Various directional antenna types and configurations employ feed structures to introduce radio frequency (RF) signals to directional reflector elements or receive RF energy from the reflector elements. These reflector elements can include various dish or parabolic reflector arrangements, among others. For certain frequencies and communication modes, the feed structures can become large and complex structures that employ specialized antenna arrangements. Example arrangements include multi-arm sinuous or spiral antennas which reside on a feed structure for a parabolic reflector operating in a dual-mode (e.g. mode 1 and mode 2) configuration. Typical solutions to achieving mode 1 (sum) and mode 2 (difference) patterns for the purposes of direction finding (DF), involve the use of weighted control of sinuous or spiral (multi arm) antennas, such as by applying a 45-degree or 90-degree phase offset to achieve the mode 1 or mode 2 patterns, respectively.
However, these multi-arm sinuous or spiral antennas radiate energy in both upper and lower hemispheres. To provide for feed operations, these antennas require the placement of a cavity and absorber disk beneath the lower hemisphere to maintain adequate pattern performance in the upper hemisphere to feed the directional element. This limits the antenna feed efficiencies of these designs to 50% or less. Thus, such antenna arrangements essentially operate with less gain and RF performance for the sake of achieving mode 1 and mode 2 patterns by proper phasing of the sinuous/spiral arms, and translate to having an antenna feed and reflector system oversized by 3 decibels (dB), or 2×, in order to meet a given performance target. In addition to the efficiency decreases in these arrangements, the cavity and absorber add additional complexity and cost to the systems, while limiting the maximum power handling of the feed.
Provided herein are various enhancements for antenna systems and directed radio frequency (RF) energy structures to achieve a constant beamwidth over a wide bandwidth (greater than one octave). One example antenna arrangement includes an array of Vivaldi antenna elements, also referred to as Tapered Slot Antennas (TSAs), that do not require a cavity backed absorber to shape the radiation pattern. Advantageously, the examples herein provide for higher RF performance-higher efficiency and the ability to realize higher gain patterns, as well as providing improvements in manufacturability and cost. For reflector antenna applications, the examples herein result in larger directivity values with smaller beam widths, allowing its incorporation in larger focal length-to-diameter (f/D) systems to improve cross-polarization performance and overall aperture efficiency. Additionally, different geometrical configurations are presented herein to obtain a flatter gain and beam width over a given frequency range than other designs. The gain and beamwidth of this Vivaldi element array can be adjusted by changing the array size. Although eight (8) element arrays are discussed herein, similar concepts can apply to other quantities of antenna elements.
In one example implementation, an apparatus includes a baseplate, an antenna array comprising a plurality of Vivaldi antenna elements arranged about an axis perpendicular to the baseplate, and feed elements coupled to each of the Vivaldi antenna elements through the baseplate.
In another example, a system includes a reflector element configured to direct radio frequency energy to or from a feed structure. The feed structure comprises a baseplate and an antenna array. The antenna array comprises a plurality of Vivaldi antenna elements arranged facing outward with respect to a surface of the baseplate and arrayed about an axis perpendicular to the surface. The system also includes radio frequency feed elements coupled to feed points of the plurality of Vivaldi antenna elements.
In yet another example, a method includes providing radio frequency energy to feed points of each of a plurality of Vivaldi antenna elements mounted about an axis perpendicular to a surface of a baseplate, transmitting radio frequency signals primarily along the axis perpendicular to the surface and in a direction away from the surface of the baseplate, and receiving radio frequency signals by the plurality of Vivaldi antenna elements.
This Overview is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. It may be understood that this Overview is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Many aspects of the disclosure can be better understood with reference to the following drawings. While several implementations are described in connection with these drawings, the disclosure is not limited to the implementations disclosed herein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents.
Discussed herein are antenna feed structures and systems that provide for multi-mode operation with high efficiency beyond that of multi-arm sinuous or spiral antennas. Multi-arm sinuous or spiral antennas radiate energy in both upper and lower hemispheres, and require nearby placement of a cavity and absorber disk on the lower hemisphere to maintain adequate pattern performance in the upper hemisphere to feed a directional element. This limits the antenna feed efficiencies of these designs to 50% or less. However, the examples discussed herein can readily achieve efficiencies of approximately 90% or greater. One example antenna arrangement discussed herein includes an array of Vivaldi antenna elements that do not require a cavity backed absorber to shape the radiation pattern to a single hemisphere. Although many of the examples employ eight (8) or more Vivaldi antenna elements, other quantities can be employed.
