The present invention relates to telecommunications, and in particular to a technique to allow control of circuit-switched communications using a multimedia subsystem.
The Internet Protocol (IP) multimedia subsystem (IMS) is a standardized architecture for providing multimedia services over networks supporting packet-based communications. IMS is configured to provide a centralized service control system across different packet network architectures, which are referred to as packet subsystems (PSs). As such, IMS can support multimedia services over different types of access networks. These access networks may support fixed or wireless communications, as long as there is a mechanism to support packet-based communications. IMS runs over the standard IP. IMS generally uses VoIP technology based on a third generation partnership project (3GPP) implementation of the Session Initiation Protocol (SIP). With IMS, services can be provided to subscribers regardless of their location, access technology, and terminal. A general overview of IMS operation follows.
User elements (UEs) are capable of communicating with each other via their respective access networks. For a given call or session between the user elements, the IMS architecture will provide the requisite signaling to establish and control the call or session. For conciseness and readability, calls or sessions are collectively referred to as calls. Further, the media delivered in the calls may be data, audio, video, or voice. The IMS architecture employs several call/session control functions (CSCFs), which are implemented as SIP servers or proxies. These CSCFs are used to process SIP signaling messages, which facilitate the signaling required for establishing and controlling the calls.
Session signaling may be provided in various networks, such as a visited network, a home network, and a called network. The visited network represents the network currently supporting a roaming user element of User A, who is the calling party originating a call. The home network is the home services network for the user element of User A, and the called network is a visited or home network for the user element of User B, who is the called party that is terminating the call.
Each of these networks may include CSCFs. The CSCFs are implemented having three primary functions: a proxy CSCF (P-CSCF), an interrogating CSCF (I-CSCF), and a serving CSCF (S-CSCF). The P-CSCF is a SIP proxy that is generally the first point of contact for a user element, and can be located in a visited network or home network. The P-CSCF in the visited network is associated with the user element of User A. User A's user element may be assigned to the P-CSCF in the visited network during registration. The P-CSCF in the visited network is in the signaling path of certain, if not all, signaling messages for the call, and will authenticate the user and establish a security association with the User A's user element. The P-CSCF in the visited network may also compress and decompress SIP messages in an effort to reduce signaling overhead or increase response times over slow radio links. Further, the P-CSCF may map the user ID associated with the user element to an appropriate I-CSCF.
To initiate the call with User B's user element, User A's user element will send to the P-CSCF in the visited network a session initiation message identifying User B's user element as the called party. The P-CSCF in the visited network will route the call to the I-CSCF in the home network. The I-CSCF is also a SIP proxy and is generally located at the edge of an administrative domain, which is the home network in this example. The IP address of the I-CSCF is published in the domain name service of the administrative domain, such that the P-CSCF in the visited network, as well as any other entities, can locate the I-CSCF and use it as a point of entry for all signaling messages for the administrative domain.
Upon receipt of the session initiation message from the P-CSCF in the visited network, the I-CSCF may access a home subscriber server (HSS) to identify the S-CSCF to use for session control. The HSS is essentially a master database that supports various network entities that are involved in establishing and controlling calls. The HSS contains user profiles and other related subscription information, assists in authentication and authorization of a user, and can provide information about the physical location of a user by keeping track of the location of the user element.
The S-CSCF is generally the central signaling node in the IMS architecture for the user element of User A. Upon receipt of the session initiation message from the I-CSCF in the home network, the S-CSCF in the home network will may access the HSS to determine the location of User B's user element and identify the S-CSCF in the called network to use for session control. The S-CSCF in the home network will then route the session initiation message to the S-CSCF in the called network, which is serving User B's user element.
Upon receipt of the session initiation message from the S-CSCF in the home network, the S-CSCF in the called network will route the call to the P-CSCF, which is serving User B's user element in the called network. The P-CSCF in the called network will then route the session initiation message to the user element.
The S-CSCFs used for the routing the session initiation message remain in the signaling path for subsequent signaling messages for the call supported between the user elements, and can inspect signaling messages traveling in either direction. Similarly, the P-CSCFs and I-CSCFs, which are invoked during initial routing, may remain in the signaling path and handle signaling messages exchanged between the user elements during the call. The bearer path is provided over a transport plane and session control is provided in the control plane, which is generally comprised of the CSCFs.
