Multiparticles safeguarded against ethanolic dose-dumping

Information

  • Patent Grant
  • 9872835
  • Patent Number
    9,872,835
  • Date Filed
    Friday, May 22, 2015
    9 years ago
  • Date Issued
    Tuesday, January 23, 2018
    7 years ago
Abstract
The invention relates to an oral pharmaceutical dosage form providing resistance against dose dumping in aqueous ethanol and comprising a pharmacologically active ingredient embedded in a matrix material, wherein the matrix material comprises an alkyl cellulose and a heteropolysaccharide; andwherein the relative weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:20 to 20:1; and wherein the total content of alkyl cellulose and heteropolysaccharide is at least 35 wt.-%, relative to the total weight of the dosage form. A process of producing the dosage form and methods of using the dosage form, for example to treat pain, are also disclosed.
Description
FIELD OF THE INVENTION

This application claims priority of European Patent Application No. 14 169 801.9, filed on May 26, 2014, the entire content of which is incorporated herein by reference.


The invention relates to an oral pharmaceutical dosage form providing resistance against dose dumping in aqueous ethanol and comprising a pharmacologically active ingredient, preferably an opioid, embedded in a matrix material,

    • wherein the matrix material comprises an alkyl cellulose, preferably ethyl cellulose, and a heteropolysaccharide, preferably xanthan gum; and
    • wherein the relative weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:20 to 20:1; and
    • wherein the total content of alkyl cellulose and heteropolysaccharide is at least 35 wt.-%, relative to the total weight of the dosage form; and
    • wherein preferably the content of the alkyl cellulose is at least 10 wt.-%, relative to the total weight of the dosage form; and/or
    • wherein preferably the content of the alkyl cellulose in the dosage form is higher than the content of the heteropolysaccharide in the dosage form.


BACKGROUND OF THE INVENTION

A large number of pharmacologically active substances have a potential for being intentionally or unintentionally abused or misused, i.e. they can be used to produce effects which are not consistent with their intended use. Thus, e.g. opioids which exhibit an excellent efficacy in controlling severe to extremely severe pain are frequently abused to induce euphoric states similar to being intoxicated. In particular, active substances which have a psychotropic effect are abused accordingly.


To intentionally enable abuse, the corresponding pharmaceutical dosage forms, such as pharmaceutical dosage forms or capsules can be taken with alcohol (oral abuse). Alternatively, the dosage forms are crushed, for example ground by the abuser, the active substance is extracted from the thus obtained powder using a preferably aqueous liquid and after being optionally filtered through cotton wool or cellulose wadding, the resultant solution is administered parenterally, in particular intravenously. This type of dosage results in an even faster diffusion of the active substance compared to the oral abuse, with the result desired by the abuser, namely the kick. This kick or these intoxication-like, euphoric states are also reached if the powdered pharmaceutical dosage form is administered nasally, i.e. is sniffed.


However, sometimes patients unintentionally disrupt the controlled release properties of dosage forms by concomitant consumption of alcoholic beverages, thereby inducing dose dumping. Dosage forms containing active ingredients having a high solubility in water usually have a high susceptibility to ethanolic dose dumping.


Various concepts for the avoidance of intentional and unintentional drug abuse have been developed.


It has been proposed to incorporate in pharmaceutical dosage forms aversive agents and/or antagonists in a manner so that they only produce their aversive and/or antagonizing effects when the pharmaceutical dosage forms are tampered with. However, the presence of such aversive agents is principally not desirable and there is a need to provide sufficient tamper-resistance without relying on aversive agents and/or antagonists.


Another concept to prevent abuse relies on the mechanical properties of the pharmaceutical dosage forms, particularly an increased breaking strength (resistance to crushing). The major advantage of such pharmaceutical dosage forms is that comminuting, particularly pulverization, by conventional means, such as grinding in a mortar or fracturing by means of a hammer, is impossible or at least substantially impeded. Thus, the pulverization, necessary for abuse, of the pharmaceutical dosage forms by the means usually available to a potential abuser is prevented or at least complicated. Such pharmaceutical dosage forms are useful for avoiding drug abuse of the pharmacologically active ingredient contained therein, as they may not be powdered by conventional means and thus, cannot be administered in powdered form, e.g. nasally. The mechanical properties, particularly the high breaking strength of these pharmaceutical dosage forms renders them tamper-resistant. In the context of such tamper-resistant pharmaceutical dosage forms it can be referred to, e.g., WO 2005/016313, WO 2005/016314, WO 2005/063214, WO 2005/102286, WO 2006/002883, WO 2006/002884, WO 2006/002886, WO 2006/082097, WO 2006/082099, and WO2009/092601.


However, besides tampering of pharmaceutical dosage forms in order to abuse the drugs contained therein, the potential impact of concomitant intake of ethanol on the in vivo release of drugs from modified release oral formulations (dose-dumping) has recently become an increasing concern. Controlled or modified release formulations typically contain a higher amount of the pharmacologically active ingredient relative to its immediate release counterpart. If the controlled release portion of the formulation is easily defeated, the end result is a potential increase in exposure to the active drug and possible safety concerns. In order to improve safety and circumvent intentional tampering (e.g. dissolving a controlled release pharmaceutical dosage form in ethanol to extract the drug), a reduction in the dissolution of the modified release fractions of such formulations, in ethanol, may be of benefit.


For monolithic dosage forms some formulation concepts are known which provide to some degree a controlled release of the drug substance even in ethanolic media. Further, however, monolithic dosage forms are not suitable for all patient groups, as they are required to be swallowed intact. Due to the big size of such formulations this is not possible for patients having difficulties in swallowing as e.g. the elderly and children. These patients have a high risk of choking on monolithic dosage forms. Pulverization of these dosage forms on the other hand solves the choking hazard, but endangers the patients by releasing a potentially toxic dose of the drug substance.


The swallowing issue can be overcome by the use of multiparticulate dosage forms, e.g. MUPS (multiple unit pellet system) tablets or capsules filled with controlled release granules, which can be reduced in size to the size of the individual particles without losing the control of the drug release. In contrast to the above mentioned monolithic formulations, obtaining functional robustness in ethanolic media of the multiparticulate formulations is a challenge. Working examples of monolithic dosage forms contain hydrophilic polymer matrices, wherein control of drug release is achieved by a long diffusion way within the formulation. For multiparticulate forms, long diffusion ways do not exist due to the small size of the individual particles. A common technique to overcome this problem is the application of a functional barrier coating on top of the individual particle, e.g. ethylcellulose for diffusion control. However, as ethylcellulose is alcohol soluble, these formulation approaches are not resistant against ethanolic dose dumping.


Accordingly, the need exists to develop new formulations having reduced potential for dose dumping in alcohol.


US 2008/0085304 discloses robust sustained release formulations, solid dosage forms comprising robust sustained release formulations, and methods for making and using these formulations and solid dosage forms are provided. Robustness of the sustained release formulation is related to the particle size of the hydrophilic gum. Sustained release formulations resist dose-dumping when ingested with alcohol. The formulations are useful for treating a patient suffering from a condition, e.g., pain. The formulations comprise at least one drug. In one embodiment, the drug is an opioid, e.g., oxymorphone.


WO 2009/034541 relates to a solid dosage form for the controlled release of trimetazidine suitable for once-daily dosing, in which the dosage form exhibits a controlled in vitro release of trimetazidine in phosphate buffer at pH 6.8 of not less than about 75% after 16 hours when measured using USP Apparatus I at 100 rpm, thereby decreasing the incidence and severity of burst release or dose dumping.


WO 2013/084059 relates to a pharmaceutical dosage form comprising a mixture in the form of an extended release matrix formulation, the mixture comprising at least: (1) at least one poly(ε-caprolactone), and (2) at least one polyethylene oxide, and (3) at least one active agent. The dosage form is said to be tamper resistant and to provide extended release of the active agent. However, poly(ε-caprolactone) is not a pharmacopeial excipient for oral use according to the Ph. Eur. and the USP, respectively.


WO 2012/166474 relates to a solid dose form comprising a film coating composition encapsulating a core, wherein the core comprises an active ingredient comprising at least one of a pharmaceutical, veterinary, or nutraceutical active ingredient; the film coating composition comprises ethylcellulose and guar gum; and the guar gum is present in an amount greater than 5 wt % based on the weight of the guar gum and ethylcellulose. The solid dose form is said to provide controlled release of the active ingredient and to be ethanol resistant. Extended release tablets comprising a lipid matrix containing glyceryl (di)behenate (commercially available as Compritol® 888 ATO) in which the active ingredient is embedded are said to not being susceptible to alcohol-related dose dumping. The drug substance is said to be released from the dosage form by diffusion, thereby leaving behind an in principle structurally intact tablet matrix. However, this is not satisfactory in every respect. The remaining “washed-out” lipid tablet will remain visible in human stool after excretion. This observation (“ghosting”) is known to lead to increased complaints by patients and a reduced patient compliance. Further, mechanical manipulation of the tablet e.g. dividing it to allow easier swallowing, leads to an accelerated drug release due to reduced diffusion ways eventually resulting in higher plasma concentrations of the drug substance including toxic levels.


