 95/000,591—Action closing prosecution for the U.S. Pat. No. 7,123,208. USPTO. Apr. 27, 2012.
U.S. Appl. No. 95/001,390 , U.S. Appl. No. 95/000,589—Action closing prosecution for the U.S. Pat. No. 7,015,868. USPTO. Apr. 26, 2012.
U.S. Appl. No. 95/001,455 , U.S. Appl. No. 95/000,595—Action closing prosecution for the U.S. Pat. No. 7,528,782. USPTO. Apr. 26, 2012.
FractalComs web—www.tsc.upc.es/fractalcoms/. Univeritat Politecnica de Catalunya.
Fractus web—www.fractus.com/main/fractus/corporate/. Fractus SA. Oct. 7, 2010.
GSM Technical specification and related materials. ETSI. Mar. 1, 1996.
Hagenuk mobile phone—Antenna photo—Technical specs—User manual. Hagenuk Telecom GmbH. Jan. 1, 1996.
IEEE Standard definitions of terms for antennas, IEEE Std. 145-1983. Antenna Standards Committee of the IEEE Antennas and Propagation Group, USA;. Jun. 22, 1983.
IEEE Standard Definitions of Terms for Antennas, IEEE Std. 145-1993 (1993). The Institute of Electrical and Electronics Engineers—Case 6:09-cv-00203-LED-JDL. Mar. 18, 1993.
IEEE Standard Dictionary of Electrical and Electronics Terms. IEEE Press (6th ed.). pp. 359, 688, and 878. Jan. 1, 1996.
IEEE Standard dictionary of electrical and electronics terms. IEEE Standard (6th ed.). pp. 229, 431, 595, 857. Jan. 1, 1996.
Int'l Electro-Technical Commission IEV No. 712-01-04—Electropedia : the world's online electrotechnical vocabulary. Electropedia—Commission Electrotechnique Internationale—http://www.electropedia.org. Apr. 1, 1998.
Letter to FCC—Application form 731 and Engineering Test Report by Nokia Mobile Phones for FCC ID: LJPNSW-6NX. M. Flom Associates. Apr. 1, 1999.
Merriam-Webster's Collegiate Dictionary (1993)—Declaration of J. Baxter—Exhibit CC. Merriam-Webster's. Case 6:09- cv-00203-LED-JDL. p. 863. Jan. 1, 1993.
Motorola 2000x pager. Motorola. Jun. 13, 1997.
Motorola Advisor Elite mobile phone—Antenna photos—User manual. Motorola. Jan. 1, 1997.
Motorola Advisor Gold FLX pager. Motorola , Inc. Aug. 1, 1996.
Motorola Bravo Plus pager. Motorola. Mar. 3, 1995.
Motorola P935. Motorola. Aug. 13, 1997.
Nokia 3210. Nokia. Jan. 1, 1999.
Nokia 3360. Nokia. May 3, 2001.
Nokia 8210. Nokia. Jan. 1, 1999.
Nokia 8260. Nokia. Sep. 8, 2000.
Nokia 8260—FCC ID GMLNSW-4DX. Nokia. Apr. 1, 1999.
Nokia 8265. Nokia. Mar. 4, 2002.
Nokia 8810. Nokia. Jan. 1, 1998.
Nokia 8850. Nokia. Jan. 1, 1999.
Nokia 8860—External photos—OET Exhibits list for FCC ID: LJPNSW-6NX. Federal Communications Commission—FCC. Jul. 8, 1999.
Nokia 8860—Internal photos—FCC ID: LJPNSW-6NX. Nokia and Federal Communications Commission ( FCC ). Jun. 24, 1999.
Research in Motion receives FCC approval for the new Inter(at)ctive Pager 850. PR Newswire. Jul. 12, 1999.
RIM 950 product—Photos of. RIM. Jun. 30, 1998.
Rockwell B-1B Lancer. <http://home.att.net/˜jbaugher2/newb1—2.html>. Oct. 12, 2001.
Software—Box counting dimension [electronic]. http://www.sewanee.edu/Physics/PHYSICS123/BOX%20COUNTING%20DIMENSION.html. Apr. 1, 2002.
The American Century Dictionary. Oxford University Press. pp. 376, 448. Jan. 1, 1995.
The American Heritage College Dictionary. Houghton Mifflin Comp.—3d ed.—Case 6:09-cv-00203-LED-JDL. pp. 684 and 1060. Jan. 1, 1997.
The American Heritage Dictionary. Morris—William—(Second College edition)—Case 6:09-cv-00203-LED-JDL. pp. 817 , 961. Jan. 1, 1982.
The American Heritage Dictionary. New College ed. (2nd ed. ). pp. 311, 1208. Jan. 1, 1982.
The handbook of antenna design—Index. Rudge, A. W. et al.—Peter Peregrinus—Institution of Electrical Engineers. vol. 1-3. Jan. 1, 1986.
The Random House Dictionary. Random House. pp. 1029, 1034. Jan. 1, 1984.
United States Table of Frequency allocations—The Radio Spectrum. United States Department of Commerce. Mar. 1, 1996.
User's guide. Nokia. Jun. 7, 1998.
User's Guide RIM 950 Wireless Handheld. RIM. Version 1.7. Jan. 1, 1997.
Webster's New Collegiate Dictionary. G & C Merriam Co.. pp. 60, 237, 746. Jan. 1, 1981.
Related Publications (1)
Number Date Country
20130285859 A1 Oct 2013 US
Continuations (11)
Number Date Country
Parent 13732743 Jan 2013 US
Child 13929441 US
Parent 13669916 Nov 2012 US
Child 13732743 US
Parent 13411212 Mar 2012 US
Child 13669916 US
Parent 13044189 Mar 2011 US
Child 13411212 US
Parent 12400888 Mar 2009 US
Child 13044189 US
Parent 11780932 Jul 2007 US
Child 12400888 US
Parent 11179257 Jul 2005 US
Child 11780932 US
Parent 11102390 Apr 2005 US
Child 11179257 US
Parent 10963080 Oct 2004 US
Child 11102390 US
Parent 10102568 Mar 2002 US
Child 10963080 US
Parent PCT/ES99/00296 Sep 1999 US
Child 10102568 US