Based on inspecting the signaling messages, the S-CSCFs can determine if and when to invoke multimedia services for the user elements or associated calls. The multimedia services are provided in a service plane, which is generally made up of numerous application servers, which are capable of providing one or more multimedia services. To provide a multimedia service, the S-CSCF will identify the appropriate multimedia service and forward signaling messages to the application server chosen to provide the multimedia service. The application server will provide the multimedia service by effectively processing the signaling message and returning the processed signaling message back to the S-CSCF, if necessary, which will forward the signaling message in a desired fashion. The application server providing a selected multimedia service will also reside in the signaling path. With IMS, call control and service presentation is virtually limitless.
Although IMS provides tremendous flexibility for controlling calls and facilitating multimedia services within packet subsystems (PSs), circuit-switched subsystems (CSs) continue to support a vast majority of voice-based communications. In light of the coverage of CSs and the benefits of IMS, efforts are underway to interwork CSs and PSs, as well as control calls and provide associated multimedia services associated with the calls using IMS. Current efforts generally employ a PS for calls, even if a CS is available. Given the current state of PSs, CSs often provide better quality of service for voice calls due to network capability, loads, or environment conditions. Thus, IMS controlled calls that would benefit from being provided at least in part by an available CS are still supported by the PS. As such, there is a need to for an effective and efficient technique to establish calls through the CS while controlling the calls and providing associated services using IMS. There is a further need to maintain such control across domain transfers between CS and PS domains.
The present invention supports the interworking of a circuit-switched subsystem (CS) and a multimedia subsystem (MS). In particular, the present invention allows calls that are controlled by the MS to employ bearer paths that are supported in whole or in part by the CS. As such, calls controlled by the MS can have a portion of the bearer path provided through the CS when needed or desired. To facilitate such control, a session control signaling path is established between a user element currently supported by the CS and a remote user agent (RUA), which represents the user element in the MS. While a portion of the bearer path for the call is supported by the CS, the session control signaling path extends the reach of the MS to the user element. A CS Access Adaptation Function (CAAF) is provided along the session control signaling path to provide the message or protocol conversion necessary to allow the RUA and the user element to exchange session control signaling messages between the CS and MS. With the present invention, calls are able to take advantage of bearer paths through the CS and call control by the MS.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
The present invention supports the interworking of a circuit-switched subsystem (CS) and a multimedia subsystem (MS). In particular, the present invention allows calls that are controlled by the MS to employ bearer paths that are supported in whole or in part by the CS. As such, calls controlled by the MS can have a portion of the bearer path provided through the CS when needed or desired. To facilitate such control, a session control signaling path is established between a user element currently supported by the CS and a remote user agent (RUA), which represents the user element in the MS. While a portion of the bearer path for the call is supported by the CS, the session control signaling path extends the reach of the MS to the user element. A CS Access Adaptation Function (CAAF) is provided along the session control signaling path to provide the message or protocol conversion necessary to allow the RUA and the user element to exchange session control signaling messages between the CS and MS. With the present invention, calls are able to take advantage of bearer paths through the CS and call control by the MS. There are numerous embodiments of the present invention. A detailed description of several of these embodiments follows.
For the following description, the term “call” is used for clarity and consistency. Those skilled in the art will recognize that a call may be a voice or other media session, which is capable of supporting audio, video, and data communications. Further, the session control protocol used for the following description is the Session Initiation Protocol (SIP) and the MS is a service delivery platform referred to as the Internet Protocol (IP) Multimedia Subsystem (IMS) and defined by the Third Generation Partnership Project (3GPP). Those skilled in the art will recognize other application service delivery platforms and session control protocols.
With reference to
A call session control function (CSCF) is located in the call signaling path in the MS 14 to invoke any number of application servers for processing the session signaling. IMS defines different types of CSCFs, including interrogating CSCFs (I-CSCFs) and serving CSCFs (S-CSCFs). An I-CSCF generally acts as a gateway for at least initial session signaling in the MS 14 and is used to identify an appropriate S-CSCF, which is used to control session signaling for the call. In the following the description, an I/S-CSCF 26 is used to represent the functions of the I-CSCF and the S-CSCF.
In the illustrated embodiment, a CAAF 28 is employed in the call signaling path between the user element 16 and the MSC 20 in the CS 12. The CAAF 28 essentially separates CS access signaling provided by the user element 16 into three types of signaling—mobility signaling, session control signaling, and bearer control signaling. The mobility signaling relates to access network control, such as access network registration, handoffs from one cell to another in the access network, and the like. The mobility signaling is simply forwarded to the MSC 20, which will process the mobility signaling in traditional fashion. Notably, the MSC 20 need not be aware that the CS access signaling is being intercepted and processed by the CAAF 28 before being presented to the MSC 20.
