Information
-
Patent Grant
-
6640557
-
Patent Number
6,640,557
-
Date Filed
Wednesday, October 23, 200222 years ago
-
Date Issued
Tuesday, November 4, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 062 434
- 062 511
- 062 2592
- 062 507
- 174 155
- 505 100
-
International Classifications
- F17C1300
- F25D2312
- F25D1702
- H01B1200
- H01R468
-
Abstract
A method for refrigerating a high temperature superconducting device to maintain superconducting operating conditions wherein a first heat transfer means such as a first heat transfer fluid is cooled to a temperature greater than the temperature of saturated liquid nitrogen and is used for ambient heat intercept while a second heat transfer means such as a second heat transfer fluid is cooled to a temperature within the high temperature superconductivity temperature operating range to maintain superconducting operating conditions.
Description
TECHNICAL FIELD
This invention relates generally to refrigeration and, more particularly, to refrigeration for high temperature superconductivity applications.
BACKGROUND ART
Superconductivity is the phenomenon wherein certain metals, alloys and compounds lose electrical resistance so that they have infinite electrical conductivity. Until recently, superconductivity was observed only at extremely low temperatures just slightly above absolute zero. Maintaining superconductors at such low temperatures is very expensive, typically requiring the use of liquid helium, thus limiting the commercial applications for this technology.
Recently a number of materials have been discovered which exhibit superconductivity at higher temperatures, such as in the range from 15 to 75 K. While such materials may be kept at their superconducting temperatures using liquid helium or very cold helium vapor, such a refrigeration scheme is quite costly. Unfortunately liquid nitrogen, a relatively low cost way to provide cryogenic refrigeration, cannot effectively provide refrigeration to get down to the superconducting temperatures of most high temperature superconductors.
An electric transmission cable made of high temperature superconducting materials offers significant benefits for the transmission of large amounts of electricity with very little loss. High temperature superconducting material performance generally improves roughly an order of magnitude at temperatures of about 30 to 50 K from that at temperatures around 80 K which is achieved using liquid nitrogen.
The application of superconducting systems such as cable, transformer, fault current controller/limitor and others is dependent in part on the development of economic refrigeration systems. Superconducting systems need to be maintained at temperatures in the range of 4 to 80 K. However, the system needs to be shielded from heat leak starting at ambient temperature down to the operating temperature of the superconducting system. Refrigeration below liquid nitrogen temperatures becomes excessively expensive, as the temperature gets lower when compared to liquid nitrogen level refrigeration. Liquid nitrogen level refrigeration is considerably less expensive but is not cold enough for-most-high temperature superconductivity applications.
Accordingly, it is an object of this invention to provide a method for refrigerating a high temperature superconducting device which requires less power and thus less cost than heretofore available systems.
SUMMARY OF THE INVENTION
The above and other objects, which will become apparent to those skilled in the art upon a reading of this disclosure, are attained by the present invention which is:
A method for cooling a high temperature superconducting device comprising:
(A) providing a high temperature superconducting device operating at a temperature within a high temperature superconductivity temperature range of from 20 to 80 K;
(B) cooling a first heat transfer means to a first temperature which exceeds the temperature of saturated liquid nitrogen, and warming the cooled first heat transfer means by intercepting ambient heat from passing to the high temperature superconducting device; and
(C) cooling a second heat transfer means to a second temperature within the high temperature superconductivity temperature range, and warming the cooled second heat transfer means by heat exchange with the high temperature superconducting device to maintain the high temperature superconducting-device within the high temperature superconductivity temperature range.
As used herein, the term “high temperature superconducting device” means an electrical device such as a cable, transformer, fault current controller/limitor or magnet, in which the electrical resistance to the passage of current is reduced to essentially zero while being maintained at superconducting temperatures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic representation of one preferred embodiment of the invention wherein refrigeration is generated using a recirculating multicomponent refrigerant fluid, the high temperature superconducting device is electrical cable, and the means used to refrigerate the superconducting device are fluids which circulate in discrete circuits.
