Multipart non-uniform patient contact interface and method of use

Information

  • Patent Grant
  • 11147962
  • Patent Number
    11,147,962
  • Date Filed
    Monday, December 10, 2018
    6 years ago
  • Date Issued
    Tuesday, October 19, 2021
    3 years ago
Abstract
A multipart, non-uniform patient contact interface and method of use are disclosed.
Description
FIELD

The disclosure relates generally to methods and arrangements relating to medical devices. More specifically, the disclosure relates to systems and methods used in medical device patient contact interfaces especially used in external defibrillators or wearable cardioverter defibrillators.


BACKGROUND

A primary task of the heart is to pump oxygenated, nutrient-rich blood throughout the body. Electrical impulses generated by a portion of the heart regulate the pumping cycle. When the electrical impulses follow a regular and consistent pattern, the heart functions normally and the pumping of blood is optimized. When the electrical impulses of the heart are disrupted (i.e., cardiac arrhythmia), this pattern of electrical impulses becomes chaotic or overly rapid, and a Sudden Cardiac Arrest may take place, which inhibits the circulation of blood. As a result, the brain and other critical organs are deprived of nutrients and oxygen. A person experiencing Sudden Cardiac Arrest may suddenly lose consciousness and die shortly thereafter if left untreated.


The most successful therapy for Sudden Cardiac Arrest is prompt and appropriate defibrillation. A defibrillator uses electrical shocks to restore the proper functioning of the heart. A crucial component of the success or failure of defibrillation, however, is time. Ideally, a victim should be defibrillated immediately upon suffering a Sudden Cardiac Arrest, as the victim's chances of survival dwindle rapidly for every minute without treatment.


There are a wide variety of defibrillators. For example, Implantable Cardioverter-Defibrillators (ICD) involve surgically implanting wire coils and a generator device within a person. ICDs are typically for people at high risk for a cardiac arrhythmia. When a cardiac arrhythmia is detected, a current is automatically passed through the heart of the user with little or no intervention by a third party.


Another, more common type of defibrillator is the automated external defibrillator (AED). Rather than being implanted, the AED is an external device used by a third party to resuscitate a person who has suffered from sudden cardiac arrest. FIG. 8 illustrates a conventional AED 800, which includes a base unit 802 and two pads 804. Sometimes paddles with handles are used instead of the pads 804. The pads 804 are connected to the base unit 802 using electrical cables 806.


A typical protocol for using the AED 800 is as follows. Initially, the person who has suffered from sudden cardiac arrest is placed on the floor. Clothing is removed to reveal the person's chest 808. The pads 804 are applied to appropriate locations on the chest 808, as illustrated in FIG. 8. The electrical system within the base unit 800 generates a high voltage between the two pads 804, which delivers an electrical shock to the person. Ideally, the shock restores a normal cardiac rhythm. In some cases, multiple shocks are required.


Although existing technologies work well, there are continuing efforts to improve the effectiveness, safety and usability of automatic external defibrillators.


Accordingly, efforts have been made to improve the availability of automated external defibrillators (AED), so that they are more likely to be in the vicinity of sudden cardiac arrest victims. Advances in medical technology have reduced the cost and size of automated external defibrillators (AED). Some modern AEDs approximate the size of a laptop computer or backpack. Even small devices may typically weigh 4-10 pounds or more. Accordingly, they are increasingly found mounted in public facilities (e.g., airports, schools, gyms, etc.) and, more rarely, residences. Unfortunately, the average success rates for cardiac resuscitation remain abysmally low (less than 1%).


Such solutions, while effective, are still less than ideal for most situations. Assume, for example, that a person suffers from a cardiac arrest in an airport in which multiple AEDs have been distributed. The victim's companion would nevertheless have to locate and run towards the nearest AED, pull the device off the wall, and return to the collapsed victim to render assistance. During that time, precious minutes may have passed. According to some estimates, the chance of surviving a sudden cardiac arrest is 90% if the victim is defibrillated within one minute, but declines by 10% for every minute thereafter. A defibrillator design that reduces the time to defibrillation by even two to three minutes will save more lives.


An additional challenge is that a sudden cardiac arrest may take place anywhere. People often spend time away from public facilities and their homes. For example, a sudden cardiac arrest could strike someone while biking in the hills, skiing on the mountains, strolling along the beach, or jogging on a dirt trail. Ideally, an improved AED design would be compact, light, and resistant to the elements and easily attached or detached from one's body. The typical AED design illustrated in FIG. 8, which includes a sizable console or power unit whose form factor is similar to that of a laptop or backpack, seems less than ideal for the outdoors and other rigorous environments.