The bearer control signaling is processed and used to instruct the MCS 20 to establish CS bearer portion of a bearer path into the MS 14. In particular, the CAAF 28 instructs the MSC to route the call to the RUA 30, which represents the user element 16 to the MS 14. The RUA 30 may also appear as an application service, which is accessible to the I/S-CSCF 26. The MSC 20 is provisioned to route calls intended for the RUA 30 to the MGC 22, which will route the call to the RUA 30 via the I/S-CSCF 26 in the MS 14. As a result, the call is routed from the CAAF 28 to the RUA 30 via the MSC 20 and the MGC 22, and a CS bearer portion is established between the user element 16 and the media gateway 24 via the MSC 20. The session control signaling is sent directly to the RUA 30, which will essentially combine the session control signaling and the bearer control signaling to present unified session control signaling into the MS 14 on behalf of the user element 16. The unified session control signaling is presented to and received from the remote terminal 18 via the I/S-CSCF 26.
For unified signaling from the MS 14 intended for the user element 16, the session control signaling and the bearer control signaling from the MS 14 are separated from the unified signaling by the RUA 30 and sent to the CAAF 28 over the respective session control signaling and bearer control signaling paths. The CAAF 28 may then combine the session control signaling and the bearer control signaling when providing CS access signaling to the user element 16.
The CS call control channel between the user element 16 and the RUA 30 is supported over the CS access signaling path and the session control signaling path via CAAF 28. As noted above, the CS call control channel provides a signaling channel for session control signaling between the user element 16 and the RUA 30, when a portion of the bearer path for the call is provided by the CS 12. The CAAF 28 will function to recover the session control signaling from the CS access signaling and present it to the RUA 30, and vice versa. Details are provided further below.
The bearer path and the respective signaling paths are representative of calls originated by, terminated by, and transferred to the user element 16. As illustrated in
The following communication flows are abbreviated for the purposes of conciseness and readability. Those skilled in the art should be able to review these communication flows and readily employ the concepts of the present invention in a SIP-based IMS environment or the like.
With reference to
Based on the IMRN, the MSC 20 will determine that the call should be routed to the MGC 22, which corresponds to the RUA 30 of the MS 14. As such, the MSC 20 will send an Integrated User Services Part (ISUP) Initial Address Message (IAM) with the IMRN to the MGC 22 (step 108), which will process the IAM and generate an Invite message including the IMRN to be sent toward the RUA 30. At this point, another CS portion of the bearer path is established between the MSC 20 and the media gateway 24 under the control of the MGC 22. The MGC 22 will forward the Invite message to the I/S-CSCF 26 (step 110), which will forward the Invite message to the RUA 30 (step 112). The RUA 30 represents the user element 16 to the MS 14, and will process the call reference information of the IMRN to determine that the call is intended for the remote terminal 18 (B). As such, the RUA 30 will send an Invite message intended for the remote terminal 18 to the I/S-CSCF 26 (step 114), which will forward the Invite message to the remote terminal 18 (step 116). A packet-based portion of the bearer path is now established between the media gateway 24 and the remote terminal 18. The overall bearer path is established between the user element 16 and the remote terminal 18 via the MSC 20 and the media gateway 24 (step 118).
From the above, the CAAF 28 is used to intercept and process signaling from the user element 16 and instruct the MSC 20 to route the call toward the RUA 30. This action results in a CS portion of the bearer path being established between the user element 16 and the media gateway 24 via the MSC 20. When the call is presented to the RUA 30, the RUA 30 will act on behalf of the user element 16 to establish a packet-based portion of the bearer path between the media gateway 24 and the remote terminal 18. The media gateway 24 will effectively interwork the circuit-switched portion and the packet-based portion of the bearer path to facilitate communications between the user element 16 and the remote terminal 18.
Turning now to
Based on the above signaling, a bearer path is established between the user element 16 and the remote terminal 18 (step 214). A packet-based portion of the bearer path is established between the media gateway 24, which is associated with the MGC 22, and the remote terminal 18. The CS portion of the bearer path is established between the user element 16 and the media gateway 24 via the MSC 20.
