Multimode fiber communication system with enhanced bandwidth

Information

  • Patent Grant
  • 6580543
  • Patent Number
    6,580,543
  • Date Filed
    Thursday, December 16, 1999
    24 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
In accordance with the invention, a multimode optical fiber communication system is provided with offset illumination by disposing an optical pinhole adjacent an end of the multimode fiber core and offset from the center of the core. The pinhole permits direct offset illumination without the difficulty and expense of a conventional patch-cord assembly.
Description




FIELD OF THE INVENTION




This invention relates to optical fiber communication systems and, in particular, to a multimode fiber communication system employing offset pinhole illumination of the multimode fiber for enhanced bandwidth transmission.




BACKGROUND OF THE INVENTION




Multimode fiber communication systems are widely used for short distance systems such as local area networks (LANs) used to wire campuses, offices, factories and other buildings.




A shortcoming of multimode systems is the tendency of light launched in one mode to couple into other modes. Since each different mode has slightly different propagation characteristics, this coupling can spread propagating pulses in time (modal dispersion), limiting the useful bandwidth-distance product of the system.




One approach to enhancing the bandwidth of multimode systems is to illuminate the multimode fiber with a smaller single mode fiber at a position offset from the center of the multimode fiber core. See International (Patent) Application No. WO97/33390 published Sep. 12, 1997 and entitled “Multimode Communications System,” which is incorporated herein by reference. Such systems referred to as offset-launch mode-conditioning patch-cord assemblies, strongly excite mid-order modes of the multimode fiber but only weakly excite low order and high order modes. Since the mid-order modes have similar propagation constants, the modal dispersion is small compared to an excitation of all modes. This offset illumination permits an- increase in the effective bandwidth of a multimode system.




A difficulty with the patch-cord assembly is that it requires precise alignment and joinder of a tiny single mode fiber in relation to both the illumination light source and the small core of the multimode fiber. Such precise alignments and junctions are difficult, time-consuming and expensive to make. Accordingly there is a need for an improved arrangement for providing offset illumination of a multimode fiber.




SUMMARY OF THE INVENTION




In accordance with the invention, a multimode optical fiber communication system is provided with offset illumination by disposing an optical pinhole adjacent an end of the multimode fiber core and offset from the center of the core. The pinhole permits direct offset illumination without the difficulty and expense of a conventional patch-cord assembly.











BRIEF SUMMARY OF THE DRAWINGS




The advantages, nature and various additional features of the invention will appear more fully upon consideration of the illustrative embodiments now to be described in connection with the accompanying drawings. In the drawings:





FIG. 1

is a schematic cross section of apparatus for offset illumination of a multimode fiber; and





FIG. 2

is a schematic diagram of a multimode fiber communication system employing the apparatus of FIG.


1


.











It is to be understood that the drawings are for purposes of illustrating the concepts of the invention and are not to scale.




DETAILED DESCRIPTION




Referring to the drawing,

FIG. 1

is a schematic cross section of apparatus


19


for providing offset pinhole illumination of the core


10


of a multimode optical transmission fiber


11


. The core


10


is peripherally surrounded by cladding


12


. An optical pinhole


13


is disposed adjacent an end


14


of fiber


11


and positioned intermediate the core center


15


(optical axis) and the core periphery


16


. The pinhole


13


can be a physical pinhole in an opaque plate or coating


17


at the fiber end. The fiber typically has a core diameter of 50 μm and a cladding thickness of 30 μm. The pinhole plate or coating


17


can be metal, opaque plastic or opaque glass, typically ranging in thickness from 10 μm to 250 μm. The pinhole


13


can have its center offset 20 μm (±3 μm) with respect to the multimode fiber optical axis core center. The diameter of the pinhole is typically in the range 10-25 μm depending on the optical power requirements of the system. The end


14


of the fiber advantageously makes physical contact with the plate or coating


17


to avoid diffraction effects.




Illumination, as from a modulated laser


18


, can be directly coupled to the pinhole and the fiber via a lens system


19


optically aligned with the centerline of the pinhole. The illuminated spot on the multimode fiber is controlled by the pinhole diameter.





FIG. 2

is a schematic diagram of a multimode fiber communication system employing the illumination apparatus of FIG.


1


. The system comprises an illumination source


20


of modulated optical signals, a multimode optical transmission fiber


11


, and one or more optical receivers


21


optically coupled to the fiber


11


. The source


20


, which may include laser


18


of

FIG. 1

, is coupled to the fiber


11


via a pinhole


13


offset from the core center as described above.




In operation the modulated light is launched into fiber


11


and transmitted predominantly as mid-order modes. Because the mid-order modes have similar propagation constants, the light reaches the receiver


21


with reduced modal dispersion as compared with light launched into core the center. For a given transmission distance, the reduced module dispersion permits increased pulse repetition rate and thus provides increased bandwidth.




It is to be understood that the above-described embodiments are illustrative of only a few of the many possible specific embodiments which can represent applications of the principles of the invention. Numerous and varied other arrangements can be readily devised by those skilled in the art without departing from the spirit and scope of the invention.



Claims
  • 1. An optical fiber communication system comprising:a source of modulated light; a multimode optical fiber for transmitting the modulated light, the fiber comprising a core having a center and a cladding peripherally surrounding the core; and adjacent an end of the fiber between the source and the core, a plate or coating defining an optical pinhole offset with respect to the core center for providing offset illumination of the core from the source.
  • 2. The system of claim 1 wherein the pinhole is offset 17-23 μm from the core center.
  • 3. The system of claim 1 wherein the pinhole has a diameter in the range 10-25 μm.
  • 4. The system of claim 1 wherein the plate or coating has a thickness in the range 10 μm-250 μm.
US Referenced Citations (6)
Number Name Date Kind
4493113 Forrest et al. Jan 1985 A
4934787 Ichimura et al. Jun 1990 A
5634159 Caregnato May 1997 A
5642456 Baker et al. Jun 1997 A
6086724 Nakatani et al. Jul 2000 A
6356687 Shahid Mar 2002 B1
Foreign Referenced Citations (1)
Number Date Country
WO9733390 Mar 1997 WO
Non-Patent Literature Citations (1)
Entry
L. Raddatz et al, Influence of Restricted Mode Excitation on Bandwidth of Multimode Fiber Links, Apr. 1998, IEEE Photonics Tech. letters, vol. 10, pp. 534-536.