However, the properties of these pharmaceutical dosage forms of the prior art, however, are not satisfactory in every respect.


SUMMARY OF THE INVENTION

It is an object of the invention to provide dose-dumping resistant pharmaceutical dosage forms containing a pharmacologically active ingredient, preferably an opioid, which have advantages compared to the dosage forms of the prior art.


This object has been achieved by the subject matter described hereinbelow and in the appended patent claims when issued.


A first aspect of the invention relates to an oral pharmaceutical dosage form providing resistance against dose dumping in aqueous ethanol and comprising a pharmacologically active ingredient, preferably an opioid, embedded in a matrix material,

    • wherein the matrix material comprises an alkyl cellulose, preferably ethyl cellulose, and a heteropolysaccharide, preferably xanthan gum; and
    • wherein the relative weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:20 to 20:1; and
    • wherein the total content of alkyl cellulose and heteropolysaccharide is at least 35 wt.-%, relative to the total weight of the dosage form; and
    • wherein preferably the content of the alkyl cellulose is at least 10 wt.-%, relative to the total weight of the dosage form; and/or
    • wherein preferably the content of the alkyl cellulose in the dosage form is higher than the content of the heteropolysaccharide in the dosage form.


It has been surprisingly found that an oral pharmaceutical dosage form comprising a pharmacologically active ingredient, preferably an opioid, an alkyl cellulose and a heteropolysaccharide can be prepared, wherein the dosage form exhibits tamper resistance, especially in terms of resistance against dose-dumping of the pharmacologically active ingredient in aqueous ethanol.


Further, it has been surprisingly found that the content of the pharmacologically active ingredient, preferably the opioid in the dosage form and in the particles, respectively, can be optimized in order to provide the best compromise between tamper-resistance, disintegration time and drug release, drug load, processability (especially pharmaceutical dosage formability) and patient compliance.


Still further, it has been surprisingly found that the dosage forms provide a retarded release when the release medium additionally contains ethanol compared to the release in aqueous medium not containing ethanol. This result was completely unexpected because of the good solubility of alkyl celluloses, especially ethylcellulose in ethanol.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in greater detail with reference to the drawings, wherein:



FIG. 1 shows the release profile of the capsules of Example 1 in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.



FIG. 2 shows the release profile of the capsules of Example 2 in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.



FIG. 3 shows the release profile of the capsules of Example 3 in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.



FIG. 4 shows the release profile of the capsules of Example 4 in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.



FIG. 5 shows the release profile of the capsules of Example 5 in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.





DETAILED DESCRIPTION OF THE INVENTION

Unless expressly stated otherwise, all percentages are by weight (wt.-%).


As used herein, the term “pharmaceutical dosage form” and “dosage form”, respectively, refers to a pharmaceutical entity that comprises a pharmacologically active ingredient, preferably an opioid, and which is actually administered to, or taken by, a patient. It may be compressed or molded in its manufacture, and it may be of almost any size, shape, weight, and color.


The dosage form is preferably solid or semisolid.


Examples of dosage forms according to the invention include, but are not limited to, tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like. In a preferred embodiment, the dosage form is a filled capsule or a tablet. According to this embodiment, the capsule can be a hard or soft gelatin capsule.


Most pharmaceutical dosage forms are intended to be swallowed whole and accordingly, the dosage forms according to the invention are designed for oral administration.


In a preferred embodiment, the dosage form according to the invention is particulate. According to this embodiment, the dosage form is preferably comprises a multitude of particles or granules. An advantage of particulate dosage forms is that the particles may be mixed in different amounts to thereby produce dosage forms of different strengths.


In another preferred embodiment, the dosage form according to the invention can be regarded as a MUPS formulation (multiple unit pellet system). Preferably, the dosage form according to the invention contains all ingredients in a dense compact unit which in comparison to capsules has a comparatively high density. Under these circumstances, the dosage forms according to the invention preferably comprise subunits having different morphology and properties, namely drug-containing particles and an outer matrix material, wherein the particles form a discontinuous phase within the outer matrix material. The constituents of the outer matrix material are preferably different from the constituents of the drug-containing particles. Preferably, the outer matrix material neither contains a pharmacologically active ingredient nor an alkyl cellulose nor a heteropolysaccharide.


The particles typically have mechanical properties that differ from the mechanical properties of the outer matrix material. The particles can preferably be visualized by conventional means such as solid state nuclear magnetic resonance spectroscopy, raster electron microscopy, terahertz spectroscopy and the like.


In still another preferred embodiment, the dosage form according to the invention is monolithic. In this regard, monolithic preferably means that the dosage form is formed or composed of material without joints or seams or consists of or constitutes a single unit.


The dosage form according to the invention has preferably a total weight in the range of 0.01 to 1.5 g, more preferably in the range of 0.05 to 1.2 g, still more preferably in the range of 0.1 g to 1.0 g, yet more preferably in the range of 0.2 g to 0.9 g, and most preferably in the range of 0.3 g to 0.8 g. In a preferred embodiment, the total weight of the dosage form is within the range of 350±300 mg, more preferably 350±250 mg, still more preferably 350±200 mg, yet more preferably 350±150 mg, most preferably 350±100 mg, and in particular 350±50 mg. In another preferred embodiment, the total weight of the dosage form is within the range of 500±450 mg, more preferably 500±300 mg, still more preferably 500±200 mg, yet more preferably 500±150 mg, most preferably 500±100 mg, and in particular 500±50 mg. In still another preferred embodiment, the total weight of the dosage form is within the range of 600±450 mg, more preferably 600±300 mg, still more preferably 600±200 mg, yet more preferably 600±150 mg, most preferably 600±100 mg, and in particular 600±50 mg.


In a preferred embodiment, the dosage form according to the invention is a filled capsule. Dosage forms of this embodiment preferably have a lengthwise extension (longitudinal extension) of about 4 mm to about 30 mm, more preferably about 6 mm to about 25 mm, most preferably about 8 mm to about 23 mm, and in particular about 10 mm to about 20 mm; and an internal diameter in the range of about 1 mm to about 20 mm, more preferably about 3 mm to about 17 mm, most preferably about 5 mm to about 15 mm, an in particular about 7 mm to about 13 mm.


In another preferred embodiment, the dosage form according to the invention is a round dosage form. Dosage forms of this embodiment preferably have a diameter in the range of about 1 mm to about 30 mm, more preferably about 2 mm to about 25 mm, most preferably about 5 mm to about 23 mm, and in particular about 7 mm to about 13 mm; and a thickness in the range of about 1.0 mm to about 12 mm, more preferably about 2.0 mm to about 10 mm, most preferably about 3.0 mm to about 9.0 mm, and in particular about 4.0 mm to about 8.0 mm.


In still another preferred embodiment, the dosage form according to the invention is an oblong dosage form. Dosage forms of this embodiment preferably have a lengthwise extension (longitudinal extension) of about 1 mm to about 30 mm, more preferably about 2 mm to about 25 mm, most preferably about 5 mm to about 23 mm, and in particular about 7 mm to about 20 mm; a width in the range of about 1 mm to about 30 mm, more preferably about 2 mm to about 25 mm, most preferably about 5 mm to about 23 mm, and in particular about 7 mm to about 13 mm; and a thickness in the range of about 1.0 mm to about 12 mm, more preferably about 2.0 mm to about 10 mm, most preferably about 3.0 mm to about 9.0 mm, and in particular about 4.0 mm to about 8.0 mm.


When the dosage form according to the invention is monolithic, it preferably has an extension in any direction of at least 2.0 mm, more preferably at least 2.5 mm, still more preferably at least 3.0 mm, yet more preferably at least 3.5 mm, even more preferably at least 4.0 mm, most preferably at least 4.5 mm and in particular at least 5.0 mm.


The dosage form or the particles if the dosage form is in a particulate form may optionally comprise a coating, e.g. a cosmetic coating. The coating is preferably applied after formation of the pharmaceutical dosage form. The coating may be applied prior to or after the curing process.


In a preferred embodiment, if the dosage form and the particles, respectively, is/are coated, said coating does not provide any resistance against dose dumping in aqueous ethanol. According to this embodiment, an alkyl cellulose such as ethyl cellulose and/or a heteropolysaccharide such as xanthan gum or guar gum, are preferably not contained in a coating which may be applied to the dosage form and the particles, respectively.


In a preferred embodiment, the dosage form is not coated and/or when the dosage form is particulate, the particles are not coated.