New and improved designs are allowing AEDs to become ultra-portable and hence to able to be easily carried by an at-risk person as they go about all of their daily activities and thus are able to be close at hand when a sudden cardiac arrest strikes outside of a hospital environment or a high traffic public area with a Public Access Defibrillator.


There are also improvements being made in the area of device usability and ease of operation for untrained bystanders. As noted above, every minute of delay or distraction can substantially decrease the victim's probability of survival. As a result, it is generally beneficial to streamline the operation of the external defibrillator so that a user of the defibrillator, who is presumably under substantial mental duress, can focus his or her attention on a few key variables.


Another type of defibrillator is the Wearable Cardioverter Defibrillator (WCD). Rather than a device being implanted into a person at-risk from Sudden Cardiac Arrest, or being used by a bystander once a person has already collapsed from experiencing a Sudden Cardiac Arrest, the WCD is an external device worn by an at-risk person which continuously monitors their heart rhythm to identify the occurrence of an arrhythmia, to then correctly identify the type of arrhythmia involved and then to automatically apply the therapeutic action required for the type of arrhythmia identified, whether this be cardioversion or defibrillation. These devices are most frequently used for patients who have been identified as potentially requiring an ICD and to effectively protect them during the two to six month medical evaluation period before a final decision is made and they are officially cleared for, or denied, an ICD.


External Defibrillators and Automated External Defibrillators on the market today make use of either rigid paddles that must be held in place on the patient's body or else flexible electrode pads (made of conductive foil and foam) which are stuck to the patient's skin. The current external defibrillators that have rigid paddle bases do not conform to the curvatures of the patient's body at the locations on the body where the paddles must be placed in order to be effective. As such the operators of these devices must apply a good amount of contact force to make physical contact across the paddle's patient contact interface and must maintain this force to maximize the surface area in contact with the patient for the sensing and reading of the heart rhythm in order that the device can detect the presence of a faulty rhythm, or arrhythmia, such as Ventricular Fibrillation or Ventricular Tachycardia so as to instruct/initiate or signal the external defibrillator to deliver the life saving therapeutic defibrillation shock pulse. The operator must also continue holding the required contact force while the device delivers the chosen therapeutic action (shock or no shock).


There are medical, practical and commercial needs to make new AEDs which are smaller, potentially even flexible, and hence much more discrete in order for patients to be able to carry the devices around with them as they go about their daily lives. This means that the life saving device is always with them for a bystander to use immediately if they drop from a Sudden Cardiac Arrest. This is far preferable to the current system of having a few AEDs mounted on the walls of a limited number of the most high traffic public locations.


Wearable Cardioverter Defibrillators on the market today are still bulky and uncomfortable for the patients to wear. They utilize a single source of energy in a box that attaches to the wearable garment (containing the sensors and the electrodes) and the energy source box normally rides on the hip. These are heavy and uncomfortable to wear and a frequent source of complaints from patients.


Current Wearable Cardioverter Defibrillators have fixed flat surface electrodes and fixed curved surface electrodes for positioning on the patient's back and abdomen. This requires that each patient has to be specially fitted for their own unit, which is time consuming for the patient. Given the limited range of device sizes available it also requires that the device be worn tightly in order to maintain a constant contact pressure with both the sensors and the electrodes, which is restrictive and can be uncomfortable for the patient. This is also the reason why the devices also employ the use of liquid conductive hydrogel, to ensure that the electrode-to-patient contact impedance is minimized. This is messy to clean up after each use when deployed by the device, and naturally this can adversely impact the patient's clothing. It also requires that the liquid reservoirs be recharged before the device can be effectively used again.


There are medical, practical and commercial needs to make new WCDs smaller and more flexible, more comfortable and more discrete for patients to wear as they go about their daily lives.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the external patient-facing side of the patient contact assembly exhibiting several potential patient contact element shapes.



FIG. 2 illustrates the reverse side of FIG. 1 exhibiting the internal electrical contacts and patient contact element anchor locations.



FIG. 3 illustrates various shaped patient contact elements before and after being swaged.



FIG. 4 illustrates the contact between a patient's skin and the patient contact assembly.



FIG. 5 illustrates a medical device incorporating a patient contact assembly within a rigid patient-facing surface.



FIG. 6 illustrates a flexible patient contact assembly.



FIG. 7 illustrates a medical device incorporating a patient contact assembly within a pliable/flexible patient-facing surface.



FIG. 8 diagrammatically illustrates an example of a conventional external defibrillator.