Feed structure 110 is configured to direct RF energy to reflector 120 for transmission (Tx) activities and receive RF energy from reflector 120 during receive (Rx) activities. Concurrent Tx and Rx activities might be supported in certain examples. Feed structure 110 and reflector 120 are mounted to a shared structure, namely mount structure 130, which provides structural support, positioning, and in some examples, tracking of the antenna elements toward a target or desired endpoint.
Feed structure 110 includes antenna array 111 placed at or near the focus of reflector 120. Antenna array 111 comprises an array of Vivaldi type of antenna elements mounted to baseplate 112. Baseplate 112 can couple antenna array 111 to various interconnect represented by connections 113. Connections 113 can comprise coaxial RF connections for coaxial cables or other suitable waveguide elements, although variations are possible. Connections 113 might couple feed structure 110 to various receiver or transmitter circuitry, which may be included in communication beamforming network 140 or other external systems. In transmission operations, RF energy carried over connections 113 is provided to individual antenna elements within antenna array 111 for emission and reflection by reflector 120. In reception operation, RF energy is gathered by reflector 120 for direction to individual antenna elements within antenna array 111 for transfer over connections 113 to communication receiver equipment.
Turning to a further detailed discussion on the elements of
Connections 130 comprise RF connections and associated links to communication equipment used to drive antenna array 111. Connections 130 might comprise various types of coaxial connectors or waveguide connectors. Connections 130 might couple between antenna elements of antenna array 111 and low-noise block downconverter (LNB), amplifier equipment, or other transceiver equipment. Various coaxial cabling or waveguide sections can be included.
Communication beamforming network 140 can include various circuitry, components, transceivers, interconnect, amplifiers, and other elements to support the transmission or reception of RF signals via antenna system 100. Communication beamforming network 140 can comprise any of the aforementioned transmitter, receiver, transceiver, amplifier, LNB, or signal handling elements. Communication beamforming network 140 might be external to the elements shown in
As mentioned above, feed structure 110 includes antenna array 111 comprised of individual antenna elements. The individual antenna elements within antenna array 111 comprise Vivaldi antenna elements, with sets of eight such elements employed in this example. The geometry and arrangement of the individual antenna elements can influence the directivity, beam width, frequency range, and other factors. Several example array types and arrangements are discussed herein. However, first a discussion on an individual antenna element is presented in
Although Vivaldi antennas can take various forms, example antenna element 210 shown in
Each printed circuit feature can range in size based on the application, target impedance, and target frequency range. However, in this example, placement and sizing of feed line 216 corresponds to a ¼ wavelength (λ) from ‘bottom’ end of tapered features 213-214 (e.g. from grounding loop 215) and feed line 216 extends ¼ λ beyond tapered features 213-214. This portion of tapered features 213-214 can be referred to as a slot line. Feed line 216 can comprise a microstrip or stripline and is terminated as an open circuit in this example. In contrast, the slot line portion of tapered features 213-214 is terminated in a conductive short circuit element (RF ground 218) after inclusion of grounding loop 215. However, at the frequencies typical for antenna element 210, RF ground 218 acts as an inductor coupled across tapered features 213-214. RF ground 218 is employed for impedance matching, along with grounding loop 215, and to establish desired voltage standing wave ratio (VSWR) properties for antenna element 210 at the desired operating frequency range. Grounding loop 215 may be designed to be circular with a diameter of ¼ λ of the center frequency of the desired operating frequency range.
In transmission operations, RF energy generated by a transmitter or signal amplifier is introduced through a coaxial cable or other similar link to connector 217 which couples the RF energy to feed line 216. Feed line 216 propagates this RF energy to the slot line portion of tapered features 213-214, which then propagates down the channel created by tapered features 213-214 for eventual free-space propagation. A similar action happens for reception operation, albeit in a reverse order. By selecting physical features of antenna element 210, such as length/width/curve of tapered features 213-214, size of RF ground 218, diameter of grounding loop 215, attachment location for feed line 216, end termination shapes/features of feed line 216, and other physical features, antenna element 210 can be tuned to achieve various frequency responses, gain properties, power handling capabilities, bandwidths, and impedance properties. In further examples, feed link 216 might include various shapes or geometric arrangements at the termination end for further tuning of performance properties. Feed link 216 may instead comprise a link not formed onto substrate 211, such as a coaxial cable or other link adhered to either face of substrate 211.