As indicated above, a CS call control channel may be employed to allow the user element 16 and the RUA 30 to exchange session control signaling. With reference to
Initially, the user element 16 will receive input from the user to place the existing call with the remote terminal 18 (B) on hold. The user element 16 will respond by sending the normal Hold message, which is normally presented to the MSC 20 to hold an existing call. Instead of the Hold message being presented to the MSC 20, the Hold message is intercepted by the CAAF 28 (step 300). The CAAF 28 will not send the Hold message to the MSC 20, but instead will process the Hold message in a format recognizable by the RUA 30 and provide the resulting Hold message to the RUA 30 via the session control signaling path (step 302). The vehicle for delivering the Hold message from the user element 16 to the RUA 30 via the CAAF 28 represents the CS call control channel, wherein the CAAF 28 provides the requisite translation to allow the RUA 30 to recognize messages provided by the user element 16.
In response to receiving the Hold message for the call to the remote terminal 18 (B), the RUA 30 will send session updates for the remote terminal 18 (B) toward the I/S-CSCF 26 (step 304), which will forward the session updates to the remote terminal 18 (B) (step 306). The RUA 30 will also send session updates toward the MGC 22 via the I/S-CSCF 26 (steps 308 and 310). The remote terminal 18 will recognize that the call with the user element 16 (A) has been placed on hold, which will result in the packet-based portion of the bearer path being held. Placing the packet-based portion of the bearer path on hold interrupts the overall bearer path between the user element 16 and the remote terminal 18; however, the CS portion of the bearer path will remain intact.
At this point, the call between the user element 16 (A) and the remote terminal 18 (B) is on hold, and the circuit-switched portion of the bearer path remains active between the user element 16 and the media gateway 24. To initiate a call to the remote terminal 32 (C), the user element 16 will again send a Setup message intended for the MSC 20. The CAAF 28 will intercept the Setup message identifying the remote terminal 32 (C) as the destination for the call (step 314), and will send an appropriately configured Setup message to the RUA 30 (step 316), instead of relaying the Setup message to the MSC 20. Since the CS portion of the bearer path is intact from the earlier call to the remote terminal 18 (B), there is no need to set up another CS portion for the bearer path to be established with the remote terminal 32 (C). As such, signaling to the MSC 20 is not necessary, and only session control signaling is required via the CS call control channel between the user element 16 and the RUA 30.
Upon receipt of the Setup message for the call to the remote terminal 32 (C), the RUA 30 will generate an Invite message and send it toward the remote terminal 32 (C). Meanwhile, the CAAF 28 will generate a Call Proceeding message and send it back to the user element 16 to indicate that the call is proceeding accordingly (step 320). The Invite message from the RUA 30 is received by the I/S-CSCF 26 (step 318) and forwarded to the remote terminal 32 (C) (step 322). The Invite message will effectively instruct the remote terminal 32 (C) to establish a session with the media gateway 24 for the packet-based portion of the bearer path between the user element 16 (A) and the remote terminal 32 (C). The media gateway 24 will interwork the CS and packet-based bearer portions of the bearer path to create an overall bearer path between the user element 16 (A) and the remote terminal 32 (C) (step 324).
With reference to
The above embodiments are generally applicable to the user element 16, which is not aware of the presence of the MS 14 or the fact that the MS 14 is controlling calls to and from the user element 16. With reference to
In the illustrated embodiment, a call control function (CCF) 34 is used to anchor session signaling to facilitate service continuity during domain transfers. Details are available in common owned and assigned U.S. application Ser. No. 11/378,776 filed Mar. 17, 2006, which is incorporated herein by reference in its entirety. As illustrated, the CCF 34 remains in the session control signaling path and anchors a remote access signaling leg between the CCF 34 and the remote terminal 18, as well as a local access signaling path toward the user element 16. Additional details are provided below.
With reference to
The MSC 20 will respond to the Setup message by forwarding an IAM toward the PSI directory number for the RUA 30. The PSI directory number for the RUA 30 will direct the IAM to the MGC 22 (step 504), which will send a corresponding Invite message through the MS 14 to the I/S-CSCF 26 (step 506). The MSC 20 will respond to the Setup message by providing a Call Proceeding message back to the CAAF 28 (step 508), which will forward the Call Proceeding message to the user element 16 (step 510). The I/S-CSCF 26 will forward the Invite message to the RUA 30 using the PSI associated with the RUA 30 (step 512). The IAM will trigger the initiation of a connection between the MSC 20 and the media gateway 24 to create the second part of the CS portion of the bearer path. As illustrated, the RUA PSI directory number is the directory number associated with the MGC 22, which is serving the RUA 30. The RUA PSI is the address in the MS 14 corresponding to the RUA 30.