DETAILED DESCRIPTION OF ONE OR MORE EMBODIMENTS

The disclosure is particularly applicable to a pliable patient contact interface that may be used with a wearable AED and it is in this context that the disclosure will be described. It will be appreciated, however, that the patient contact interface has greater utility since it may be used with any medical device or other system in which it is desirable to be able to conform a patient contact interface to a non-flat surface.


A way to improve AEDs and wearable AEDs is to make it so that the circuitry and the energy source/reservoir may be re-distributed from the one large container/enclosure found in existing AEDs into two or more smaller containers. Each of these smaller containers has their own circuitry and energy source/reservoir and they are also combined with the ECG sensors and a defibrillation shock electrode. The two smaller containers are then connected to each other electrically and packaged together for easy transportation. In the wearable AED system, the two or more smaller containers may be mounted on the body of the patient. The smaller and more effective that the sensors and the electrodes can be made the better, which means ensuring that they maximize the surface area in contact with the patient's skin and also maximize the quality of the contact with the patient's skin. The system thus allows AEDs and WCDs to be made smaller, potentially flexible, more comfortable and much more discrete.


The patient contact interface disclosed assists with an optimal contact being maintained with the patient and hence that the device-to-patient impedance is minimized without requiring that the patient be either fastened into a garment as tight fitting as a corset before being able to reliably sense a continuous ECG, or be dowsed in liquid conductive hydrogel before being administered a therapeutic shock.


The patient contact interface may employ a mix of sensor types, such as ECG sensors and LED optical pulse detectors, rather than the traditional use of just ECG sensors. This mix means that the AED's or WCD's accuracy of the detection of shockable arrhythmias can be significantly improved and hence the incidence of unnecessary shocks can be significantly reduced and hence in addition the need for a patient to use any shock override button is reduced. The mix of sensor types may further include sensors which can be active in nature, passive in nature, or a combination of the two types. A passive sensor may be a sensor, like an ECG sensor, that just passively picks up a reading or signal, without taking any action itself. An active sensor may be a sensor, like a Pulse Oximeter, that actively performs a function such as shining a light into the patient's flesh in order to detect and analyze the reflected light from the blood flow in the patient's nearby blood vessels and hence identify the levels of oxygenation of that blood.


One embodiment of the patient contact interface allows external defibrillators with rigid paddles to provide a greater contact surface area with the patient's body, and an improved consistency of physical contact between the patient contacts and the patient's skin through using the natural tendency of the skin to give and conform to the shape of an object pressing into it without the need for the operator to apply excessive contact force. The use of the multi-part non-uniform patient contact interface ensures that there are multiple different contact points, each of which take advantage of the skin's natural tendency to give and conform, which ensures that a single contact location attaining a poor level of contact does not prevent the collection of the needed sensor readings nor the delivery of necessary therapy.


The patient contact interface can also be embodied to work with a wearable AED, or a Wearable Cardioverter Defibrillator, and this can be mounted on the patient in a number of different ways and in a number of different locations. The invention provides a more consistent contact surface area with the patient's body through the use of the multi-part non-uniform patient contact interface approach.


Through the utilization of a pliable yet stable substrate into which the multi-part non-uniform patient contact interface is embedded the invention can be flexed, wrapped and secured around almost any contours found at the relevant locations on a patient's body whilst maintaining a gentle pressure which ensures that a high quality level of device-to-patient contact is maintained. This improved consistency of physical contact between the patient contacts and the patient's skin is aided by the natural tendency of the skin to give and conform to the shape of any object pressing into it without the need for the operator to apply excessive contact force.



FIGS. 1 and 6 illustrate an external patient-facing side of the patient contact assembly (100) exhibiting several potential patient contact element shapes and FIG. 2 illustrates the reverse side of FIG. 1 exhibiting the internal electrical contacts and patient contact element anchor locations. The patient facing side of the patient contact assembly (100) may be made up of a set of patient contact elements shown here in the shapes of one or more “Bars” (101) and one or more “Buttons” (102). The contact elements may vary in shape, size and number to suit the precise embodiment need of the equipment with which they are being used, and provide the best results. The patient contact elements 101, 102 may be one or more sensors, one or more electrodes or a combination of one or more sensors and one or more electrodes. In some implementations in which the patent interface assembly has both sensors and electrodes, the sensors and electrodes may each be located separately from each other. In other implementations in which the patent interface assembly has both sensors and electrodes, the sensors and electrodes may be intermixed with each other in the patient interface assembly.


The arrangement of the patient contact elements may be varied and may include a single contact element, an array of contact elements, a portion of the assembly with bar contact elements and a portion of the assembly with button contact elements as shown in FIG. 1 and the like. In other embodiments, the patient contact elements, the bars (101) and buttons (102), may be simultaneously and contiguously formed along with and as part of the contact substrates (201).