FIG. 2
is a schematic representation of another preferred embodiment of the invention wherein refrigeration is generated using recirculating multicomponent refrigerant fluid, the high temperature superconducting device is electrical cable, and the means used to refrigerate the superconducting device is heat transfer fluid which circulates in an integrated circuit driven by a single pump.
DETAILED DESCRIPTION
The invention comprises the discovery that a reduction in the power required to maintain a high temperature superconducting device at the requisite temperature can be attained by removing the heat at more than one level rather than at just the requisite temperature and, moreover, that a significant reduction in such required power is attained when the warmest level is at a temperature which exceeds the temperature of saturated liquid nitrogen which, at atmospheric pressure, is 77 K.
The invention will be described in detail with reference to the Drawings. Any effective refrigeration system may be employed in the practice of this invention to generate the refrigeration for the operation of the high temperature superconducting device. In the embodiment of the invention illustrated in
FIG. 1
, the refrigeration system employed is a single loop system employing a multicomponent refrigerant fluid. The multicomponent refrigerant system may also have internal recycle loops to avoid freezing of heavier refrigerant components or it may have more than one loop. A multicomponent refrigerant fluid is a fluid comprising two or more species and capable of generating refrigeration. The multicomponent refrigerant fluid which may be used in the practice of this invention preferably comprises at least two species from the group consisting of fluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, fluoroethers, atmospheric gases and hydrocarbons, e.g. the multicomponent refrigerant fluid could be comprised only of two different fluorocarbons.
One preferred multicomponent refrigerant fluid useful with this invention preferably comprises at least one component from the group consisting of fluorocarbons, hydrofluorocarbons, and fluoroethers, and at least one component from the group consisting of fluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, fluoroethers, atmospheric gases and hydrocarbons.
In one preferred embodiment of the invention the multicomponent refrigerant fluid consists solely of fluorocarbons. In another preferred embodiment of the invention the multicomponent refrigerant fluid consists solely of hydrocarbons. In another preferred embodiment of the invention the multicomponent refrigerant fluid consists solely of fluorocarbons and hydrofluorocarbons. In another preferred embodiment of the invention the multicomponent refrigerant fluid consists solely of fluorocarbons, fluoroethers and atmospheric gases. In another preferred embodiment of the invention the multicomponent refrigerant fluid consists solely of hydrocarbons and atmospheric gases. Most preferably every component of the multicomponent refrigerant fluid is either a fluorocarbon, hydrofluorocarbon, fluoroether, hydrocarbon or atmospheric gas. One particularly preferred multicomponent refrigerant fluid for use in the practice of this invention is shown in Table 1.
TABLE 1
|
|
Component
Concentration (Mole Percent)
|
|
C
3
F
7
—O—CH
3
2-10
|
C
3
F
8
5-25
|
CF
4
10-55
|
Ar
0-30
|
N
2
1-55
|
Ne
0-10
|
|
Referring now to
FIG. 1
, warm multicomponent refrigerant fluid
16
, typically at ambient temperature, is compressed by passage through compressor
21
to a pressure generally within the range of from 100 to 2000 pounds per square inch absolute (psia). Resulting compressed refrigerant fluid
1
is cooled of the heat of compression by passage through aftercooler
50
and then passed as stream
2
into heat exchanger system
60
of the refrigeration cycle. In the embodiment of the invention illustrated in
FIG. 1
the heat exchanger system
60
comprises six modules or sections numbered
61
,
62
,
63
,
64
,
65
and
66
running from the warmest (section
61
) to the coldest (section
66
). In
FIG. 1
these sections are shown as being separate sections although it is understood that some or all of these sections could be incorporated into a common structure.