Preferably, the dosage forms according to the invention are film coated with conventional film coating compositions. Suitable coating materials are commercially available, e.g. under the trademarks Opadry® and Eudragit®.


Examples of suitable materials include cellulose esters and cellulose ethers, such as methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), sodium carboxymethylcellulose (Na-CMC), poly(meth)acrylates, such as aminoalkylmethacrylate copolymers, methacrylic acid methylmethacrylate copolymers, methacrylic acid methylmethacrylate copolymers; vinyl polymers, such as polyvinylpyrrolidone, polyvinyl alcohol, polyvinylacetate; and natural film formers.


The coating can be resistant to gastric juices and dissolve as a function of the pH value of the release environment. By means of this coating, it is possible to ensure that the dosage form according to the invention passes through the stomach undissolved and the active compound is only released in the intestines. The coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.


The coating can also be applied e.g. to improve the aesthetic impression and/or the taste of the dosage forms and the ease with which they can be swallowed. Coating the dosage forms according to the invention can also serve other purposes, e.g. improving stability and shelf-life. Suitable coating formulations comprise a film forming polymer such as, for example, polyvinyl alcohol or hydroxypropyl methylcellulose, e.g. hypromellose, a plasticizer such as, for example, a glycol, e.g. propylene glycol or polyethylene glycol, an opacifier, such as, for example, titanium dioxide, and a film smoothener, such as, for example, talc. Suitable coating solvents are water as well as organic solvents. Examples of organic solvents are alcohols, e.g. ethanol or isopropanol, ketones, e.g. acetone, or halogenated hydrocarbons, e.g. methylene chloride. Coated pharmaceutical dosage forms according to the invention are preferably prepared by first making the cores and subsequently coating said cores using conventional techniques, such as coating in a coating pan.


For the purpose of specification, the term “particle” refers to a discrete mass of material that is solid, e.g. at 20° C. or at room temperature or ambient temperature. Preferably a particle is solid at 20° C. Preferably, the particles are monoliths. Preferably, the pharmacologically active ingredient, which is preferably an opioid, the alkyl cellulose, which is preferably ethyl cellulose, and the heteropolysaccharide, which is preferably xanthan gum, are intimately homogeneously distributed in the particles so that the particles do not contain any segments where either pharmacologically active ingredient is present in the absence of the alkyl cellulose and/or the heteropolysaccharide or the alkyl cellulose is present in the absence of the pharmacologically active ingredient and/or the heteropolysaccharide or the heteropolysaccharide is present in the absence of the pharmacologically active ingredient and/or the alkyl cellulose.


When the dosage form is particulate, it preferably comprises a multitude i.e. plurality of particles containing pharmacologically active ingredient (drug-containing particles) and may optionally further comprise particles not containing any pharmacologically active ingredient (drug-free particles). Preferably, if the dosage form is particulate, all particles are drug-containing particles. Preferably, the particles are not film coated.


In a preferred embodiment, the dosage form preferably comprises at least 2, more preferably at least 4, still more preferably at least 6, yet more preferably at least 8, even more preferably at least 10, most preferably at least 15 and in particular at least 20 or at least 100 or at least 1000 drug-containing particles. In another preferred embodiment, the dosage form preferably comprises at most 10, more preferably at most 9, still more preferably at most 8, yet more preferably at most 7, even more preferably at most 6, most preferably at most 5, and in particular at most 4 or 3 or 2 drug-containing particles.


The particles are preferably of macroscopic size, typically the average diameter is within the range of from 100 μm to 5,000 μm, preferably 200 μm to 4,000 μm, more preferably 300 μm to 3,000 μm, still more preferably 400 μm to 2,000 μm, most preferably 500 μm to 1,500 μm, and in particular 500 μm to 1,000 μm. Preferably, the particles in the dosage form have an average particle size of at least 50 μm, more preferably at least 100 μm, still more preferably at least 150 μm or at least 200 μm, yet more preferably at least 250 μm or at least 300 μm, most preferably at least 400 μm or at least 500 μm, and in particular at least 550 μm or at least 600 μm. Preferably, the particles in the dosage form have an average particle size of at least 700 μm, more preferably at least 800 μm and most preferably at least 900 μm.


In a preferred embodiment, the dosage forms according to the invention comprise particles as a discontinuous phase, i.e. the particles form a discontinuous phase in an outer matrix material which in turn preferably forms a continuous phase. In this regard, discontinuous means that not each and every particle is in intimate contact with another particle but that the particles are at least partially separated from one another by the outer matrix material in which the particles are embedded. In other words, the particles preferably do not form a single coherent mass within the dosage forms according to the invention.


Preferably, when the dosage form according to the invention is particulate, the dosage form does not contain an outer matrix material. According to this embodiment, the dosage form preferably is a filled capsule.


Preferably, when the dosage form is particulate, the content of the particles in the dosage forms according to the invention is at most 95 wt.-%, more preferably at most 90 wt.-%, still more preferably at most 85 wt.-%, yet more preferably at most 80 wt.-%, most preferably at most 75 wt.-% and in particular at most 70 wt.-%, based on the total weight of the dosage forms.


Preferably, when the dosage form is particulate, the content of the particles in the dosage forms according to the invention is at least 10 wt.-%, at least 15 wt.-%, at least 20 wt.-% or at least 25 wt.-%; more preferably at least 30 wt.-%, at least 35 wt.-%, at least 40 wt.-% or at least 45 wt.-%; most preferably at least 50 wt.-%, at least 55 wt.-%, at least 60 wt.-% or at least 65 wt.-%; and in particular at least 70 wt.-%, at least 75 wt.-%, at least 80 wt.-% or at least 85 wt.-%; based on the total weight of the dosage form.


When the dosage form is particulate, the shape of the particles is not particularly limited.


In a preferred embodiment, the particles are manufactured by granulation, preferably wet, dry or fluid bed granulation. According to this embodiment, the particles preferably have an irregular shape. When the particles have been prepared by granulation, they preferably have a particle size in the range of from 300 μm to 5 mm, more preferably 400μ to 4 mm, still more preferably 500 μm to 3 mm, yet more preferably 600 μm to 2 mm, most preferably 700μ to 1.5 mm and in particular 850 μm to 1.25 mm. When the dosage form according to the invention is particulate and when the particles are manufactured by granulation, preferably the dosage form is a filled capsule.


In another preferred embodiment, the particles are manufactured by hot-melt extrusion. According to this embodiment, the particles preferably are generally cylindrical in shape. The diameter of such particles is therefore the diameter of their circular cross section. The cylindrical shape is caused by the extrusion process according to which the diameter of the circular cross section is a function of the extrusion die and the length of the cylinders is a function of the cutting length according to which the extruded strand of material is cut into pieces of preferably more or less predetermined length.


Preferred particles manufactured by hot-melt extrusion have an average length and average diameter of about 1,000 μm or less. When the particles are manufactured by extrusion technology, the “length” of particles is the dimension of the particles that is parallel to the direction of extrusion. The minimum average length of the particles is determined by the cutting step and may be, e.g. 4.0 mm, 3.0 mm, 2.0 mm, 2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm or 0.2 mm.


The “diameter” of particles is the largest dimension that is perpendicular to the direction of extrusion. When the particles have been manufactured by hot-melt extrusion, they preferably have an average diameter in the range of 200 to 1500 μm, more preferably 400 to 800 μm, still more preferably 450 to 700 μm, yet more preferably 500 to 650 μm, e.g. about 500 to 600 μm. Preferably, when the particles have been manufactured by hot-melt extrusion, they have an average length in the range of 500 to 5000 μm, more preferably 750 to 4600 μm, still more preferably 1000 to 4200 μm, yet more preferably 1250 to 3800 μm, even more preferably 1500 to 3400 μm, most preferably 1750 to 3200 μm and in particular 2000 to 3000 μm. In another preferred embodiment, particles manufactured by hot-melt extrusion have an average length in the range of 200 to 1000 μm, more preferably 400 to 800 μm, still more preferably 450 to 700 μm, yet more preferably 500 to 650 μm, e.g. about 500 to 600 μm.


The size of particles may be determined by any conventional procedure known in the art, e.g. laser light scattering, sieve analysis, light microscopy or image analysis.


Preferably, when the dosage form is particulate, the plurality of particles that is contained in the dosage form according to the invention has an arithmetic average weight, in the following referred to as “aaw”, wherein at least 70%, more preferably at least 75%, still more preferably at least 80%, yet more preferably at least 85%, most preferably at least 90% and in particular at least 95% of the individual particles contained in said plurality of particles has an individual weight within the range of aaw±30%, more preferably aaw±25%, still more preferably aaw±20%, yet more preferably aaw±15%, most preferably aaw±10%, and in particular aaw±5%. For example, if the dosage form according to the invention contains a plurality of 100 particles and aaw of said plurality of particles is 1.00 mg, at least 75 individual particles (i.e. 75%) have an individual weight within the range of from 0.70 to 1.30 mg (1.00 mg±30%).