The patient interface assembly described in this document may be placed onto a body of a patient and may be used, for example, to sense the heartbeat of the patient and then deliver a therapeutic pulse to the patient for defibrillation for example. The patient interface assembly may also be used to deliver other types of treatments of varying during to the patient. The patient interface assembly may also be used to sense a characteristic of the patient, such as a heartbeat or pulse and the like. The patient interface assembly may also be used to both sense a characteristic of the patient and deliver a treatment to the patient when the patient interface assembly has both sensors and electrodes.


The patient contact assembly may be placed onto the body of the patient at various locations, such as the torso, limbs and/or head of the patient. In some implementations, multiple patient contact assemblies may be used and each patient contact assembly may be placed on one or more locations on the body of the patient. In some embodiments, the patient contact assembly may have one or more patient contacts 101, 102 as shown in FIG. 1 and each patient contact may have the same particular shape (which is not shown in FIG. 1.) In other implementations, the patient contact assembly may have one or more patient contacts 101, 102 as shown in FIG. 1 and each patient contact may have a variety of shapes such as those shown in FIG. 1 for example. Similarly, each patient contact may be similarly sized or differently sized as shown in FIG. 1.


The assembly (100) may have a substrate (103) to which the contact elements are attached. In one embodiment, a material of the substrate (103) in between the bars (101) and buttons (102) may be conductive (where the patient contact elements are conductive) and another embodiment where this material is not conductive (where the patient contact elements are conductive.) In another embodiment, the material of the substrate (103) may be constructed of the same material used for the bars (101) and buttons (102) and is formed from the same single piece of this material. In a different embodiment, the substrate (103) may be constructed of the same material but it is yet formed from separate pieces of this material.


While the patient contact elements may be constructed from conductive material, such as stainless steel, the range of embodiments allow for the inclusion of multiple types of sensor elements such as optical sensors, electrical sensors, temperature sensors or even complex micro circuits or micro-mechanical circuits which may be used to fulfill a variety of functions and which may not be constructed from a conductive material. In the multi-part non-uniform patient contact interface assembly (100) a single type of sensor, or electrode, or multiple different types of sensors, or electrodes, can be incorporated individually, or in separated groups, and partially or fully intermixed within the same multi-part non-uniform patient contact interface assembly (100). The sensor elements, along with a similarly wide variety of potential electrode elements, can be implemented individually or as part of one large extended array, or as multiple smaller arrays, or in any combination of these approaches.



FIGS. 2 and 6 show the back side (the non-patient facing side) of the multi-part non-uniform patient contact interface assembly (100). In one embodiment of the patient contact elements, the bars (101) and buttons (102), are separately formed and are attached to a contact substrates (201). The contact elements are installed and, using a swage process, the ends of the contact elements (305) are rolled over forming a solid physical and electrical contact (202) to an interconnecting circuit assembly (203) that electrically connects the patient contact elements to each other. The interconnecting circuit assembly (203) also allows the patient contact elements to be electrically connected to a power source to be able to, for example, deliver a therapeutic pulse to a patient. An end of the patient contact element before the swage process is a cylindrical shape and a finished shape (303) shows the ends of the patient contact elements post swage process.



FIG. 3 shows the details of the Bar contacts (301) and Button contacts (302). The front surface (304) in contact with the patient of the Bar contact (301) and Button contact (302) has a gentle curved smooth surface, providing comfort to the Patient skin. This smooth surface allows the pliable dermis/epidermis to give and conform to the shape of the Bar contacts (301) and Button contacts (302), as shown in FIG. 4. The contact Bars and Buttons (401) are shown in contact with the Patient's skin (402) in FIG. 4. The pliable nature of the patient's dermis/epidermis ensures that the skin deforms and fills in the gaps between the Bars and Buttons contact elements and effectively increases the total contact area.



FIG. 5 illustrates a medical device incorporating a patient contact assembly within a rigid patient-facing surface of a defibrillator paddle, or other medical device. The multi-part non-uniform patient contact (502 and 503) may be located on the rigid paddle (501). The contact structure may be a mix of Bar contact elements (502) and Button contact elements (503) which are arranged as required for optimal contact with the Patient's skin.



FIG. 6 illustrates a flexible patient contact assembly. As shown, if the substrate (201) is pliable and flexible, then the patient contact assembly may be flexible and bend (as shown in FIG. 6) to fit around various differently shaped anatomical structures of the patient.



