Conventional displays include many types such as OLED (Organic Light Emitting Diode), LCD (Liquid Crystal Display), and EPD (Electronic Paper Display). Some of such display types may exhibit inherent advantages over other types for one particular application but not for others. For example, EPD's may offer lower power, better performance in direct sunlight, and image persistence when powered down. OLED's might offer better color and low-lighting performance. Manufacturers of display devices select from all display types to favor particular primary features and applications at the detriment of other secondary features and applications.
Other limitations and disadvantages of conventional and traditional electronic display technologies will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
Systems methods are provided for a multimode display, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
Various approaches to integrating two or more display technologies into a single display can be found below. Some carry out integration via merger (e.g.,
The transparent cover 104 is made of glass, plastic, or other transparent material.
The electrode 106 is made of a transparent conductive and/or semiconductor material (and/or any opaque portions are microscopic so as not to substantially affect view of the display 104). The electrode 106 may be a passive or active such that different portions of the electrode 106 in front of different pixels may concurrently have different charges. The sealing/protective layer 130 adheres the electrode to the display assembly 102 and seals the fluid inside the pixel cavity layer 120. The electrode 130 may be passive such that any charge applied to it is distributed substantially uniformly across all pixels it is behind, or may be an active device such as an array of thin film transistors such that different portions of the electrode 130 behind different pixels may concurrently have different charges. The (optionally flexible) substrate 132 provides structural support to the display assembly 102. The pixel cavity layer 120 comprises pixel walls 116, an organic light emitting diode (OLED) “stack” (electrode layer 122, electron transport layer 124, organic emission layer 126, and a hole transport layer 128) sealed by transparent layer 118, and a plurality of positively charged black particles 110 and negatively charged white particles 114 in a transparent fluid 112.
The walls 116 provide structural support and also are made of a conductive or semiconductor material that can be charged to a desired potential. Charge placed on the walls 116 may be used for controlling the location of the particles 110 and 114, as described below. Although concave cavities in the walls 116 are shown as an example, other shapes may be used. For example, the walls 116 may have a triangular cross section. The pixel walls may, for example, be stalactite and/or stalagmite type constructs with conductive adhesives.
To operate in OLED mode (an example of an emissive/absorptive mode), as shown in
Now referring to
In another example implementation, rather than separate black and white particles, bistable particles having, for example, a black positively charged surface and a white negatively charged surface may be used and the charge on the electrodes may be controlled to spin the particles such that one side or the other is facing the transparent cover. That is, the particles may be spun such that the white side is up for reflection and such that the black side is up for absorption. Similarly, particles having additional surfaces (e.g., pyramid shaped particles with four color or cubes with six colors) with additional colors on them may be used for a color EPD display.
In another example implementation, rather than black and white particles, there may be only white particles and a black state may take advantage of the absorption of the OLED stack in an off state. That is, for emissive mode and absorptive mode, the white particles 114 may be pulled to the walls 116 and for reflective mode the white particles may be pulled to the front of the cavity 112.
In principle, integration of EPD and OLED technology can encompass any display structure that operates in a first mode or configuration which permits OLED emissions from reaching a viewer's eye with little or no interference from EPD particles and structure, and that operates in a second mode or configuration which allows EPD particles to function with little or no interference from OLED structure. Merged and stacked integration approaches illustrated herein are merely several examples or approaches for doing so.
The particles 110 and 114 may be made from charged materials such as coatings (paints or dyes) or translucent or opaque plastic, for example. With such charge, the particles 110 and 114 are drawn toward and repelled from the conductive surfaces 130, 118 and 116 as controlled by display driver circuitry to carry out an appropriate mode selection and pixel operational status. The walls 116 may be conductive throughout based on material selection and/or may receive a coating (e.g., conductive layer) to support same. In particular, by driving 130 and 118 to a common voltage while creating a voltage difference between the walls 116, the particles 110 and 114 may be “retracted” from view to permit OLED pixel mode operation.