While the call is being routed to the RUA 30 via the CS 12, the user element 16 will take the necessary steps to initiate a session to the remote terminal 18 (B). In this example, the user element 16 will generate a SIP Invite message sufficient to trigger the RUA 30 to send an Invite on behalf of the user element 16 to the remote terminal 18. As such, the SIP Invite message may be embedded in a Direct Transfer Application Part (DTAP) message or the like in an appropriate template, and sent out as CS access signaling. The DTAP message with the embedded Invite message is intercepted by the CAAF 28 (step 514), which will forward the Invite message to the RUA 30 (step 516). The RUA 30 will recover the Invite message provided by the CAAF 28 and associate it with the Invite message received via the CS 12. An appropriate Invite message intended for the remote terminal 18 (B) is then sent by the RUA 30 to the I/S-CSCF 26 (step 518), which will forward the Invite message to the CCF 34 (step 520). The CCF 34 will send the Invite message back to the I/S-CSCF 26 (step 522). The CCF 34 is employed for call anchoring, as will be discussed further below. The I/S-CSCF 26 will then forward the Invite message toward the remote terminal 18 (step 524). At this point, a packet-based portion of the bearer path is established between the media gateway 24 and the remote terminal 18 (B). Again, a bearer path is created from the CS portion of the bearer path between the user element 16 and the media gateway 24 via the MSC 20, and the packet-based portion of the bearer path between the media gateway 24 and the remote terminal 18 (step 526).
When call control is provided by the user element 16 and the CCF 34 is employed for call anchoring, the user element 16 may transfer from the CS 12 to a PS associated with the MS 14 and maintain active sessions across the domain transfer.
The CCF 34 may take the necessary steps to end the CS portion of the bearer path and associated signaling by sending a Bye message to the RUA 30 via the I/S-CSCF 26 (steps 608 and 610). The Bye message may provide a CS dialogue ID to identify the CS portion of the call. The RUA 30 will process this information, and may use the CS call control channel to instruct the user element 16 to disconnect from the CS leg of the call and begin communicating via the PS portion of the call. Accordingly, the RUA 30 may send a Disconnect message to the CAAF 28 (step 612), which will process the Disconnect message received from the RUA 30 and provide an appropriately formatted Disconnect message to the user element 16 (step 614).
Meanwhile, the CCF 34 will forward an Invite message toward the remote terminal 18 via the I/S-CSCF 26 to initiate the PS session between the user element 16 (A) and the remote terminal 18 (B) (steps 616 and 618). As a result, a packet bearer path, which does not traverse the CS 12, is established between the user element 16 (A) and the remote terminal 18 (B) (step 620).
Upon receipt of the IAM, the MGC 22 will create a corresponding Invite message to route the call toward the RUA 30 using the IMRN. The Invite is sent to the I/S-CSCF 26 (step 710), which will forward the Invite message to the RUA 30 (step 712). The RUA 30 will process the IMRN to recover the CCF PSI, and forward an Invite message with the CCF PSI toward the CCF 34 via the I/S-CSCF 26 to initiate the transfer (steps 714 and 716). The CCF 34 will detect that the Invite message is a request to transfer the session to the CS 12, and as such, the CCF 34 will send session updates to the remote terminal 18 (B) via the I/S-CSCF 26 to alert the remote terminal 18 that user element 16 (A) is transferring from the PS to the CS 12 (steps 718 and 720). The CCF 34 may then send an Invite message toward the remote terminal 18 (B) via the I/S-CSCF 26 to initiate the packet-based portion of the bearer path between the media gateway 24 and the remote terminal 18 (B) (steps 722 and 724). The CCF 34 may also end the packet-based bearer path that was supporting the call through the PS by sending a Bye message with an MS dialogue ID toward the user element 16 (A) via the I/S-CSCF 26 through the MS 14 (steps 726 and 728). The MS dialogue ID is used to identify the call being released. Alternatively, the user element 16 (A) could initiate release of the packet-based leg of the bearer path. At this point, a bearer path is established between the user element 16 (A) and the remote terminal 18 (B), wherein a CS portion of the bearer path is established between the user element 16 and the media gateway 24 via the MSC 20, and the packet-based portion of the bearer path is established between the media gateway 24 and the remote terminal 18 (step 730). Throughout these domain transfers, the state machine 36, which keeps track of the state of the active calls or sessions, is maintained to provide continuity.