FIG. 7 illustrates a medical device incorporating a patient contact assembly within a pliable/flexible patient-facing surface. In this example, the multi-part non-uniform patient contact interface assembly (100) is anchored to a pliable/flexible body (501) of a wearable defibrillator interface, or other wearable medical device. The multi-part non-uniform patient contacts (101 and 102) may be connected to the flexible body or wearable interface (501). The contact structure may be a mix of Bar contact elements (101) and Button contact elements (102) which are arranged as required for optimal contact with the Patient's skin.


The described Multi-part Non-uniform Patient Contact Interface allows for ideal Patient body contact without the need for the device operator to directly apply sustained contact force. An adhesive on the edge of the Defibrillator paddle may hold the assembly in place while the flexibility of the Multi-part Non-uniform Patient Contact Interface contacts the Patient body. The patient contact assembly may reduce the need for the operator to be in contact with the Defibrillator or Patient, removing the risk to the operator and reducing the risk to the patient.


The patient contact interface may allow for the weight of the rigid device that it is part of to be reduced or the flexibility of the pliable substrates that it is built with to be maintained along with its method of attachment to the patient. The patient contact interface sustains the high quality contact between the patient contact elements and the patient's skin, despite the movements of the operator or of the patient.


While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.

Claims
  • 1. A patient interface assembly, comprising: a substrate;a plurality of three-dimensionally contoured electrically conductive patient contacts electrically connected on a first side of the substrate, each of the plurality of patient contacts having a top surface and a curved side portion surface that is connected to the top surface and holds the top surface above the first side of the substrate;an interconnecting circuit assembly on a side of the substrate opposite from the first side of the substrate that electrically connects the plurality of three-dimensionally contoured patient contacts; andwherein the top surface and curved side portion surface of the plurality of patient contacts provide contact with an uneven contact surface when the patient interface assembly is placed against the uneven contact surface.
  • 2. The assembly of claim 1, wherein the uneven contact surface is a surface of a body of a patient.
  • 3. The assembly of claim 1, wherein each of the plurality of three-dimensionally contoured electrically conductive patient contacts has a particular shape.
  • 4. The assembly of claim 1, wherein the plurality of three-dimensionally contoured electrically conductive patient contacts each have a variety of shapes.
  • 5. The assembly of claim 2, wherein the surface of the body of the patient is one of a torso of the patient, a limb of the patient and a head of the patient.
  • 6. The assembly of claim 1, wherein the plurality of three-dimensionally contoured electrically conductive patient contacts have one or more different sizes.
  • 7. The assembly of claim 1, wherein the plurality of three-dimensionally contoured patient contacts are connected to the substrate.
  • 8. The assembly of claim 1, wherein each of the plurality of three-dimensionally contoured electrically conductive patient contacts is a sensor.
  • 9. The assembly of claim 8, wherein the sensor is one of an active in nature sensor and a passive in nature sensor.
  • 10. The assembly of claim 1, wherein the plurality of three-dimensionally contoured electrically conductive patient contacts are one of an active in nature sensor or a passive in nature sensor.
  • 11. The assembly of claim 1, wherein each of the plurality of three-dimensionally contoured electrically conductive patient contacts is an electrode.
  • 12. The assembly of claim 1, wherein the plurality of three-dimensionally contoured electrically conductive patient contacts are one or more sensors and one or more electrodes.
  • 13. The assembly of claim 12, wherein the one or more sensors are arranged in the configuration separately from the one or more electrodes.
  • 14. The assembly of claim 12, wherein the one or more sensors are arranged in the configuration intermixed with the one or more electrodes.
  • 15. The assembly of claim 1, wherein the plurality of three-dimensionally contoured electrically conductive patient conductive patient contacts are spaced and make the patient interface assembly capable of flexing and conforming to the contours of the uneven surface when the patient interface assembly is placed on the uneven surface.
  • 16. A method for attaching a patient contact assembly to a patient, the method comprising: providing a patient contact assembly having a plurality of three-dimensionally contoured electrically conductive patient contacts electrically connected on a first side of the substrate, each of the plurality of patient contacts having a top surface and a curved side portion surface that is connected to the top surface and holds the top surface above the first side of the substrate and an interconnecting circuit assembly on a side of the substrate opposite from the first side of the substrate that electrically connects the plurality of three-dimensionally contoured patient contacts-wherein the top surface and curved side portion surface of the plurality of patient contacts provide contact with an uneven contact surface when the patient interface assembly is placed against the uneven contact surface; andplacing the patient contact assembly on a body of a patient.
  • 17. The method of claim 16, wherein placing the patient contact assembly further comprises placing one or more patient contacts assemblies at a location on the body of the patient.
  • 18. The method of claim 17, wherein the location on the body of the patient is one of a torso of the patient, a limb of the patient and a head of the patient.
  • 19. The method of claim 16 further comprising delivering, using the patient contact assembly, a treatment to the patient.
PRIORITY CLAIMS/RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/303,546, filed Jun. 12, 2014 which claims the benefit under 35 USC 119(e) and 120 to U.S. Provisional Patent Application No. 61/835,465 filed on Jun. 14, 2013 and entitled “Multipart Non-Uniform Sensor Contact Interface and Method of Use” and to U.S. Provisional Patent Application No. 61/835,478 filed on Jun. 14, 2013 and entitled “Multipart Non-Uniform Electrode Contact Interface and Method of Use”, the entirety of both of which are incorporated herein by reference.