In a preferred embodiment, the particles, more preferably the drug-containing particles, each have a weight of less than 20 mg, more preferably less than 18 mg, still more preferably less than 16 mg, yet more preferably less than 14 mg, even more preferably less than 12 mg or less than 10 mg, most preferably less than 8 mg, and in particular less than 6 or 4 mg. According to this embodiment, all individual particles each preferably have a weight of from 1 to 19 mg, more preferably 1.5 to 15 mg, still more preferably 2.0 to 12 mg, yet more preferably 2.2 to 10 mg, even more preferably 2.5 to 8 mg, most preferably 2.8 to 6 mg and in particular 3 to 5 mg.


In another preferred embodiment, the particles, more preferably the drug-containing particles, each have a weight of 20 mg or more. According to this embodiment, all individual particles preferably each have a weight of at least 30 mg, more preferably at least 40 mg, still more preferably at least 50 mg, most preferably at least 60 mg and in particular at least 100 mg. Preferably, all individual particles each have a weight of from 20 to 1000 mg, more preferably 30 to 800 mg, still more preferably 40 to 600 mg, yet more preferably 50 to 400 mg, even more preferably 60 to 200 mg, most preferably 70 to 150 mg and in particular 80 to 120 mg. According to this embodiment, the particles of the dosage form, more preferably the drug-containing particles of the dosage form, preferably each have an extension in any given direction of at least 2.0 mm or 3.0 mm and have a weight of at least 20 mg.


When the dosage form is particulate, the particles may be e.g. loosely contained in a capsule, or the particles may be incorporated into an outer matrix material. From a macroscopic perspective, the outer matrix material preferably forms a continuous phase in which the particles are embedded as discontinuous phase.


Preferably, the outer matrix material is preferably a homogenous coherent mass, preferably a homogeneous mixture of solid constituents, in which the particles are embedded thereby spatially separating the particles from one another. While it is possible that the surfaces of particles are in contact or at least in very close proximity with one another, the plurality of particles preferably cannot be regarded as a single continuous coherent mass within the dosage form.


In other words, when the dosage form is particulate and the particles are contained in an outer matrix material, the dosage form according to the invention preferably comprises the particles as volume element(s) of a first type in which the pharmacologically active ingredient, the alkyl cellulose and the heteropolysaccharide are contained, and the outer matrix material as volume element of a second type differing from the material that forms the particles, preferably containing neither pharmacologically active ingredient, nor alkyl cellulose, nor heteropolysaccharide.


When the dosage form is particulate and the particles are contained in an outer matrix material, the relative weight ratio of particles to outer matrix material is not particularly limited. Preferably, said relative weight ratio is within the range of 1:1.00±0.75, more preferably 1:1.00±0.50, still more preferably 1:1.00±0.40, yet more preferably 1:1.00±0.30, most preferably 1:1.00±0.20, and in particular 1:1.00±0.10.


Preferably, the content of the outer matrix material is at least 2.5 wt.-%, at least 5 wt.-%, at least 10 wt.-%, at least 15 wt.-%, at least 20 wt.-%, at least 25 wt.-%, at least 30 wt.-%, at least 35 wt.-% or at least 40 wt.-%; more preferably at least 45 wt.-% or at least 50 wt.-%; still more preferably at least 55 wt.-% or at least 60 wt.-%; yet more preferably at least 65 wt.-% or at least 70 wt.-%; most preferably at least 75 wt.-% or at least 80 wt.-%; and in particular at least 85 wt.-% or at least 90 wt.-%; based on the total weight of the dosage form.


Preferably, the content of the outer matrix material is at most 90 wt.-% or at most 85 wt.-%; more preferably at most 80 wt.-% or at most 75 wt.-%; still more preferably at most 70 wt.-% or at most 65 wt.-%; yet more preferably at most 60 wt.-% or at most 55 wt.-%; most preferably at most 50 wt.-% or at most 45 wt.-%; and in particular at most 40 wt.-% or at most 35 wt.-%; based on the total weight of the dosage form.


Preferably, the outer matrix material is a mixture, preferably a homogeneous mixture of at least two different constituents, more preferably of at least three different constituents. In a preferred embodiment, all constituents of the outer matrix material are homogeneously distributed in the continuous phase that is formed by the outer matrix material.


Preferably, the outer matrix material is also provided in particulate form, i.e. in the course of the manufacture of the dosage forms according to the invention, the constituents of the outer matrix material are preferably processed into particles, subsequently mixed with the particles that contain the pharmacologically active ingredient, which is preferably an opioid, the alkyl cellulose and the heteropolysaccharide, and then compressed into the dosage forms.


Preferably, the average size of the particles of the outer matrix material is within the range of ±60%, more preferably ±50%, still more preferably ±40%, yet more preferably ±30%, most preferably ±20%, and in particular ±10% of the average size of the particles that contain the pharmacologically active ingredient, which is preferably an opioid, the alkyl cellulose and the heteropolysaccharide.


The particles of the outer matrix material can be manufactured by conventional methods for the preparation of aggregates and agglomerates from powder mixtures such as granulating and compacting.


In a preferred embodiment, the mixture of all constituents of the outer matrix material is blended and pre-compacted thereby yielding a pre-compacted outer matrix material.


The outer matrix material preferably does not contain any pharmacologically active ingredient.


Preferably, the outer matrix material comprises a filler or a binder. As many fillers can be regarded as binders and vice versa, for the purpose of specification “filler/binder” refers to any excipient that is suitable as filler, binder or both. Thus, the outer matrix material preferably comprises a filler/binder.


Preferred fillers (=filler/binders) are selected from the group consisting of silicium dioxide (e.g. Aerosil®), microcrystalline cellulose (e.g. Avicel®, Elcema®, Emocel®, ExCel®, Vitacell®); cellulose ether (e.g. Natrosol®, Klucel®, Methocel®, Blanose®, Pharmacoat®, Viscontran®); mannitol; dextrines; dextrose; calciumhydrogen phosphate (e.g. Emcompress®); maltodextrine (e.g. Emdex®); lactose (e.g. Fast-Flow Lactose®; Ludipress®, Pharmaceutical dosage Formtose®, Zeparox®); polyvinylpyrrolidone (PVP) (e.g. Kollidone®, Polyplasdone®, Polydone); saccharose (e.g. Nu-Tab®, Sugar Tab®); magnesium salts (e.g. MgCO3, MgO, MgSiO3); starches and pretreated starches (e.g. Prejel®, Primotab® ET, Starch® 1500). Preferred binders are selected from the group consisting of alginates; chitosanes; and any of the fillers mentioned above (=fillers/binders).


Some fillers/binders may also serve other purposes. It is known, for example, that silicium dioxide exhibits excellent function as a glidant. Thus, preferably, the outer matrix material comprises a glidant such as silicium dioxide.


In a preferred embodiment, the content of the filler/binder or mixture of fillers/binders in the outer matrix material is within the range of from 1 to 99 wt.-%, more preferably 25 to 90 wt.-%, based on the total weight of outer matrix material.


Preferably, the filler/binder is contained in the outer matrix material but not in the drug-containing particles of the dosage form according to the invention.


Preferably, the outer matrix material comprises a diluent or lubricant, preferably selected from the group consisting of calcium stearate; magnesium stearate; glycerol monobehenate (e.g. Compritol®); Myvatex®; Precirol®; Precirol® Ato5; sodium stearylfumarate (e.g. Pruv®); and talcum. Magnesium stearate is particularly preferred. Preferably, the content of the lubricant in the outer matrix material is at most 10.0 wt.-%, more preferably at most 7.5 wt.-%, still more preferably at most 5.0 wt.-%, yet more preferably at most 2.0 wt.-%, even more preferably at most 1.0 wt.-%, and most preferably at most 0.5 wt.-%, based on the total weight of the outer matrix material and based on the total weight of the dosage form.


In particularly preferred embodiment, the outer matrix material comprises a combination of filler/binder and lubricant.


The outer matrix material of the dosage forms according to the invention may additionally contain other excipients that are conventional in the art, e.g. diluents, binders, granulating aids, colorants, flavor additives, glidants, wet-regulating agents and disintegrants. The skilled person will readily be able to determine appropriate quantities of each of these excipients.


In the dosage form according to the invention, the pharmacologically active ingredient, preferably an opioid, is embedded in the matrix material, preferably dispersed in the matrix material.


For the purpose of specification, the term “matrix” preferably refers to the matrix material comprising the embedded pharmacologically active ingredient and the term “matrix material” refers to a preferably homogeneous, intimate mixture of the alkyl cellulose, the heteropolysaccharide and optionally present excipients.


In a preferred embodiment, the pharmacologically active ingredient, more preferably the opioid is embedded in a matrix material consisting of an alkyl cellulose, a heteropolysaccharide and optional excipients approved for oral use according to the Ph. Eur. and the USP, respectively.