The previous embodiment employed SIP call control in the user element 16. As an alternative, SIP call control in the MS 14 may be provided on behalf of the user element 16 by the RUA 30, as provided in
With reference to
As such, the RUA 30 will send an Invite message for the remote terminal 18 (B) to the I/S-CSCF 26 (step 814). The I/S-CSCF 26 will send the Invite message to the CCF 34 (step 816), which will process the Invite message as necessary and send the Invite message back to the I/S-CSCF 26 (step 818), which will then forward the Invite message to the remote terminal 18 (B) (step 820). At this point, the packet-based portion of the bearer path is established between the media gateway 24 and the remote terminal 18 (B). As such, the CS portion and the packet-based portion of the bearer path are connected by the media gateway 24 to provide the bearer path between the user element 16 and the remote terminal 18 (step 822).
In this embodiment, the user element 16 is able to transfer from the CS 12 to the PS and vice versa. During these domain transfers, active sessions may be maintained. The sessions are anchored in the CCF 34. Further, the RUA 30 is maintained in the session signaling path across domain transfers.
With reference to
To tear down the old CS portion of the bearer path and the associated signaling, the CCF 34 may send a Bye message toward the RUA 30 via the I/S-CSCF 26 (steps 912 and 914). The Bye message will include a CS dialogue ID identifying the CS portion of the bearer path and the associated signaling. Again, the Bye message is sent to the RUA 30 because the RUA 30 represents the user element 16 to the MS 14 when the CS 12 is employed. The RUA 30 will then deliver a Disconnect message to the user element 16 (A) via the CAAF 28 using the CS call control channel (steps 916 and 918). At this point, the packet bearer path is established between the user element 16 (A) and the remote terminal 18 (B) (step 920). The old bearer path, which included a CS portion, is released.
With reference to
The MSC 20 will also send an IAM to route the call to the MGC 22 (step 1008). At this point, the CS portion of the bearer path is being established between the user element 16 (A) and the media gateway 24 via the MSC 20. The MGC 22 will forward an Invite message including an IMRN toward the RUA 30 via the I/S-CSCF 26 (steps 1010 and 1012). The RUA 30 will process the IMRN to recover the CCF PSI, and then send an Invite message for the CCF 34 to the I/S-CSCF 26 (step 1014), which will forward the Invite message to the CCF 34 (step 1016). The CCF 34 will recognize the Invite message as a request for a transfer to the CS 12, and will generate session updates to alert the remote terminal 18 (B) of the domain transfer. The session updates are then sent to the remote terminal 18 (B) via the I/S-CSCF 26 (steps 1018 and 1020). At this point, the remote terminal 18 (B) and the media gateway 24 are configured to establish the packet-based portion of the bearer path. To release the prior packet bearer path and the associated signaling, the CCF 34 will send a Bye message toward the RUA 30 via the I/S-CSCF 26 (steps 1022 and 1024). The Bye message will include an MS dialogue ID identifying the old packet bearer path and associated signaling. The RUA 30 will process the Bye message to end the earlier session, and forward the Bye message to the user element 16 (A) (step 1026). At this point, the transfer is complete, and a new bearer path is created (step 1028). Again, the new bearer path is established between the user element 16 (A) and the remote terminal 18 (B) using the CS portion and the packet portion, which are interworked by the media gateway 24.
Yet another embodiment of the present invention is provided in
The session control signaling extends through the HSS 40, CAAF 28, RUA 30, and perhaps through the I/S-CSCF 26 and the remote terminal 18. The CAAF 28 may be located proximate to or with the RUA 30. The CS call control channel again extends between the user element 16 and the RUA 30. In this embodiment, Unstructured Supplementary Service Data (USSD) is used as a transport mechanism to deliver information back and forth between the user element 16 and the remote terminal 18. As with the above embodiments, SIP call control may be provided in the user element 16 or in the RUA 30. When SIP call control is provided in the user element 16, the USSD signaling will embed SIP messages or like session control messages to facilitate SIP call control via the MS 14. When SIP call control is provided in the RUA 30, user input or other instructions are embedded in USSD messages. Those skilled in the art will recognize other mechanisms that may act as a delivery mechanism for the CS call control channel.