US Referenced Citations (185)
Number Name Date Kind
3782389 Bell Jan 1974 A
4328808 Charbonnier et al. May 1982 A
4441498 Nordling Apr 1984 A
4957109 Groeger et al. Sep 1990 A
5199429 Kroll et al. Apr 1993 A
5240995 Gyory et al. Aug 1993 A
5290585 Elton Mar 1994 A
5338490 Dietz et al. Aug 1994 A
5341806 Gadsby et al. Aug 1994 A
5362420 Itoh et al. Nov 1994 A
5369351 Adams Nov 1994 A
5391186 Kroll et al. Feb 1995 A
5402884 Gilman et al. Apr 1995 A
5489624 Kantner et al. Feb 1996 A
5507781 Kroll et al. Apr 1996 A
5536768 Kantner et al. Jul 1996 A
5573668 Grosh et al. Nov 1996 A
5620464 Kroll et al. Apr 1997 A
5643252 Waner et al. Jul 1997 A
5658316 Lamond et al. Aug 1997 A
5660178 Kantner et al. Aug 1997 A
5733310 Lopin et al. Mar 1998 A
5800685 Perrault Sep 1998 A
5871505 Adams et al. Feb 1999 A
5919220 Stieglitz et al. Jul 1999 A
5987354 Cooper et al. Nov 1999 A
6004312 Finneran et al. Dec 1999 A
6006131 Cooper et al. Dec 1999 A
6056738 Marchitto et al. May 2000 A
6115623 McFee et al. Sep 2000 A
6141584 Rockwell et al. Oct 2000 A
6169923 Kroll et al. Jan 2001 B1
6173198 Schulze et al. Jan 2001 B1
6197324 Crittenden Mar 2001 B1
6251100 Flock et al. Jun 2001 B1
6256533 Yuzhakov et al. Jul 2001 B1
6266563 Kenknight et al. Jul 2001 B1
6315722 Yaegashi Nov 2001 B1
6329488 Terry et al. Dec 2001 B1
6379324 Gartstein et al. Apr 2002 B1
6477413 Sullivan et al. Nov 2002 B1
6576712 Feldstein et al. Jun 2003 B2
6596401 Terry et al. Jul 2003 B1
6597948 Rockwell et al. Jul 2003 B1
6611707 Prausnitz et al. Aug 2003 B1
6690959 Thompson Feb 2004 B2
6714817 Daynes et al. Mar 2004 B2
6714824 Ohta et al. Mar 2004 B1
6797276 Glenn et al. Sep 2004 B1
6803420 Cleary et al. Oct 2004 B2
6908453 Fleming et al. Jun 2005 B2
6908681 Terry et al. Jun 2005 B2
6931277 Yuzhakov et al. Aug 2005 B1
7069075 Olson Jun 2006 B2
7072712 Kroll et al. Jul 2006 B2
7108681 Gartstein et al. Sep 2006 B2
7215991 Besson et al. May 2007 B2
7226439 Pransnitz et al. Jun 2007 B2
7463917 Martinez Dec 2008 B2
7645263 Angel et al. Jan 2010 B2
7797044 Covey et al. Sep 2010 B2
7844316 Botero Nov 2010 B1
8019402 Kryzpow et al. Sep 2011 B1
8024037 Kumar et al. Sep 2011 B2
8095206 Ghanem et al. Jan 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8333239 Schneider et al. Dec 2012 B2
8527044 Edwards et al. Sep 2013 B2
8558499 Ozaki et al. Oct 2013 B2
8615295 Savage et al. Dec 2013 B2
8781576 Savage et al. Jul 2014 B2
8938303 Matsen Jan 2015 B1
9089718 Owen et al. Jul 2015 B2
9101778 Savage et al. Aug 2015 B2
9174061 Freeman et al. Nov 2015 B2
9289620 Efimov et al. Mar 2016 B2
9616243 Raymond et al. Apr 2017 B2
9656094 Raymond et al. May 2017 B2
9833630 Raymond et al. Dec 2017 B2
9855440 Raymond et al. Jan 2018 B2
9907970 Raymond et al. Mar 2018 B2
10149973 Raymond et al. Dec 2018 B2
10279189 Raymond et al. May 2019 B2
20010027270 Stratbucker Oct 2001 A1
20010031992 Fishler et al. Oct 2001 A1
20010034487 Cao et al. Oct 2001 A1
20010051819 Fishler et al. Dec 2001 A1
20020016562 Cormier et al. Feb 2002 A1
20020045907 Sherman et al. Apr 2002 A1