Preferably, the matrix comprising the alkyl cellulose and the heteropolysaccharide provides resistance against dose dumping in aqueous ethanol.


Preferably, the dosage form provides prolonged release of the pharmacologically active ingredient. Particularly preferably, the matrix comprising the alkyl cellulose and the heteropolysaccharide provides prolonged release of the pharmacologically active ingredient embedded therein.


In a preferred embodiment, the matrix provides resistance against dose dumping in aqueous ethanol and/or the matrix provides prolonged release of the pharmacologically active ingredient, preferably the opioid.


When the dosage form according to the invention is particulate, e.g. in form of granules or pellets, the particles preferably comprise the matrix material and at least a portion of the total amount of the pharmacologically active ingredient that is contained in the pharmaceutical dosage form. Preferably, the particles comprise the total amount of the pharmacologically active ingredient that is contained in the dosage form. Preferably, the pharmacologically active ingredient, the alkyl cellulose and the heteropolysaccharide are intimately homogeneously distributed within the particles so that the particles do not contain any segments where either pharmacologically active ingredient is present in the absence of the alkyl cellulose and/or the heteropolysaccharide or the alkyl cellulose is present in the absence of the pharmacologically active ingredient and/or the heteropolysaccharide or the heteropolysaccharide is present in the absence of the pharmacologically active ingredient and/or the alkyl cellulose.


When the dosage form according to the invention can be regarded as a MUPS formulation which preferably comprises drug-containing particles and an outer matrix material, the outer matrix material is not a constituent of the matrix material and, thus, is to be distinguished from the matrix material of the dosage form according to the invention.


When the dosage form according to the invention is monolithic, the matrix material in which the pharmacologically active ingredient, preferably the opioid is embedded preferably forms the body of the dosage form. Preferably, the pharmacologically active ingredient, the alkyl cellulose and the heteropolysaccharide are intimately homogeneously distributed within the monolithic dosage form so that the monolithic dosage form does not contain any segments where either pharmacologically active ingredient is present in the absence of the alkyl cellulose and/or the heteropolysaccharide or the alkyl cellulose is present in the absence of the pharmacologically active ingredient and/or the heteropolysaccharide or the heteropolysaccharide is present in the absence of the pharmacologically active ingredient and/or the alkyl cellulose.


In a preferred embodiment, the relative weight ratio of the pharmacologically active ingredient, preferably the opioid to the matrix material is in the range of from 1:1 to 1:50, more preferably 1:1.5 to 1:45, still more preferably 1:2 to 1:40, even more preferably 1:2.5 to 1:35, yet more preferably 1:3 to 1:30, most preferably 1:3.5 to 1:25, and in particular 1:4 to 1:20.


Preferably, the total content of the matrix material is at least 35 wt.-%, more preferably at least 40 wt.-%, still more preferably at least 45 wt.-%, even more preferably at least 50 wt.-%, yet more preferably at least 55 wt.-%, most preferably at least 60 wt.-%, and in particular at least 65 wt.-%, relative to the total weight of the dosage form.


Preferably, the total content of the matrix material is at most 95 wt.-%, more preferably at most 90 wt.-%, still more preferably at most 85 wt.-%, most preferably at most 80 wt.-%, and in particular at most 75 wt.-%, relative to the total weight of the dosage form.


Preferably, the total content of the matrix material is within the range of from 35 to 95 wt.-%, more preferably 45 to 85 wt.-%, most preferably 55 to 80 wt.-%, and in particular 65 to 75 wt.-%, relative to the total weight of the dosage form.


Preferably, the total content of alkyl cellulose and heteropolysaccharide is at least 50 wt.-%, more preferably at least 60 wt.-%, still more preferably at least 70 wt.-%, even more preferably at least 80 wt.-%, yet more preferably at least 90 wt.-%, most preferably at least 95 wt.-%, and in particular at least 99.999 wt.-%, relative to the total weight of the matrix material.


Preferably, the total content of alkyl cellulose and heteropolysaccharide is at most 99.999 wt.-%, more preferably at most 99 wt.-%, still more preferably at most 97 wt.-%, most preferably at most 95 wt.-%, and in particular at most 93 wt.-%, relative to the total weight of the matrix material.


Preferably, the total content of alkyl cellulose and heteropolysaccharide is within the range of from 50 to 99.999 wt.-%, more preferably 60 to 99.999 wt.-%, still more preferably 70 to 99.999 wt.-%, most preferably 80 to 99.999 wt.-%, and in particular 90 to 99.999 wt.-%, relative to the total weight of the matrix material.


The total content of alkyl cellulose and heteropolysaccharide is at least 35 wt.-%, preferably at least 40 wt.-% or at least 45 wt.-% or at least 50 wt.-%, more preferably at least 55 wt.-%, still more preferably at least 65 wt.-%, even more preferably at least 70 wt.-%, yet more preferably at least 75 wt.-%, most preferably at least 80 wt.-%, and in particular at least 85 wt.-%, relative to the total weight of the dosage form.


Preferably, the total content of alkyl cellulose and heteropolysaccharide is at most 99 wt.-%, more preferably at most 97 wt.-%, still more preferably at most 95 wt.-%, even more preferably at most 93 wt.-%, most preferably at most 91 wt.-%, and in particular at most 90 wt.-%, relative to the total weight of the dosage form.


Preferably, the total content of alkyl cellulose and heteropolysaccharide is within the range of from 35 to 99 wt.-%, more preferably 45 to 97 wt.-%, still more preferably 55 to 95 wt.-%, even more preferably 65 to 93 wt.-%, most preferably 75 to 91 wt.-%, and in particular 85 to 90 wt.-%, relative to the total weight of the dosage form.


The relative weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:20 to 20:1, preferably 1:19 to 15 to:1, more preferably 1:18 to 10:1, still more preferably 1:18 to 7:1 or 1:14 to 7:1, even more preferably 1:18 to 4:1 or 1:12 to 4:1, yet more preferably 1:18 to 2:1 or 1:11 to 2:1, most preferably 1:18 to 1:1 or 1:10 to 1:1, and in particular 1:18 to 1:4 or 1:8 to 1:4.


In a preferred embodiment, the relative weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:18 to 2:1.


In another preferred embodiment, the content of the alkyl cellulose in the dosage form is higher than the content of the heteropolysaccharide in the dosage form.


The dosage form comprises a matrix material which in turn comprises an alkyl cellulose. In a preferred embodiment, the dosage form and the matrix material, respectively, contains only one alkyl cellulose. In another preferred embodiment, the dosage form and the matrix material, respectively, contains a mixture of two or more alkyl celluloses.


For the purpose of specification, the term “alkyl cellulose” (=cellulose ether) is supposed to relate to celluloses wherein some or all of the hydroxyl groups have been transformed to alkyl ether groups, wherein the alkyl moiety preferably is unsubstituted.


Preferred alkyl celluloses are selected from C1-6-alkyl celluloses, more preferably unsubstituted C1-6-alkyl celluloses, i.e. C1-6-alkyl celluloses wherein the C1-6-alkyl moiety is not substituted.


Preferably, the alkyl cellulose has a solution viscosity within the range of from 1 mPa·s to 150 mPa·s, more preferably 1 mPa·s to 7 mPa·s, or 5 mPa·s to 10 mPa·s, or 7 mPa·s to 13 mPa·s, or 15 mPa·s to 25 mPa·s, or 38 mPa·s to 52 mPa·s, or 60 mPa·s to 140 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter. In a particularly preferred embodiment, the alkyl cellulose has a solution viscosity within the range of from 70 mPa·s to 130 mPa·s, more preferably 80 mPa·s to 120 mPa·s and most preferably 90 mPa·s to 110 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter.


Preferably, the alkyl cellulose has an alkoxyl content of from 10 wt.-% to 80 wt.-%, more preferably 20 wt.-% to 70 wt.-%, still more preferably 22 wt.-% to 40 wt.-% or 40 wt.-% to 60 wt.-%, most preferably 24 wt.-% to 35 wt.-% or 44 wt.-% to 51 wt.-%, and in particular 26 wt.-% to 33 wt.-% or 48 wt.-% to 49.5 wt.-%.


In a preferred embodiment, the alkyl cellulose is selected from the group consisting of ethyl cellulose, hydroxyethyl cellulose, ethylmethyl cellulose, hydroxyethyl methyl cellulose, ethylhydroxy ethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, and carboxymethyl hydroxyethyl cellulose.


Preferred alkyl celluloses are ethyl cellulose, methyl cellulose and ethylmethyl cellulose. In a particularly preferred embodiment, the alkyl cellulose is ethyl cellulose.


