The overall field of the disclosure relates in general to a system and method for organizing particulates and more particularly to a system and method for a multileveled device in the form of a hand operated sieve to separate and categorize different sized and shaped particulates.
The importance of particulate size separation and categorization by sieving cannot be understated. In various industries, different types of machinery and processes are used to produce specific materials. During this activity though, particulates of different size of materials are formed. Thus, graduation of these particulates according to their size or shape becomes necessary for calculation, distribution, and categorization. Sieving is also necessary to separate fine materials from more coarse materials so that the fine materials are not wasted when coarse materials are once again grinded or put through other machining processes. Current systems and methods for sieving either require electric or mechanical systems or are not constructed to efficiently separate particulates. Systems that require electrical or mechanical systems to sort and organize particulates can be expensive, lack portability, and do not operate if there isn't a sufficient enough power source to provide power to the system. They also have many deficiencies such as not being easily stackable, not being portable, and sometimes particulates even become attached to the walls or base and cannot filter through the apparatus. Thus exists a need for a system and method for a hand operated manual device to separate particulates of different shape and size that is portable, easy to store, and easy to clean, as well as accessible enough for anyone to use.
In one aspect, the present invention is directed to a system for sieving different sized particulates, comprising, a plurality of stackable, sorting containers, configured to hold a quantity of a particulate, each sorting container comprising a sidewalls projecting upwardly and outwardly from a base, mesh connected to the base of the container, the mesh defining a plurality of holes, an opening at a top of the system provided to allow for particulates to be introduced into the system, and a bottom container comprising a bottom, the bottom configured to be devoid of openings so as to collect particulates that pass through the openings in the plurality of sorting containers above the bottom container, each container configured for sifting the particulates by moving the container in a reciprocating motion thereby allowing the particulates therein to pass through the holes, onto the base of the container below, while the higher container retains all particulates being larger than the openings.
In another aspect, the present invention is directed to a system for sieving different sized particulates, comprising: a plurality of containers, configured to hold a quantity of a particulate, each container comprising sidewalls projecting upwardly and outwardly from a base, a mesh, the mesh defining a plurality of holes, the base having a recess, the recess sized to receive the mesh, an outer area of the mesh equal to or slightly smaller to an inner area of the recess, an opening at a top of the system provided to allow for particulates to be introduced into the system, and a bottom container comprising a bottom, the bottom configured to be devoid of openings so as to collect particulates that pass through the openings in the plurality of sorting containers above the bottom container, each container configured for sifting the particulates by moving the container in a reciprocating motion thereby allowing the particulates therein to pass through the holes, onto the base of the container below, while the higher tray retains all particulates being larger than the openings, wherein the mesh and the recess are in frictional contact with one another, forming a seal to prevent the particulates from escaping unless through the plurality of openings down into the container below.
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar elements, and in which:
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature may also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
Where reference is made herein to a method comprising two or more defined steps, the defined steps may be carried out in any order or simultaneously (except where the context excludes that possibility), and the method may include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
“Exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described in this document as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
Throughout the drawings, like reference characters are used to designate like elements. As used herein, the term “coupled” or “coupling” may indicate a connection. The connection may be a direct or an indirect connection between one or more items. Further, the term “set” as used herein may denote one or more of any item, so a “set of items,” may indicate the presence of only one item, or may indicate more items. Thus, the term “set” may be equivalent to “one or more” as used herein.
The present disclosure recognizes the unsolved need for a system and method to sort, separate, organize, and store particulates of different material, shape, and size utilizing a multi-level system of containers with replaceable sieves at different elevation levels. The system employs a combination of gravitational downward forces on the individual pieces and omnidirectional manual forces applied by an operator on the system to automatically sort and organize particulates of different shape and size into the respective containers. Each container and the container's sieves are constructed so that particular sizes and shapes may be filtered downward to the next level, resulting finally in a set of sorted particulates at different levels within the system. The containers also function as storage structures for the particulates before, during, and after the sorting of the particulates whereby they may also be easily transported and moved into other apparatuses.