The refrigerant fluid is cooled by passage through the heat exchanger sections by indirect heat exchange with warming multicomponent refrigerant fluid in the return leg as will be more fully described below. The cooling refrigerant fluid is shown as progressively cooler streams
3
,
4
,
5
,
6
and
7
respectively between the heat exchanger sections, emerging from heat exchanger system
60
as cooled multicomponent refrigerant fluid
8
. The cooled multicomponent refrigerant fluid
8
is then expanded to generate refrigeration through expansion device
9
which may be a turboexpander wherein the expansion is isentropic, or may be a Joule-Thomson valve wherein the expansion is isenthalpic. The resulting refrigeration bearing multicomponent refrigerant fluid
10
is then passed back into heat exchanger system
60
for the warming leg of the refrigeration cycle.
FIG. 1
also serves to illustrate an example of the invention, which is presented for illustrative purposes and is not intended to be limiting, wherein representative or typical temperatures are identified with various streams of the illustrated embodiment. As shown in
FIG. 1
, the warming multicomponent refrigerant fluid, shown as streams
11
,
12
,
13
,
14
and
15
, emerging from warm heat exchanger section
61
as warm multicomponent refrigerant fluid
16
, has a temperature which runs from 60 K to 300 K.
Any high temperature superconducting device may be used in the practice of this invention. Examples of such high temperature superconducting devices include cables, transformers and fault current controllers/limitors. In the embodiment of the invention illustrated in
FIG. 1
, the high temperature superconducting device is a cable
70
. Preferably, as illustrated in
FIG. 1
, the high temperature superconducting device is insulated with multiple layers of insulation including an outer layer
71
and an inner layer
72
which is closest to the superconducting device. The embodiment illustrated in
FIG. 1
has an additional layer of insulation
73
positioned between insulation layers
71
and
72
. The high temperature superconducting device is operating at a temperature within a high temperature superconductivity range of from 20 to 80 K, preferably within the range of from 30 to 65 K. In the example of the embodiment illustrated in
FIG. 1
the high temperature superconducting cable
70
is operating at a temperature of about 65 K.
The embodiments of the invention illustrated in the Drawings are preferred embodiments wherein the heat transfer means are heat transfer fluids. Other heat transfer means which may be used in the practice of this invention include conductive blocks.
The heat transfer fluids which may be used in the practice of this invention are preferably species from the groups atmospheric gases, hydrocarbons, fluorocarbons, hydrofluorocarbons, fluoroethers and hydrofluoroethers. Mixtures of species to make up a single heat transfer fluid may be used, especially when a single heat transfer fluid is used for providing refrigeration at each of the temperature levels as is the case with the embodiment of the invention illustrated in FIG.
2
.
Referring back now to
FIG. 1
, first heat transfer fluid
42
, which in the example of the embodiment illustrated in
FIG. 1
is at a temperature of 200 K, is pumped by pump
22
and passed in line
40
to second heat exchanger section
62
wherein it is cooled by indirect heat exchange with the warming multicomponent refrigerant fluid
14
to a temperature which exceeds the temperature of saturated liquid nitrogen and generally to within the range of from 100 to 275 K. In this example the first heat transfer fluid is cooled to a temperature of 190 K. Examples of fluids which may be used as the first heat transfer fluid in the practice of this invention include CF
4
, C
3
F
8
, C
3
F
7
-O-CH
3
, mixtures of CF
4
and C
3
F
8
, and mixtures of C
3
H
6
and C
4
H
10
. The cooled first heat transfer fluid
41
is then used to intercept ambient heat from passing to the high temperature superconducting device. In the embodiment of the invention illustrated in
FIG. 1
, cooled first heat transfer liquid
41
is passed to and through insulated assembly
74
between outer insulation layer
71
and inner insulation layer
72
. In the process the first heat transfer fluid is warmed to form heat transfer fluid stream
42
for recycle to pump
22
.