Preferably, the alkyl cellulose is ethyl cellulose having an ethoxyl content of from 40 wt.-% to 60 wt.-%, more preferably 44 wt.-% to 51 wt.-%, most preferably 48 wt.-% to 49.5 wt.-%.


In a preferred embodiment, the alkyl cellulose is ethyl cellulose having a solution viscosity within the range of from 70 mPa·s to 130 mPa·s, more preferably 80 mPa·s to 120 mPa·s and most preferably 90 mPa·s to 110 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter.


Particularly preferably, the alkyl cellulose is ethyl cellulose, having

    • an ethoxyl content of from 40 wt.-% to 60 wt.-%; and/or
    • a solution viscosity within the range of from 70 mPa·s to 130 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter.


Preferred commercially available alkyl celluloses include ETHOCEL Polymers, in particular ETHOCEL Standard 100 Premium, ETHOCEL Standard 4 Premium, ETHOCEL Standard 7 Premium, ETHOCEL Standard 10 Premium, ETHOCEL Standard 20 Premium and ETHOCEL Standard 45 Premium.


The content of the alkyl cellulose in the matrix material is preferably at least 20 wt.-%, more preferably at least 30 wt.-%, still more preferably at least 40 wt.-%, even more preferably at least 50 wt.-%, yet more preferably at least 60 wt.-%, most preferably at least 70 wt.-%, and in particular at least 71 wt.-%, relative to the total weight of the matrix material.


The content of the alkyl cellulose in the matrix material is preferably at most 95 wt.-%, more preferably at most 94 wt.-%, still more preferably at most 93 wt.-%, even more preferably at most 92 wt.-%, most preferably at most 91 wt.-%, and in particular at most 90 wt.-%, relative to the total weight of the matrix material.


Preferably, the content of the alkyl cellulose in the matrix material is in the range of from 20 to 95 wt.-%, more preferably 30 to 94 wt.-%, still more preferably 40 to 93 wt.-%, even more preferably 50 to 92 wt.-%, most preferably 60 to 91 wt.-%, and in particular 70 to 90 wt.-% or 75 to 90 wt.-%, relative to the total weight of the matrix material.


In a preferred embodiment, the content of the alkyl cellulose is at least 10 wt.-%, more preferably at least 20 wt.-%, most preferably at least 30 wt.-%, and in particular at least 40 wt.-%, relative to the total weight of the dosage form. In another preferred embodiment, the content of the alkyl cellulose is at least 45 wt.-%, more preferably at least 50 wt.-%, still more preferably at least 55 wt.-%, most preferably at least 60 wt.-%, and in particular at least 63 wt.-%, relative to the total weight of the dosage form.


In a preferred embodiment, the content of the alkyl cellulose is at most 95 wt.-%, more preferably at most 93 wt.-%, still more preferably at most 91 wt.-%, even more preferably at most 89 wt.-%, most preferably at most 87 wt.-%, and in particular at most 86 wt.-%, relative to the total weight of the dosage form.


Preferably, the content of the alkyl cellulose is within the range of from 10 to 95 wt.-%, more preferably 25 to 93 wt.-%, still more preferably 35 to 91 wt.-%, even more preferably 45 to 89 wt.-%, most preferably 55 to 87 wt.-%, and in particular 63 to 86 wt.-%, relative to the total weight of the dosage form.


In a preferred embodiment, the alkyl cellulose is ethyl cellulose which content is within the range of from 63 to 86 wt.-%, relative to the total weight of the dosage form.


The amount of the alkyl cellulose which is contained in the dosage form is within the range of from 50 to 600 mg, more preferably 100 to 575 mg, still more preferably 150 to 550 mg, yet more preferably 200 to 525 mg, even more preferably 250 to 500 mg, most preferably 270 to 475 mg, and in particular 290 to 450 mg.


Preferably, the relative weight ratio of the pharmacologically active ingredient, preferably the opioid to the alkyl cellulose is in the range of from 1:30 to 10:1, more preferably 1:25 to 7:1, still more preferably 1:22 to 4:1, yet more preferably 1:20 to 1:1, most preferably 1:18 to 1:3, and in particular 1:17 to 1:5.


The dosage form according to the invention contains a matrix material comprising a heteropolysaccharide. In a preferred embodiment, the dosage form and the matrix material, respectively, contains only one heteropolysaccharide. In another preferred embodiment, the dosage form and the matrix material, respectively, contains a mixture of two or more heteropolysaccharides.


Heteropolysaccharides are polysaccharides which are based on two or more different monosaccharides.


The heteropolysaccharide may be acidic or neutral. For the purpose of specification, the term “acidic heteropolysaccharide” also includes any derivative of acidic heteropolysaccharides, such as e.g. salts, esters and amides.


In a preferred embodiment, the heteropolysaccharide is acidic and preferably selected from the group consisting of xanthan gum, agar, alginic acid, sodium alginate, propylene glycol alginate, gum arabic, λ-carrageenan, κ-carrageenan, τ-carrageenan, fucoidan, fucogalactan (GFS), gellan gum, gum ghatti, gum karaya, pectin, psyllium seed gum, gum tragacanth, welan gum, their corresponding salts and mixtures thereof.


In another preferred embodiment, the heteropolysaccharide is neutral and preferably selected from the group consisting of chitin, chitosan, curdlan, dextran, guar gum, inulin, ivory nut mannan, konjac glucomannan, laminaran, larch arabinogalactan, locust bean gum, pullulan, scleroglucan, tamarind gum, tara gum, their derivatives and mixtures thereof.


Preferably, the heteropolysaccharide is selected from the group consisting of xanthan gum, guar gum, alginic acid, sodium alginate, carrageenans, locust bean gum, and mixtures thereof.


In a preferred embodiment, the heteropolysaccharide is xanthan gum or guar gum. Particularly preferably, the heteropolysaccharide is xanthan gum.


Preferred commercially available heteropolysaccharides include Xanthan Gum Type 602.


Preferably, the dosage form contains a singly type of a heteropolysaccharide, preferably only xanthan gum, but no additional heteropolysaccharide. Preferably, the dosage form does not comprise a combination of xanthan gum and locust bean gum.


In a particularly preferred embodiment,

    • the alkyl cellulose is ethyl cellulose; and/or
    • the heteropolysaccharide is xanthan gum.


The content of the heteropolysaccharide in the matrix material is preferably at least 1 wt.-%, more preferably at least 3 wt.-%, still more preferably at least 5 wt.-%, even more preferably at least 7 wt.-%, yet more preferably at least 9 wt.-%, most preferably at least 10 wt.-%, and in particular at least 11 wt.-%, relative to the total weight of the matrix material. In another preferred embodiment, the content of the heteropolysaccharide in the matrix material is preferably at least 11 wt.-%, more preferably at least 13 wt.-%, still more preferably at least 15 wt.-%, even more preferably at least 17 wt.-%, yet more preferably at least 19 wt.-%, most preferably at least 21 wt.-%, and in particular at least 23 wt.-% or at least 25 wt.-%, relative to the total weight of the matrix material.


The content of the heteropolysaccharide in the matrix material is preferably at most 90 wt.-%, more preferably at most 80 wt.-%, still more preferably at most 70 wt.-%, even more preferably at most 60 wt.-%, yet more preferably at most 50 wt.-%, most preferably at most 40 wt.-%, and in particular at most 30 wt.-% or at most 29 wt.-%, relative to the total weight of the matrix material.


Preferably, the content of the heteropolysaccharide in the matrix material is in the range of from 1 to 90 wt.-%, more preferably 3 to 80 wt.-%, still more preferably 5 to 70 wt.-%, even more preferably 7 to 60 wt.-%, yet more preferably 8 to 50 wt.-%, most preferably 9 to 40 wt.-%, and in particular 10 to 30 wt.-% or 11 to 29 wt.-%, relative to the total weight of the matrix material.


In a preferred embodiment, the content of the heteropolysaccharide is below 80 wt.-%, more preferably below 70 wt.-%, still more preferably below 65 wt.-%, most preferably below 55 wt.-%, and in particular below 50 wt.-%, relative to the total weight of the pharmaceutical dosage form. In another preferred embodiment, the content of the heteropolysaccharide is below 45 wt.-%, more preferably below 40 wt.-%, still more preferably below 35 wt.-%, most preferably below 30 wt.-%, and in particular below 28 wt.-%, relative to the total weight of the dosage form.


In a preferred embodiment, the content of the heteropolysaccharide is above 1 wt.-%, more preferably above 3 wt.-%, still more preferably above 5 wt.-%, most preferably above 7 wt.-% or above 10 wt.-%, and in particular above 9 wt.-% or above 15 wt.-% or above 20 wt.-%, relative to the total weight of the dosage form.


Preferably, the content of the heteropolysaccharide is within the range of from 2 to 80 wt.-%, more preferably 3 to 70 wt.-%, still more preferably 4 to 60 wt.-%, yet more preferably 5 to 50 wt.-%, even more preferably 6 to 40 wt.-%, most preferably 7 to 30 wt.-%, and in particular 8 to 28 wt.-%, relative to the total weight of the dosage form.