However, use of a single Vivaldi antenna element as shown in
A first arrangement 300 comprises a “pinwheel” arrangement having eight (8) Vivaldi antenna elements 210 arrayed about a shared central axis (e.g. y-axis) that is perpendicular to baseplate 301. In the pinwheel arrangement, each antenna element 210 has an edge of the associated PCB facing the central axis, with faces of the associated PCB perpendicular to both the face of baseplate 301 and the central axis. A second arrangement 310 comprises an “octagonal” ring configuration having eight Vivaldi antenna elements 210 arrayed about a shared central axis (e.g. y-axis) that is perpendicular to baseplate 301. In the octagonal arrangement, each antenna element 210 has a face of the associated PCB facing the central axis, with edges of the associated PCB perpendicular to both the face of baseplate 301 and the central axis, forming a ring configuration. During transmit operations, RF energy is directed away from the baseplate by antenna elements 210, and during receive operations RF energy is detected as it impinges upon antenna elements 210.
The 8-arm Vivaldi antenna array arrangements discussed herein provide for a low-complexity and high efficiency approach to a wideband multi-mode DF feed. More than one instance or set of an 8-arm arrangement can be established to provide for further beamforming and directionality design goals. Advantageously, an RF beam is directed largely away from the upper face of baseplate 301, achieving approximately a 90% total efficiency. These arrangements also can achieve dual circular polarization performance (RHCP and LHCP) over a wide bandwidth due to the spatial orthogonality of adjacent elements. Elements which are 90 degrees apart can be fed into a beamformer to realize dual-CP mode 1, mode 2, and higher order modes. These arrangements also can provide for more flexibility in choosing a wider range of F/D values in reflector systems, and leads to more benign F/D and subtended angles in reflector systems, such as those in
This compares favorably to the aforementioned multi-arm sinuous or spiral antennas which can only achieve efficiencies as high as 50% due to one-half of the radiated energy being absorbed by a cavity or absorber disk. No such cavity or absorber disk is required in these 8-arm Vivaldi antenna array examples to achieve the high efficiencies in a selected direction of emission/reception. Due in part to the lower part count/complexity and higher efficiency of the 8-arm Vivaldi antenna array examples, for a given G/T (gain/noise temperature) or effective isotropic radiated power (EIRP) requirement, a reduction in the size of the main reflector by 30% or more is achieved, as well as providing for easier assembly and manufacturing. Array feed networks, discussed in the figures below, are also less complex than sinuous/spiral feeds, as the density of connectors is much lower from having the Vivaldi antenna elements spaced apart. In contrast, sinuous/spiral feeds typically have dense feed networks compressed into a central hub, making for difficult high-density RF connections. More conventional corrugated or axi-symmetric metallic horns are also much larger and higher in mass than the Vivaldi antenna arrays discussed herein. Additional advantages include a wider range of gain values and illumination profiles on reflector systems compared with heritage sinuous or spiral antennas. The enhanced arrangements discussed herein provide for feeds and antenna systems which are no longer restricted to the low (˜5-10 dBi directivity) and wide field of view of a sinuous or spiral antenna, as the individual Vivaldi type elements can be spaced to realize much higher directivity (15 dBi or more, which permits their implementation in larger F/D reflector systems).