Second heat transfer fluid
48
, which in the embodiment of the invention illustrated in
FIG. 1
has a different composition from that of the first heat transfer fluid, is passed to pump
24
. Examples of fluids which may be used as the second heat transfer fluid in the practice of this invention include argon, mixtures of argon and oxygen, mixtures of nitrogen and oxygen, mixtures of nitrogen and argon, and mixtures of N
2
and CF
4
. In the example of the embodiment illustrated in
FIG. 1
the second heat transfer fluid in stream
48
is at a temperature of 67 K. From pump
24
the second heat transfer fluid is passed in line
46
to sixth or coldest heat exchanger section
66
wherein it is cooled by indirect heat exchange with warming multicomponent refrigerant fluid
10
to a temperature within the high temperature superconductivity temperature range. In this example the second heat transfer fluid is cooled to a temperature of 65 K. The cooled second heat transfer fluid
47
is then warmed by heat exchange, either direct or indirect heat exchange, with the high temperature superconducting device to maintain the high temperature superconducting device within the high temperature superconductivity temperature range. In the embodiment of the invention illustrated in
FIG. 1
, cooled second heat transfer fluid
47
is passed to and through insulated assembly
74
between inner insulation layer
72
and superconducting cable
70
. In the process the second heat transfer fluid is warmed to form heat transfer fluid stream
46
for recycle to pump
24
.
Heat leak into the high temperature superconducting device may be intercepted at one or more temperatures intermediate to the temperatures of the cooled first and second heat transfer fluids. The embodiment of the invention illustrated in
FIG. 1
employs one such intermediate cooling loop. In this embodiment, a third heat transfer fluid
45
, which may have the same composition as or a different composition from the compositions of the first heat transfer fluid and/or the second heat transfer fluid, is passed to pump
23
. Examples of fluids which may be used as the third heat transfer fluid in the practice of this invention include CF
4
, mixtures of CF
4
and C
3
F
8
, mixtures of Ar and CF
4
, mixtures of N
2
and Ar, mixtures of N
2
and CF
4
and mixtures of CH
4
and C
2
H
6
. In the example of the embodiment illustrated in
FIG. 1
the third heat transfer fluid in stream
45
is at a temperature of 100 K. From pump
23
the third heat transfer fluid is passed in line
43
to fourth heat exchanger section
64
wherein it is cooled by indirect heat exchange with warming multicomponent refrigerant fluid
12
to a temperature which is intermediate to that of the temperature of the cooled first heat transfer fluid and the temperature of the cooled second heat transfer fluid. In this example the third heat transfer fluid is cooled to a temperature of 85 K. The cooled third heat transfer fluid
44
is then warmed by the heat leaking through insulation layers
71
and
73
. In the embodiment of the invention illustrated in
FIG. 1
, cooled third heat transfer fluid
44
is passed to and through insulated assembly
74
between inner insulation layer
72
and intermediate insulation layer
73
. In the process the third heat transfer fluid is warmed to form heat transfer fluid stream
45
for recycle to pump
23
.
FIG. 2
illustrates another embodiment of the invention wherein a single heat transfer fluid circuit is used to provide refrigeration to the high temperature superconducting device at three temperature levels. Examples of fluids which may be used as the heat transfer fluid in this embodiment of the invention include air, neon, mixtures of N
2
and CF
4
, mixtures of N
2
, CF
4
and C
3
F
8
, mixtures of N
2
and Ar, mixtures of N
2
and O
2
and mixtures of Ar and O
2
. This embodiment employs a single pump to drive the heat transfer fluids through the circuit rather than the three separate pumps used in conjunction with the embodiment illustrated in FIG.
1
. The numerals of
FIG. 2
are the same as the numerals of
FIG. 1
for the common elements, and these common elements will not be discussed again in detail.
Referring now to
FIG. 2
, heat transfer fluid
140
is cooled to a first temperature which exceeds the temperature of saturated liquid nitrogen and is generally within the range of from 100 to 275 K by passage through heat exchanger section
62
in indirect heat exchange with warming multicomponent refrigerant fluid
14
. Resulting heat transfer fluid
141
is divided into streams
150
and
52
. Stream
150
is in this embodiment the first heat transfer fluid of the invention and is processed with respect to the high temperature superconducting device as was previously described with reference to the embodiment illustrated in FIG.