With reference to
The MSC 20 will also send an IAM toward the MGC 22 using the PSI directory number for the RUA 30 (step 1112). The MGC 22 will process the IAM and forward an Invite message toward the PSI for the RUA 30 in the MS 14 to the I/S-CSCF 26 (step 1114). The I/S-CSCF 26 will forward the Invite message to the RUA 30 (step 1116). At this point, the CS portion of the bearer path is established between the user element 16 and the media gateway 24 via the MSC 20. The RUA 30 will recognize that the CS portion of the bearer path is established, and forward the SIP Invite message recovered from the CS call control channel toward the remote terminal 18 via the I/S-CSCF 26 (steps 1118 and 1120). At this point, the packet portion of the bearer path is established between the media gateway 24 and the remote terminal 18 (B). The two portions of the bearer path are interworked by the media gateway 24 to form a bearer path between the user element 16 and the remote terminal 18 (step 1122). SIP call control for the call will remain in the user element 16.
With reference to
The RUA 30 will process the IMRN to determine the called party and generate an appropriate Invite message. As such, the RUA 30 will send an Invite message toward the remote terminal 18 (B) via the I/S-CSCF 26 (steps 1210 and 1212). The Invite message will provide the requisite information to the remote terminal 18 (B) to establish a packet portion of the bearer path with the media gateway 24. By routing the call through the CS 12 to the MS 14, the CS portion of the bearer path is established between the user element 16 and the media gateway 24 via the MSC 20, such that the overall bearer path is established between the user element 16 and the remote terminal 18 (step 1214). As indicated below, USSD may be employed to exchange user or terminal input between the user element 16 and the RUA 30 using the CS call control channel, which is supported by USSD.
Turning now to
Assuming a session has been established between the user element 16 (A) and the remote terminal 18 (B) as described in association with
At this time, the packet portion of the bearer path is held, while the CS portion of the bearer path remains intact and will be used to support the call to be made to the remote terminal 32 (C) (step 316). To initiate a call to the remote terminal 32 (C), the user element 16 (A) will embed call initiation information in the form of a SIP Invite message or other appropriate control information in a USSD message, and send the USSD message to the MSC 20 (step 1318). The MSC 20 will forward the USSD message to the HSS 40 (step 1320), which will forward the USSD message to the CAAF 28 (step 1322). Again, the CAAF 28 will process the USSD message to extract the embedded information, and send information in an appropriate format to the RUA 30 to indicate that the user element 16 (A) desires to initiate a call to the remote terminal 32 (C) (step 1324). As such, the RUA 30 will send an Invite message toward the remote terminal 32 (C). The Invite message is initially sent to the I/S-CSCF 26 (step 1326). The RUA 30 will also provide session updates for the MGC 22 to indicate that the packet portion of the bearer path is to be established with the remote terminal 32 (C) to the I/S-CSCF 26 (step 1328). The I/S-CSCF 26 will forward the Invite message to the remote terminal 32 (C) and the session updates to the MGC 22 to enable the packet portion of the bearer path between the media gateway 24 and the remote terminal 32 (C) (steps 1330 and 1332). The CS portion of the bearer path from the earlier call remains intact, and the media gateway 24 will interwork the CS portion and the newly created packet portion of the bearer path to create an overall bearer path between the user element 16 (A) and the remote terminal 32 (C) (step 1334).
Turning now to
With reference to
Turning now to