In a preferred embodiment, the heteropolysaccharide is xanthan gum which content is within the range of from 8 to 28 wt.-%, relative to the total weight of the dosage form.


The amount of the heteropolysaccharide which is contained in the dosage form is within the range of from 5 to 300 mg, more preferably 15 to 250 mg, still more preferably 20 to 200 mg, yet more preferably 25 to 180 mg, even more preferably 30 to 160 mg, most preferably 35 to 140 mg, and in particular 40 to 130 mg.


Preferably, the relative weight ratio of the pharmacologically active ingredient, preferably the opioid to the heteropolysaccharide is in the range of from 1:10 to 10:1, more preferably 1:9 to 9:1, still more preferably 1:7 to 7:1, yet more preferably 1:5 to 5:1, most preferably 1:3 to 3:1, and in particular 1:2.5 to 2.5:1.


In a preferred embodiment, the dosage form contains only one pharmacologically active ingredient, preferably one opioid. In another preferred embodiment, the dosage form contains a combination of two or more pharmacologically active ingredients.


In a preferred embodiment, the pharmacologically active ingredient is soluble in water.


Preferably, the pharmacologically active ingredient is selected from ATC class [N], more preferably [N02] according to the WHO.


Particularly preferably, the pharmacologically active ingredient is an opioid. For the purpose of specification, the term “opioid” shall refer to any opioid as well as any physiologically acceptable salt thereof. Thus, preferably, the dosage form comprises an opioid or a physiologically acceptable salt thereof.


Opioids are active ingredients with potential for being abused and potential for dose dumping in ethanol.


According to the ATC index, opioids are divided into natural opium alkaloids, phenylpiperidine derivatives, diphenylpropylamine derivatives, benzomorphan derivatives, oripavine derivatives, morphinan derivatives and others. In a preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of morphine, hydromorphone, nicomorphine, oxycodone, oxymorphone, dihydrocodeine, ketobemidone, pethidine, fenantyl, dextromoramide, piritramide, dextropropoxyphene, bezitramide, pentazocine, phenazocine, buprenorphine, butorphanol, nalbuphine, tilidine, tramadol, dezocine, meptazinol, tapentadol, and the physiologically acceptable salts thereof.


In another preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of tramadol, tapentadol, faxeladol and axomadol.


In a particularly preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of oxycodone, oxymorphone, hydrocodone, hydromorphone, tramadol, tapentadol, morphine, buprenorphine and the physiologically acceptable salts thereof.


In yet another preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of 1,1-(3-dimethylamino-3-phenylpentamethylene)-6-fluoro-1,3,4,9-tetrahydropyrano[3,4-b]indole, particularly its hemicitrate; 1,1-[3-dimethylamino-3-(2-thienyl)pentamethylene]-1,3,4,9-tetrahydropyrano[3,4-b]indole, particularly its citrate; and 1,1-[3-dimethylamino-3-(2-thienyl)pentamethylene]-1,3,4,9-tetrahydropyrano[3,4-b]-6-fluoroindole, particularly its hemicitrate. These compounds are known from, e.g., WO 2004/043967, WO 2005/066183.


Preferably, the pharmacologically active ingredient is selected from the following compounds: alfentanil, allylprodine, alphaprodine, apocodeine, axomadol, bemidone, benzylmorphine, bezitramide, buprenorphine, butorphanol, carfentanil, clonitazene, cocaine, codeine, cyclorphan, cyprenorphine, desomorphine, dextromoramide, dextropropoxyphene, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dihydromorphone, dimenoxadol, dimephetamol, dimethylthiambutene, dioxaphetylbutyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, etorphine, faxeladol, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, hydroxymethylmorphinan, ketobemidone, levacetylmethadol (LAAM), levomethadone, levorphanol, levophenacylmorphane, lofentanil, meperidine, metapon, meptazinol, metazocine, methylmorphine, methadone, 3-methylfentanyl, 4-methylfentanyl, metopon, morphine, myrophine, nalbuphine, nalorphine, narceine, nicomorphine, norlevorphanol, normethadone, normorphine, norpipanone, opium, oxyco done, oxymorphone, Papaver somniferum, papaveretum, pentazocine, pethidine, phenadoxone, phenomorphane, phenazocine, pheno-peridine, piminodine, pholcodeine, piritramide, profadol, proheptazine, promedol, properidine, propoxyphene, remifentanil, sufentanil, tapentadol, tilidine (cis and trans), tramadol, N-(1-methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamide, (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(p-fluorobenzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R,2R)-3-(2-dimethylaminomethyl-cyclohexyl)phenol, (1S,2S)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3(3-methoxyphenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxyphenyl)-cyclohexane-1,3-diol, preferably as racemate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclo-hexyl)phenyl 2-(4-isobutyl-phenyl)propionate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclo-hexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(4-isobutyl-phenyl)propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6-methoxy-naphthalen-2-yl)propionate, (RR-SS)-2-acetoxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-4-chloro-2-hydroxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methoxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-5-nitro-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2′,4′-difluoro-3-hydroxy-biphenyl-4-carboxylic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, and corresponding stereoisomeric compounds, in each case the corresponding derivatives thereof, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, e.g. ethers, esters or amides, and in each case the physiologically acceptable compounds thereof, in particular the acid or base addition salts thereof and solvates, e.g. hydrochlorides.


In another preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of DPI-125, M6G (CE-04-410), ADL-5859, CR-665, NRP290 and sebacoyl dinalbuphine ester.


In another preferred embodiment, the pharmacologically active ingredient is selected from the group consisting of rabeprazole, fentanyl, risedronate, nifedipine, amphetamine salts, everolimus, alprazolam, lovastatin, zolpidem, dalfampridine, cyclobenzaprine, bupropion, mesalamine, tipranavir, donepezil, diclofenac, aspirin, sulfasalazine, morphine, dutasteride, clarithromycin, praziquantel, bisacodyl, ibandronate, verapamil, nicardipine, diltiazem, doxazosin, cefuroxime, mycophenolate, activated charcoal, ciprofloxacin, docusate, colestipol, methylphenidate, nicotine, carvedilol, pancrelipase, indinavir, duloxetine, cyclophosphamide, ganciclovir, divalproex, tolterodine, dexlansoprazole, doxylamine, pyridoxine, diltiazem, isosorbide, oxybutynin, ergocalciferol, hydroxyurea, isradipine, erythromycin, potassium bicarbonate, venlafaxine, morphine sulfate, darifenacin, budesonide, ergotamine, vismodegib, raloxifene, hydromorphone, deferasirox, piroxicam, fentanyl, ferrous sulfate, ferrous gluconate, metronidazole, tamsulosin, dexmethylphenidate, metformin, alendronate, imatinib, glipizide, gabapentin, propranolol, indomethacin, etravirine, zolpidem, guanfacine, paliperidone, isotretinoin, ruxolitinib, dutasteride, tamsulosin, sitagliptin, lopinavir, ritoavir, dexlansoprazole, clonidine, alogliptin, levetiracetam, telithromycin, desvenlafaxine, potassium salt, lamotrigine, fluvastatin, ambrisentan, hyoscyamine, lithium salt, brompheniramine, fluvoxamine, pyridostigmine, potassium chloride, pramipexole, amoxicillin, ibuprofen, guiafenesin, mycophenolate, mirabegron, memantine, naproxen, esomeprazole, nicotinic acid, nifedipine, nitroglycerin, orphenadrine, disopyramide, ritonavir, posaconazole, tapentadone, trazodone, doxycycline, oxycodone, pancrealipase, paroxetine, dabigatran, felodipide, lansoprazole, omeprazole, finasteride, ciprofloxicin, pantoprazole, fluoxetine, renolazine, sirolimus, prednisone, galantamine, sevelamer, sevelamer carbonate, ropinirole, lenalidomide, propafenone, tramadol, cinacalcet, quetiapine, levodopa, carbidopa, minocycline, chloral hydrate, dasatinib, atomoxetine, nisoldipine, hyoscyamine, nilotinib, diltiazem, dimethyl fumarate, carbamazepine, temozolomide, benzonatate, theophylline, topiramate, metoprolol, fesoterodine, bosentan, pentoxifylline, fenofibric, acetaminophen, budesonide, potassium citrate, alfuzosin, valganciclovir, didanosine, naproxen, esomeprazole, nevirapine, albuterol, pazopanib, rivaroxaban, omeprazole/NaHCO3, hydrocodone, vorinostat, everolimus, zileuton, and corresponding stereoisomeric compounds, in each case the corresponding derivatives thereof, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, e.g. ethers, esters or amides, and in each case the physiologically acceptable compounds thereof, in particular the acid or base addition salts thereof and solvates, e.g. hydrochlorides.