1
. Stream
52
is passed through valve
53
and as stream
143
is cooled to an intermediate temperature by passage through heat exchanger section
64
in indirect heat exchange with warming multicomponent refrigerant fluid
12
. Resulting heat transfer fluid
144
is divided into streams
51
and
54
. Stream
51
is the third heat transfer fluid and is processed with respect to the high temperature superconducting device as was previously described with reference to the embodiment illustrated in FIG.
1
. Stream
54
is passed through valve
55
and as stream
146
is cooled to a temperature within the high temperature superconductivity temperature range by passage through heat exchanger section
66
in indirect heat exchange with warming multicomponent refrigerant fluid
10
. Resulting heat transfer fluid
147
is in this embodiment the second heat transfer fluid of the invention and is processed with respect to the high temperature superconducting device as was previously described with reference to the embodiment illustrated in FIG.
1
. The warmed first and third heat transfer fluids are withdrawn from superconducting device assembly
74
in streams
142
and
145
respectively and stream
142
is passed through valve
56
to form stream
57
. These streams are recombined with stream
148
which comprises the warmed second heat transfer fluid from superconducting device assembly
74
to form combined heat transfer fluid stream
149
for passage to pump
122
to complete the heat transfer fluid circuit.
Although the invention has been described in detail with reference to certain preferred embodiments, those skilled in the art will recognize that there are other embodiments of the invention within the spirit and the scope of the claims. For example, a multistage Brayton refrigeration cycle may be used in place of the multicomponent refrigerant fluid cycle to generate refrigeration to cool the first and second heat transfer means.
Claims
- 1. A method for cooling a high temperature superconducting device comprising:(A) providing a high temperature superconducting device operating at a temperature within a high temperature superconductivity temperature range of from 20 to 80 K; (B) cooling a first heat transfer means to a first temperature which exceeds the temperature of saturated liquid nitrogen, and warming the cooled first heat transfer means by intercepting ambient heat from passing to the high temperature superconducting device; and (C) cooling a second heat transfer means to a second temperature within the high temperature superconductivity temperature range, and warming the cooled second heat transfer means by heat exchange with the high temperature superconducting device to maintain the high temperature superconducting device within the high temperature superconductivity temperature range, wherein the first heat transfer means comprises first heat transfer fluid and the second heat transfer means comprises second heat transfer fluid and wherein the first heat transfer fluid and the second heat transfer fluid circulate in an integrated circuit.
- 2. The method of claim 1 wherein the high temperature superconducting device is insulated using an outer insulation layer and an inner insulation layer which is positioned closer to the high temperature superconducting device than is the outer insulation layer.
- 3. The method of claim 2 wherein the cooled first heat transfer fluid is passed between the inner and outer insulation layers.
- 4. The method of claim 2 wherein the cooled second heat transfer fluid is passed between the inner insulation layer and the high temperature superconducting device.
- 5. The method of claim 1 wherein the first heat transfer fluid is cooled by indirect heat exchange with a multicomponent refrigerant fluid.
- 6. The method of claim 1 wherein the second heat transfer fluid is cooled by indirect heat exchange with a multicomponent refrigerant fluid.
- 7. The method of claim 1 wherein the high temperature superconducting device is electrical cable.
- 8. A method for cooling a high temperature superconducting device comprising:(A) providing a high temperature superconducting device operating at a temperature within a high temperature superconductivity temperature range of from 20 to 80 K; (B) cooling a first heat-transfer means to a first temperature which exceeds the temperature of saturated liquid nitrogen, and warming the cooled first heat transfer means by intercepting ambient heat from passing to the high temperature superconducting device; and (C) cooling a second heat transfer means to a second temperature within the high temperature superconductivity temperature range, and warming the cooled second heat transfer means by heat exchange with the high temperature superconducting device to maintain the high temperature superconducting device within the high temperature superconductivity temperature range, wherein the first heat transfer means comprises first heat transfer fluid and the second heat transfer means comprises second heat transfer fluid and further comprising cooling a third heat transfer fluid to a third temperature which is less than the first temperature and greater than the second temperature, and warming the cooled third heat transfer fluid by indirect heat exchange with the high temperature superconducting device.
US Referenced Citations (23)