20020082644 Picardo et al. Jun 2002 A1
20030017743 Picardo et al. Jan 2003 A1
20030055460 Owen et al. Mar 2003 A1
20030088279 Rissmann et al. May 2003 A1
20030125771 Garrett et al. Jul 2003 A1
20030163166 Sweeney et al. Aug 2003 A1
20030167075 Fincke Sep 2003 A1
20030197487 Tamura et al. Oct 2003 A1
20040105834 Singh et al. Jun 2004 A1
20040143297 Ramsey Jul 2004 A1
20040166147 Lundy et al. Aug 2004 A1
20040225210 Brosovich et al. Nov 2004 A1
20040247655 Asmus et al. Dec 2004 A1
20050055460 Johnson et al. Mar 2005 A1
20050107713 Van Herk et al. May 2005 A1
20050107833 Freeman et al. May 2005 A1
20050123565 Subramony et al. Jun 2005 A1
20050246002 Martinez Nov 2005 A1
20060136000 Bowers Jun 2006 A1
20060142806 Katzman et al. Jun 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060206152 Covey et al. Sep 2006 A1
20070016268 Carter et al. Jan 2007 A1
20070078376 Smith Apr 2007 A1
20070135729 Ollmar et al. Jun 2007 A1
20070143297 Recio et al. Jun 2007 A1
20070150008 Jones et al. Jun 2007 A1
20070191901 Schecter Aug 2007 A1
20080082153 Gadsby et al. Apr 2008 A1
20080097546 Powers et al. Apr 2008 A1
20080114232 Gazit May 2008 A1
20080154110 Burnes et al. Jun 2008 A1
20080154178 Carter et al. Jun 2008 A1
20080177342 Snyder Jul 2008 A1
20080200973 Mallozzi et al. Aug 2008 A1
20080312579 Chang et al. Dec 2008 A1
20080312709 Volpe et al. Dec 2008 A1
20090005827 Weintraub et al. Jan 2009 A1
20090024189 Lee et al. Jan 2009 A1
20090076366 Palti Mar 2009 A1
20090210022 Powers Aug 2009 A1
20090318988 Powers Dec 2009 A1
20090326400 Huldt Dec 2009 A1
20100030290 Bonner et al. Feb 2010 A1
20100036230 Greene et al. Feb 2010 A1
20100063559 McIntyre et al. Mar 2010 A1
20100160712 Burnett et al. Jun 2010 A1
20100181069 Schneider et al. Jul 2010 A1
20100191141 Aberg Jul 2010 A1
20100241181 Savage et al. Sep 2010 A1
20100249860 Shuros et al. Sep 2010 A1
20110028859 Chian Feb 2011 A1
20110071611 Khuon et al. Mar 2011 A1
20110208029 Joucla et al. Aug 2011 A1
20110237922 Parker, III et al. Sep 2011 A1
20110288604 Kaib et al. Nov 2011 A1
20110301683 Axelgaard Dec 2011 A1
20120101396 Solosko et al. Apr 2012 A1
20120112903 Kalb et al. May 2012 A1
20120136233 Yamashita May 2012 A1
20120158075 Kaib et al. Jun 2012 A1
20120158078 Moulder et al. Jun 2012 A1
20120203079 McLaughlin Aug 2012 A1
20120203297 Efimov et al. Aug 2012 A1
20120259382 Trier Oct 2012 A1
20130018251 Caprio et al. Jan 2013 A1
20130144365 Kipke et al. Jun 2013 A1
20140005736 Badower Jan 2014 A1
20140039593 Savage et al. Feb 2014 A1
20140039594 Savage et al. Feb 2014 A1
20140221766 Kinast Aug 2014 A1
20140276183 Badower Sep 2014 A1
20140277226 Poore et al. Sep 2014 A1
20140317914 Shaker Oct 2014 A1
20140324113 Savage et al. Oct 2014 A1
20140371566 Raymond et al. Dec 2014 A1
20140371567 Raymond et al. Dec 2014 A1
20140371805 Raymond et al. Dec 2014 A1
20140371806 Raymond et al. Dec 2014 A1
20150297104 Chen et al. Oct 2015 A1
20150327781 Hernandez-Silveira Nov 2015 A1
20160206893 Raymond et al. Jul 2016 A1
20160213933 Raymond et al. Jul 2016 A1