To further highlight the performance advantages of the example antenna arrangements in
Turning first to graph 400, characterization result 401 is shown for antenna arrangement 300. Antenna arrangement 300 comprises an 8-element pinwheel arrangement which produces a “Mode 1” or “Sum” RF energy emission far-field beam pattern seen in characterization result 401. Associated emission pattern intensities in decibels (dB) for an example frequency of 37 Gigahertz (GHz) are shown in sidebar 402. Turning next to graph 410, characterization result 411 is shown for antenna arrangement 310. Antenna arrangement 310 comprises an 8-element octagonal arrangement which produces a “Mode 1” or “Sum” RF energy emission beam pattern seen in characterization result 411. Associated emission pattern results in decibels [isotropic] (dBi) are shown in sidebar 412 for an example frequency of 35 GHz. These results indicate a forward gain of antenna arrangement 310, which correspond to the directionality or beamwidth characteristics of antenna arrangement 310. Thus, the characterization results in
In addition to the antenna arrays shown in
Antenna array 500 comprises a “tilted pinwheel” arrangement having eight (8) Vivaldi antenna elements 510 arrayed about a shared central axis (e.g. y-axis) that is perpendicular to a baseplate (not shown). In the tilted pinwheel arrangement, each antenna element 510 has an edge of the associated PCB facing the central axis, but tilted a selected angle with respect to the central axis. Faces of the associated Vivaldi antenna elements are positioned at a tilt angle to both the face of the baseplate and the central axis. During transmit operations, RF energy is directed away from antenna elements 510, and during receive operations RF energy is detected as it impinges upon antenna elements 510. Due to the tilted configuration, as compared to a non-tilted pinwheel, antenna elements 510 are pointed/tilted away from a boresight of antenna array 500 to reduce directivity of antenna array 500. This arrangement can be employed when a flatter nominal beamwidth change verses frequency property is desired for the antenna array.
Also shown in
Antenna array 600 comprises a “tilted ring” arrangement having eight (8) Vivaldi antenna elements 610 arrayed about a shared central axis (e.g. y-axis) that is perpendicular to a baseplate (not shown). In the tilted ring arrangement, each antenna element 610 is mounted edge-to-edge with an adjacent antenna element. A face of the associated antenna element is arranged facing the central axis but tilted at a selected tilt angle. Antenna array 700 comprises a “tilted radial” arrangement having eight (8) Vivaldi antenna elements 710 arrayed about a shared central axis (e.g. y-axis) that is perpendicular to a baseplate (not shown). In the tilted radial arrangement, each antenna element 710 is mounted having edges positioned towards the central axis, but tilted at a selected tilt angle to form a spoke arrangement among the radially-aligned antenna elements. A central hub element might be employed to fasten the antenna elements in the tilted radial arrangement. During transmit operations, RF energy is directed away from the antenna elements, and during receive operations RF energy is detected as it impinges upon the antenna elements. Due to the tilted configuration, as compared to a non-tilted configuration, antenna elements are pointed/tilted away from a boresight of the corresponding antenna array to reduce directivity of the antenna array. This arrangement can be employed and optimized when a flatter nominal beamwidth change verses frequency property is desired for the antenna array. In addition, the configurations shown in
Antenna array 800 includes increased elevation of alternating or staggered elements. As shown in
Antenna array 900 includes a similar configuration to that of array 800, but all antenna elements 910 are mounted at the same elevation from the baseplate. However, alternating portions of antenna elements 910 are truncated to be shorter (Δh) than other portions of the antenna elements. This arrangement creates slightly different radiation patterns among alternating elements to help mitigate directivity increases versus frequency. As can be seen in
Feed assembly 1000 and feed assembly 1200 both comprise wideband, multi-mode antenna structures, which can be employed in as feeds for a reflector, such as seen in
Turning now to
The functional block diagrams, operational scenarios and sequences, and flow diagrams provided in the Figures are representative of exemplary systems, environments, and methodologies for performing novel aspects of the disclosure. While, for purposes of simplicity of explanation, methods included herein may be in the form of a functional diagram, operational scenario or sequence, or flow diagram, and may be described as a series of acts, it is to be understood and appreciated that the methods are not limited by the order of acts, as some acts may, in accordance therewith, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a method could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all acts illustrated in a methodology may be required for a novel implementation.
The various materials and manufacturing processes discussed herein are employed according to the descriptions above. However, it should be understood that the disclosures and enhancements herein are not limited to these materials and manufacturing processes, and can be applicable across a range of suitable materials and manufacturing processes. Thus, the descriptions and figures included herein depict specific implementations to teach those skilled in the art how to make and use the best options. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. Those skilled in the art will appreciate variations from these implementations that fall within the scope of this disclosure. Those skilled in the art will also appreciate that the features described above can be combined in various ways to form multiple implementations.