Alternatives to the black and white particle options include using spherical particles with one half being black and the other white, and wherein the black and white particle merely flips over depending on the charged environment in relation to the black versus white, positive and negative charges. Multiple types of colored particles can also be added with corresponding structure that supports the integrated display technologies.
For example, the white particles 204 may be hemispheres with a white coated spherical hemisphere portion and a flat transparent portion such that light incident on the hemisphere portion is reflected, as shown by arrows 138, but light incident on the flat portion passes through the particles, as shown by arrows 206. When a pixel is white, the half spheres will be arranged to point outward to show white. But, by then turning on the OLED stack, light can be emitted that passes through the flat transparent portion of the particles 204 and then is dispersed toward a viewing eye. This will work as backlighting and also as full color performance but perhaps offer a visual characteristic much like newspaper color or watercolor and the OLED emission intensity can be adjusted to soften the color effect.
In another example implementation, the particles 204 may be lenticular lens elements such that a pixel 101 may support both a three-dimensional mode and a two-dimensional mode. That is, rather than black and white particles 110 and 114 of
For viewing websites on such a display that supports concurrent EPD and OLED regions, web languages and protocols (e.g., HTTP, HTML, CSS, XML, etc.) may include regional tagging to indicate whether a particular portion/object of a website should be displayed in EPD mode, OLED mode, or hybrid EPD/OLED mode. A web browser running on the client device presenting the website may be configured to recognize such tags and send commands to the appropriate display driver circuitry to configure each pixel into the appropriate mode for the current screen contents. Viewing largely text-based sites, for example, may result in huge power savings as compared to a conventional all-OLED display which needs to use emitted light for the text portions.
In other words, any of the display architectures described herein can be configured to operate fully in one mode (e.g., OLED) or fully in another (e.g., EPD). It can also be configured to carve out and allocate regions such as illustrated in
To handle these modes switchovers, display driver circuitry 310, via interface circuitry 310a, provides row and column scanning signaling to select a particular pixel that is placed in a particular operational mode via mode select signaling. A mode select signal may, for example, comprise a command delivered over a control bus (e.g., I2C, PCIe, HDMI, or the like) between the interface 310a and the display device 300, and the circuitry for interpreting the commands and generating the corresponding bias signals to the walls 116, and electrodes 106, 122, and 132. A mode select signal may, for example, comprise a DC voltage or an AC voltage (e.g., pulse width modulated square wave or sinusoid) delivered over one or more dedicated conductors between the between the interface 310a and the display device 300 (e.g., where relatively large regions of pixels are controlled together such that the number of such conductors is not too large). Pixel control signaling (via the interface circuitry 310a) may then set the state or condition of such selected pixel. Processing circuitry and associated memory 312 work in concert to deliver instructions via interface circuitry 310b to the display driver circuitry 310 to carry out such functionality. Thus, each pixel can be set to a particular one or more modes of operation and set to a particular display state in a scanning manner (where each vertical scan of the display may be referred to as a “field” or “frame”). Mode reconfiguration may, for example, take place during the vertical blanking interval, such that the mode of any particular pixel may be altered on a per-field or per-frame basis. Alternatively, where reconfiguration takes slightly longer, a pixel may be skipped during one or more fields or frames, but the loss of only a few fields or frames is likely unnoticeable to a viewer.
The processing circuitry & memory 312 operate pursuant to various software instructions (stored in such memory) such as that illustrated. For example, a software display driver 314 may be loaded into memory to provide processing instructions regarding how to manage each particular pixel (mode, setting, etc.). Instructions from the driver 314 to operate a particular pixel in a reflective mode may include a reflective mode selecting identifier for that pixel, and instructions from the driver 314 to operate a particular pixel in a reflective mode may include a reflective mode selecting identifier for that pixel. An operating system 320 might then interact directly via the software display driver 314 to cause, for example, only a small rectangular screen area representing a pop-up window to operate in an EPD mode while the remainder operates in OLED mode.