20160213938 Raymond et al. Jul 2016 A1
20160296177 Gray et al. Oct 2016 A1
20160361533 Savage et al. Dec 2016 A1
20160361555 Savage et al. Dec 2016 A1
20170108447 Lin Apr 2017 A1
20170252572 Raymond et al. Sep 2017 A1
20180064948 Raymond et al. Mar 2018 A1
20180117347 Raymond et al. May 2018 A1
20180161584 Raymond et al. Jun 2018 A1
20180200528 Savage et al. Jul 2018 A1
20190192867 Savage et al. Jun 2019 A1
20190321650 Raymond et al. Oct 2019 A1
20200406045 Raymond et al. Dec 2020 A1
Foreign Referenced Citations (35)
Number Date Country
101201277 Jun 2008 CN
101919682 Dec 2010 CN
102006025864 Dec 2007 DE
1834622 Sep 2007 EP
1530983 Sep 2009 EP
2442867 Apr 2012 EP
2085593 Apr 1982 GB
S63296771 Dec 1988 JP
2000093526 Apr 2000 JP
2001506157 May 2001 JP
2005144164 Jun 2005 JP
2005521458 Jul 2005 JP
2006507096 Mar 2006 JP
2007530124 Nov 2007 JP
2008302254 Dec 2008 JP
2010511438 Apr 2010 JP
2010529897 Sep 2010 JP
2011512227 Apr 2011 JP
2011177590 Sep 2011 JP
2012501789 Jan 2012 JP
2012135457 Jul 2012 JP
2012529954 Nov 2012 JP
2013525084 Jun 2013 JP
2010000638 Jul 2010 MX
WO9826841 Jun 1998 WO
WO03020362 Mar 2003 WO
WO2009104178 Aug 2009 WO
WO2010030363 Mar 2010 WO
WO2010107707 Sep 2010 WO
WO2010146492 Dec 2010 WO
WO2010151875 Dec 2010 WO
WO2014201388 Dec 2014 WO
WO2014201389 Dec 2014 WO
WO2014201719 Dec 2014 WO
WO2015164715 Oct 2015 WO
Non-Patent Literature Citations (10)
Entry
Pliquett et al.; “Changes in the passive electrical properties of human stratum corneum due electroporation,” dated Dec. 7, 1994, 11 pages.
Yamamoto et al.; “Electrical properties of the epidermal stratum corneum,” dated Aug. 12, 1974, 8 pages.
Davis et al.; “Insertion of microneedles into skin: measurement and prediction of insertion force and needle facture force,” dated Dec. 10, 2003, 9 pages.
Kaushik et al.; “Lack of Pain Associated with Microfabricated Microneedles,” dated Oct. 10, 2000, 3 pages.
Yang et al.; “Microneedle Insertion Force Reduction Using Vibratory Actuation,” dated 2004, 6 pages.
Birgersson et al.; “Non-invasive bioimpedance of intact skin: mathematical modeling and experiments,” dated May 2, 2010, 19 pages.
Park et al.; “Polymer Microneedles for Controlled-Release Drug Delivery,” dated Dec. 2, 2005, 12 pages.
Frazier et al.; “Two Dimensional Metallic Microelectrode Arrays for Extracellular Stimulation and Recording of Neurons,” dated 1993, 6 pages.
Martinsen et al.; “Utilizing Characteristic Electrical Properties of the Epidermal Skin Layers to Detect Fake Fingers in Biometric Fingerprint Systems—A Pilot Study,” dated Dec. 1, 2004, 4 pages.
Yamanouchi et al., “Optimal Small-Capacitor Biphasic Waveform for External Defibrillation; Influence of Phase-1 Tilt and Phase-2 Voltage,” Journal of the American Heart Association, Dec. 1, 1998, vol. 98, pp. 2487-2493, 8 pages.
Related Publications (1)
Number Date Country
20190175898 A1 Jun 2019 US
Provisional Applications (2)
Number Date Country
61835465 Jun 2013 US
61835478 Jun 2013 US
Continuations (1)
Number Date Country
Parent 14303546 Jun 2014 US
Child 16215517 US