Number | Name | Date | Kind |
---|---|---|---|
2908001 | Kelly | Oct 1959 | A |
3090956 | Woodward et al. | May 1963 | A |
3305867 | Miccioli et al. | Feb 1967 | A |
4937585 | Shoemaker | Jun 1990 | A |
5041840 | Cipolla et al. | Aug 1991 | A |
5103237 | Weber | Apr 1992 | A |
5243358 | Sanford et al. | Sep 1993 | A |
5504493 | Hirshfield | Apr 1996 | A |
5793335 | Anderson et al. | Aug 1998 | A |
5838282 | Lalezari et al. | Nov 1998 | A |
6043785 | Marino | Mar 2000 | A |
6268835 | Toland et al. | Jul 2001 | B1 |
6356241 | Jaeger et al. | Mar 2002 | B1 |
6720932 | Flynn et al. | Apr 2004 | B1 |
9246236 | Lecam et al. | Jan 2016 | B2 |
9614290 | Remski | Apr 2017 | B1 |
11133604 | West et al. | Sep 2021 | B1 |
20040041741 | Hayes | Mar 2004 | A1 |
20050007289 | Zarro et al. | Jan 2005 | A1 |
20070063791 | Wu et al. | Mar 2007 | A1 |
20070296518 | Avramis et al. | Dec 2007 | A1 |
20080062056 | Hoferer | Mar 2008 | A1 |
20080297428 | Wu | Dec 2008 | A1 |
20100149061 | Haziza | Jun 2010 | A1 |
20100207833 | Toso et al. | Aug 2010 | A1 |
20110002263 | Zhu et al. | Jan 2011 | A1 |
20110267250 | Seifried et al. | Nov 2011 | A1 |
20130271321 | Anderson | Oct 2013 | A1 |
20150236428 | Caratelli et al. | Aug 2015 | A1 |
20150244078 | Horner | Aug 2015 | A1 |
20160156325 | Boutayeb et al. | Jun 2016 | A1 |
20160218436 | Rao et al. | Jul 2016 | A1 |
20160261042 | Sazegar et al. | Sep 2016 | A1 |
20170149134 | Klemes | May 2017 | A1 |
20180076521 | Mehdipour et al. | Mar 2018 | A1 |
20180219299 | Boutayeb et al. | Aug 2018 | A1 |
20180269576 | Scarborough et al. | Sep 2018 | A1 |
20180366825 | Klemes | Dec 2018 | A1 |
20190020121 | Paulotto et al. | Jan 2019 | A1 |
20190237873 | Sazegar et al. | Aug 2019 | A1 |
20190252800 | Yetisir et al. | Aug 2019 | A1 |
20190252801 | Mahanfar et al. | Aug 2019 | A1 |
20190280387 | Posthuma et al. | Sep 2019 | A1 |
20200076086 | Cheng et al. | Mar 2020 | A1 |
20200266548 | Navarro et al. | Aug 2020 | A1 |
20200343647 | Runyon et al. | Oct 2020 | A1 |
20220224005 | Yun | Jul 2022 | A1 |
20220328965 | Chalabi et al. | Oct 2022 | A1 |
20220359989 | Wang et al. | Nov 2022 | A1 |
20220399637 | Navarro | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
107994354 | May 2018 | CN |
2006005432 | Jan 2006 | JP |
Entry |
---|
Hai-han Sun “Compact Dual-Polarized Vivaldi Antenna with High Gain and High Polarization Purity for GPR Applications”, Jan. 2021, MDPI, pp. 1-17. (Year: 2021). |
Yongzhong Zhu, “Generation of plane spiral orbital angular momentum using circular double-slot Vivaldi antenna array”, Scientific Report, Oct. 2020, pp. 1-9 (Year: 2020). |
Sarkis, “Circular Array of Wideband 3D Vivaldi Antennas”, 2010 URSI International Symposium on Electromagnetic Theory, Berlin, Germany, 2010, pp. 792-794 (Year: 2010). |
Perdana, M. Y. et al., “Design Of Vivaldi Microstrip Antenna For Ultra-Wideband Radar Applications,” IOP Conf. Series: Materials Science and Engineering, 10 pages, 2017. |