For more complex graphical tasks, a graphics programming interface or API (Application Programming Interface) 316 might also be loaded into memory which manages advanced graphical instructions to control the display 300. The operating system 320 might then send an API defined library function or command to draw a circle at a particular location with a particular size and using a selected operational mode (e.g., EPD). The API 316 also services software applications 318. Such software applications 318 may also interact directly with the software display driver 314 to carry out pixel, region or full-screen control and associated operational mode selection.
In an example implementation, the software display driver 314 and/or the display driver circuitry 310 may be operable to dynamically determine a best mode for any particular pixel based on analysis of the pixel data itself, rather than explicit mode selection instructions. For example, if multiple frames of fields are buffered and inspected to determine that a pixel will be a fixed color (e.g., black or white where black and white particles are used) throughout those frames, then the reflective mode may be selected for that pixel and those frames. Conversely, if the pixel will be changing during those frames, an emissive mode may be selected for that pixel and those frames.
Similarly, although not shown, separate coatings can be added to the left side and right side to carry out the desired charge and voltage potential management, while still using a common and possibly insulating middle wall portion. For example, an insulating plastic might be used for the walls which have a transparent conductive left side coating and a transparent conductive right side coating that can be accessed by display driver circuitry to set operational modes.
The EPD layer 504 comprises walls 116, particles 110 and 114, and top electrode 106 as discussed above. The EPD also comprises a transparent bottom electrode 502. A voltage differential established between the electrodes 106 and 502 controls whether the white particles 110 or black particles 114 are at the front of the cavity 506.
The OLED layer 502 comprises the OLED stack and electrode 130 as discussed above. The OLED layer 502 also comprises walls 508 which provide structural support but need not be conductive or be connected to drive circuitry, as compared to the walls 116.
In
In
In
Although each of
In the configuration of
In the configuration of
In the configuration of
In the configuration of
In the fifth configuration (not shown), the drive signals to the electrode 106, electrode 502, and walls 116 are controlled to pull the white particles 114 to the top electrode 106 and black particles 110 to the bottom electrode 502. The pixel is perceived as white from the front and black from the back.
When charge is applied to the walls 116, the particles are pulled out of the line of sight and the display is transparent in both directions (
Although EPD and OLED are used for illustration of the multimode display disclosed herein, other modes are possible. For example, a multimode display may support an OLED mode and a liquid crystal display (LCD) mode and another multimode display may support a EPD mode and an LCD mode. In this regard, for a display supporting an LCD mode, integration, regional backlighting may be carried out with a backlighting array to support regional mode operations.
In addition, various other ways to integrate (via stacking or merging) two or more display technologies are contemplated. For example, any emissive display technology can be integrated (merged or stacked) with any non-emissive display technology as suggested in prior embodiments. Multiple of either emissive or non-emissive display technology might also undergo such integration. For example, a single display panel might be constructed using the display portion shown in
As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled, or not enabled, by some user-configurable setting.
Accordingly, the present invention may be realized in hardware or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip. Some implementations may comprise a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, code executable by a machine, thereby causing the machine to realize the systems and/or perform the processes described herein.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
8013519 | Boerner | Sep 2011 | B2 |
8451193 | Namm et al. | May 2013 | B2 |
8760363 | Lin | Jun 2014 | B2 |
20030231162 | Kishi | Dec 2003 | A1 |
20080049005 | Okita | Feb 2008 | A1 |
20110043435 | Hebenstreit | Feb 2011 | A1 |
20110134156 | Yamazaki | Jun 2011 | A1 |
20120127140 | Ryan | May 2012 | A1 |
20130328948 | Kunkel | Dec 2013 | A1 |
20150228217 | Perdices-Gonzalez | Aug 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160005353 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62019966 | Jul 2014 | US |