With reference now to
Mesh 150, 152, and 154 may have a plurality of holes such as holes 160, 162, and 164 as shown in
In one or more non-limiting embodiments a supporting flange perimeter such as flange perimeter 106 may be located at the opening of each container 102 and bottom container 103. Perimeter flanges 106 may be connected to strategically positioned integrated handholds such as handhelds 107 to help with gripping of containers 102 and 103. Perimeter flanges 106 and handles 107 provide shape-supporting rigidity to the top of containers 102 and 103 and may be used as a handholding apparatus during sieving such that an operator may provide a reciprocating motion. Containers 102 and 103 are preferably made of a transparent polymer-plastic that may be injection or compression molded allowing for an operator to view the separation of particulates and determine whether any particulates are stuck in container 102 and 103 or have been thoroughly distributed. This, however, is non limiting and any other materials such as metal, wood, cardboard, fiberglass, and glass may be used that may provide the necessary function of filtering particulates through the system.
Bases 104 of the containers 102 may have a recess such as recess 109 as illustrated in
A variety of different type of mesh 150, 152, and 154 may be used. Mesh 150, 152, and 154 are designed to be quickly installed and removed. Mesh 150, 152, and 154 may be selected and positioned to fit the individual use and needs of the operator. In further embodiments, openings 160, 162, and 164 may be a series of slots in parallel or other formation. In other non-limiting embodiments, mesh 150, 152, and 154 may be affixed to base 104 of the containers with, for example, fasteners, adhesive, latches, hinges, welding techniques, or any other method known to those skilled in the art wherein smaller particulates that fit through mesh 150, 152, and 154 will not be trapped in containers 102.
Containers 102 and bottom container 103 may be stacked on top of each other in a nesting stack configuration. The size of the holes in mesh 150, 152, and 154 in containers 102 are sized and shaped to allow only certain sized particulates to pass through while retaining larger sizes in the container until the smallest sized particulates are collected at the bottom. For example the mesh attached to the base of the container at the highest vertical level has the biggest holes while the mesh attached to the base of the container directly below it has smaller holes than the mesh above it. This is continued until bottom container 103 whereby bottom container 103 has a bottom 156 that is without an opening so as to collect the smallest particulates. Holes 160, 162, and 164 may be of any size and may be of any size distribution to meet customized needs of different particulates and materials. In one or more non-limiting embodiments, holes 160, 162, and 164 in the mesh of the containers may be aligned while in other embodiments holes 160, 162, and 164 in mesh 150, 152, and 154 with respect to each container 102 may be offset from one another. In one or more non-limiting embodiments the bottom container may have wheels attached to it for improving portability while also enhancing the sorting of particulates by capitalizing on the different forces applied from rolling the container.
The sieving process is carried out by inserting particulates in the highest container and through a manual force of rolling, shaking, pulling, or twisting the stack of nested containers as illustrated in
The same process happens again as system 100 is moved in a reciprocating motion whereby particulates smaller than holes 162 pass through mesh 152 into container 102 having mesh 154 while particulate larger than holes 162 stay in the container having mesh 152. Finally, as system 100 is moved in a reciprocating motion, particulates smaller than holes 164 pass through mesh 154 into bottom 156 of bottom container 103 while particulates larger than holes 164. stay in container 102 having mesh 154. With removable mesh it may be appreciated that any number of combinations and arrangements may be used for system 100 such as removing a container and mesh where particulates are only separated 2 times or rearranged so that multiple sizes of particulates may be collected in a container.
In one or more non-limiting embodiments the top most container 102 may have a lid, sealing container 102 shut and preventing the particulates from escaping. The lid may have a substantially rectangular body having a slightly greater area than container 102 opening allowing for centering the lid over the opening in container 102 and thereafter engaging the lid to secure the lid in place on top of container 102. This engagement applies a force inward from the lid to the outer surface of container 102 and against the inside surface of container 102 to create a substantially tight seal that prevents the exiting of particulates from container 102. The lid may be removed by applying a force greater than the force such as a user pulling on the handle away from container 102.
In one or more non-limiting embodiments, bottom container 103 may have a drawer-removal door such as door 170, as illustrated in
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best use the invention in various embodiments and with various modifications suited to the use contemplated. The scope of the invention is to be defined by the above claims.
This application claims priority to a prior-filed provisional application Ser. No. 62/633,533 filed on Feb. 21, 2018.
Number | Date | Country | |
---|---|---|---|
62633533 | Feb 2018 | US |