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application Ser. No. 60/710,056 filed Aug. 22, 2005; U.S. provisional patent application Ser. No. 60/724,730 filed Oct. 7, 2005; U.S. provisional patent application Ser. No. 60/818,950 filed Jul. 6, 2006; U.S. provisional patent application Ser. No. 60/832,818 filed Jul. 24, 2006; and U.S. provisional patent application Ser. No. 60/749,155 filed Dec. 9, 2005, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5497411 | Pellerin | Mar 1996 | A |
6067453 | Adiwoso et al. | May 2000 | A |
6208627 | Menon et al. | Mar 2001 | B1 |
6353596 | Grossglauser et al. | Mar 2002 | B1 |
6614897 | Curtis et al. | Sep 2003 | B1 |
6721565 | Ejzak et al. | Apr 2004 | B1 |
6801615 | Stumer et al. | Oct 2004 | B2 |
6961774 | Shannon et al. | Nov 2005 | B1 |
6970459 | Meier | Nov 2005 | B1 |
6999770 | Hirsbrunner et al. | Feb 2006 | B2 |
7099309 | Davidson | Aug 2006 | B2 |
7206582 | Tom et al. | Apr 2007 | B2 |
7313666 | Saminda De Silva et al. | Dec 2007 | B1 |
7492886 | Kalmanek, Jr. et al. | Feb 2009 | B1 |
7664495 | Bonner et al. | Feb 2010 | B1 |
7729489 | Lee et al. | Jun 2010 | B2 |
7792974 | Westman et al. | Sep 2010 | B2 |
8045568 | Sylvain et al. | Oct 2011 | B2 |
20010055982 | Umeda | Dec 2001 | A1 |
20020037723 | Roach | Mar 2002 | A1 |
20020133600 | Williams et al. | Sep 2002 | A1 |
20020188562 | Igarashi et al. | Dec 2002 | A1 |
20030027569 | Ejzak | Feb 2003 | A1 |
20030148765 | Ma et al. | Aug 2003 | A1 |
20030174688 | Ahmed et al. | Sep 2003 | A1 |
20040002335 | Pan et al. | Jan 2004 | A1 |
20040003046 | Grabelsky et al. | Jan 2004 | A1 |
20040028080 | Samarasinghe et al. | Feb 2004 | A1 |
20040067754 | Gao et al. | Apr 2004 | A1 |
20040157600 | Stumpert et al. | Aug 2004 | A1 |
20040219905 | Blumenthal et al. | Nov 2004 | A1 |
20040229469 | Marsh et al. | Nov 2004 | A1 |
20040246990 | Krishnamurthi et al. | Dec 2004 | A1 |
20040249887 | Garcia-Martin et al. | Dec 2004 | A1 |
20050002407 | Shaheen et al. | Jan 2005 | A1 |
20050003797 | Baldwin | Jan 2005 | A1 |
20050003821 | Sylvain | Jan 2005 | A1 |
20050243870 | Balogh et al. | Nov 2005 | A1 |
20050245261 | Ejzak | Nov 2005 | A1 |
20050265304 | Kim et al. | Dec 2005 | A1 |
20050286531 | Tuohino et al. | Dec 2005 | A1 |
20060002355 | Baek et al. | Jan 2006 | A1 |
20060002380 | Bollinger et al. | Jan 2006 | A1 |
20060034270 | Haase et al. | Feb 2006 | A1 |
20060035637 | Westman | Feb 2006 | A1 |
20060083199 | Yang | Apr 2006 | A1 |
20060087982 | Kuure et al. | Apr 2006 | A1 |
20060094431 | Saifullah et al. | May 2006 | A1 |
20060142004 | He et al. | Jun 2006 | A1 |
20060187904 | Oouchi | Aug 2006 | A1 |
20060198360 | Biage et al. | Sep 2006 | A1 |
20060209805 | Mahdi | Sep 2006 | A1 |
20060217112 | Mo | Sep 2006 | A1 |
20060268928 | Barzegar et al. | Nov 2006 | A1 |
20070004415 | Abedi | Jan 2007 | A1 |
20070014281 | Kant | Jan 2007 | A1 |
20070041367 | Mahdi | Feb 2007 | A1 |
20070066304 | Lee | Mar 2007 | A1 |
20070072605 | Poczo | Mar 2007 | A1 |
20070100981 | Adamczyk et al. | May 2007 | A1 |
20070153736 | Mow et al. | Jul 2007 | A1 |
20070206568 | Silver et al. | Sep 2007 | A1 |
20080025263 | Pelkonen | Jan 2008 | A1 |
20080049725 | Rasanen | Feb 2008 | A1 |
20080144637 | Sylvain et al. | Jun 2008 | A1 |
20080160991 | Constantinof et al. | Jul 2008 | A1 |
20080268818 | Keller et al. | Oct 2008 | A1 |
20090190579 | Witzel et al. | Jul 2009 | A1 |
20100124897 | Edge | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2 501 991 | Apr 2004 | CA |
101292489 | Nov 2008 | CN |
102138311 | Jul 2011 | CN |
1 816 877 | Aug 2007 | EP |
1 965 592 | Sep 2008 | EP |
WO 0060785 | Oct 2000 | WO |
WO0103450 | Jan 2001 | WO |
WO 0122657 | Mar 2001 | WO |
WO 2004019173 | Mar 2004 | WO |
WO 2004073279 | Aug 2004 | WO |
WO 2006097837 | Sep 2006 | WO |
WO 2006105732 | Oct 2006 | WO |
WO 2006126072 | Nov 2006 | WO |
WO 2007023358 | Mar 2007 | WO |
WO 2008038101 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070058788 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60710056 | Aug 2005 | US | |
60724730 | Oct 2005 | US | |
60749155 | Dec 2005 | US | |
60818950 | Jul 2006 | US | |
60832818 | Jul 2006 | US |