The pharmacologically active ingredient, preferably the opioid may be present in form of a physiologically acceptable salt, e.g. physiologically acceptable acid addition salt.


Physiologically acceptable acid addition salts comprise the acid addition salt forms which can conveniently be obtained by treating the base form of the pharmacologically active ingredient, preferably the opioid with appropriate organic and inorganic acids. Pharmacologically active ingredients, preferably opioids containing an acidic proton may be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. The term addition salt also comprises the hydrates and solvent addition forms which the active ingredients are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.


It has been surprisingly found that the content of the pharmacologically active ingredient, preferably the opioid in the dosage form and in the particles, respectively, can be optimized in order to provide the best compromise between tamper-resistance, disintegration time and drug release, drug load, processability (especially pharmaceutical dosage formability) and patient compliance.


The pharmacologically active ingredient, preferably the opioid is present in the dosage form in a therapeutically effective amount. The amount that constitutes a therapeutically effective amount varies according to the pharmacologically active ingredients being used, the condition being treated, the severity of said condition, the patient being treated, and the frequency of administration.


The content of the pharmacologically active ingredient in the dosage form is not limited. The dose of the pharmacologically active ingredient, preferably the opioid which is adapted for administration preferably is in the range of 0.1 mg to 500 mg, more preferably in the range of 1.0 mg to 400 mg, even more preferably in the range of 5.0 mg to 300 mg, and most preferably in the range of 10 mg to 250 mg. In a preferred embodiment, the total amount of the pharmacologically active ingredient, preferably the opioid that is contained in the dosage form is within the range of from 0.01 to 200 mg, more preferably 0.1 to 190 mg, still more preferably 1.0 to 180 mg, yet more preferably 1.5 to 160 mg, most preferably 2.0 to 100 mg and in particular 2.5 to 80 mg.


Preferably, the content of the pharmacologically active ingredient, preferably the opioid is within the range of from 0.01 to 80 wt.-%, more preferably 0.1 to 50 wt.-%, still more preferably 1 to 35 wt.-%, based on the total weight of the dosage form.


In a preferred embodiment, the content of the pharmacologically active ingredient, preferably the opioid is within the range of from 5.0±4.5 wt.-%, or 10±9.0 wt.-%, or 15±14 wt.-%, or 20±19 wt.-%, or 25±24 wt.-%; more preferably 5.0±4.0 wt.-%, or 10±8.0 wt.-%, or 15±12 wt.-%, or 20±19 wt.-%, or 25±24 wt.-%; still more preferably 5.0±3.5 wt.-%, or 10±7.0 wt.-%, or 15±10 wt.-%, or 20±17 wt.-%, or 25±21 wt.-%; yet more preferably 5.0±3.0 wt.-%, or 10±6.0 wt.-%, or 15±8.0 wt.-%, or 20±15 wt.-%, or 25±18 wt.-%; even more preferably 5.0±2.5 wt.-%, or 10±5.0 wt.-%, or 15±6.0 wt.-%, or 20±13 wt.-%, or 25±15 wt.-%; most preferably 5.0±2.0 wt.-%, or 10±4.0 wt.-%, or 15±4.0 wt.-%, or 20±11 wt.-%, or 25±12 wt.-%; and in particular 5.0±1.5 wt.-%, or 10±3.0 wt.-%, or 15±2.0 wt.-%, or 20±9 wt.-%, or 25±9 wt.-%; in each case either based on the total weight of the dosage form or, when the dosage form is particulate, based on the total weight of the particles that contain the pharmacologically active ingredient.


In another preferred embodiment, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 5±4 wt.-%, more preferably 5±3 wt.-%, still more preferably 5±2 wt.-%, most preferably 5±1 wt.-%, and in particular 5±0.5 wt.-%, either based on the total weight of the dosage form or, when the dosage form is particulate, based on the total weight of the particles that contain the pharmacologically active ingredient. In still another preferred embodiment, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 10±9 wt.-%, more preferably 10±7 wt.-%, still more preferably 10±5 wt.-%, yet more preferably 10±3 wt.-%, most preferably 10±1 wt.-%, and in particular 10±0.5 wt.-%, either based on the total weight of the dosage form or, when the dosage form is particulate, based on the total weight of the particles that contain the pharmacologically active ingredient. In yet another preferred embodiment, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 15±14 wt.-%, more preferably 15±11 wt.-%, still more preferably 15±8 wt.-%, yet more preferably 15±5 wt.-%, most preferably 15±2 wt.-%, and in particular 15±0.5 wt.-%, either based on the total weight of the dosage form or, when the dosage form is particulate, based on the total weight of the particles that contain the pharmacologically active ingredient.


The skilled person may readily determine an appropriate amount of pharmacologically active ingredient, preferably opioid to include in a dosage form. For instance, in the case of analgesics, the total amount of pharmacologically active ingredient, preferably opioid present in the dosage form is that sufficient to provide analgesia. The total amount of pharmacologically active ingredient, preferably opioid administered to a patient in a dose will vary depending on numerous factors including the nature of the pharmacologically active ingredient, the weight of the patient, the severity of the pain, the nature of other therapeutic agents being administered etc.


In a preferred embodiment, the pharmacologically active ingredient, preferably the opioid is contained in the dosage form in an amount of 7.5±5 mg, 10±5 mg, 15±5 mg, 20±5 mg, 25±5 mg, 30±5 mg, 35±5 mg, 40±5 mg, 45±5 mg, 50±5 mg, 55±5 mg, 60±5 mg, 65±5 mg, 70±5 mg, 75±5 mg, 80±5 mg, 85±5 mg, 90±5 mg, 95±5 mg, 100±5 mg, 110±5 mg, 120±5 mg, 130±5, 140±5 mg, 150±5 mg, 160±5 mg, 170±5 mg, 180±5 mg, 190±5 mg, 200±5 mg, 210±5 mg, 220±5 mg, 230±5 mg, 240±5 mg, 250±5 mg, 260±5 mg, 270±5 mg, 280±5 mg, 290±5 mg, or 300±5 mg. In another preferred embodiment, the pharmacologically active ingredient, preferably the opioid is contained in the dosage form in an amount of 5±2.5 mg, 7.5±2.5 mg, 10±2.5 mg, 15±2.5 mg, 20±2.5 mg, 25±2.5 mg, 30±2.5 mg, 35±2.5 mg, 40±2.5 mg, 45±2.5 mg, 50±2.5 mg, 55±2.5 mg, 60±2.5 mg, 65±2.5 mg, 70±2.5 mg, 75±2.5 mg, 80±2.5 mg, 85±2.5 mg, 90±2.5 mg, 95±2.5 mg, 100±2.5 mg, 105±2.5 mg, 110±2.5 mg, 115±2.5 mg, 120±2.5 mg, 125±2.5 mg, 130±2.5 mg, 135±2.5 mg, 140±2.5 mg, 145±2.5 mg, 150±2.5 mg, 155±2.5 mg, 160±2.5 mg, 165±2.5 mg, 170±2.5 mg, 175±2.5 mg, 180±2.5 mg, 185±2.5 mg, 190±2.5 mg, 195±2.5 mg, 200±2.5 mg, 205±2.5 mg, 210±2.5 mg, 215±2.5 mg, 220±2.5 mg, 225±2.5 mg, 230±2.5 mg, 235±2.5 mg, 240±2.5 mg, 245±2.5 mg, 250±2.5 mg, 255±2.5 mg, 260±2.5 mg, or 265±2.5 mg.


In a particularly preferred embodiment, the pharmacologically active ingredient is tramadol, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 300 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is tramadol, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 10 to 500 mg.


In another particularly preferred embodiment, the pharmacologically active ingredient is oxycodone, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 1 to 80 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is oxycodone, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 2 to 320 mg.


In still another particularly preferred embodiment, the pharmacologically active ingredient is oxymorphone, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 40 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is oxymorphone, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 10 to 80 mg.


In yet another particularly preferred embodiment, the pharmacologically active ingredient is tapentadol, preferably its HCl salt, and the dosage form is adapted for administration once daily or twice daily. In this embodiment, pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 25 to 250 mg.


In a further particularly preferred embodiment, the pharmacologically active ingredient is hydromorphone, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 2 to 52 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is hydromorphone, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 4 to 104 mg.


In still a further particularly preferred embodiment, the pharmacologically active ingredient is hydrocodone, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 250 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is hydrocodone, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 250 mg.


In yet a further particularly preferred embodiment, the pharmacologically active ingredient is morphine, preferably its HCl or H2SO4 salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 250 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is morphine, preferably its HCl or H2SO4 salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 5 to 250 mg.


In another particularly preferred embodiment, the pharmacologically active ingredient is buprenorphine, preferably its HCl salt, and the dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 1 to 12 mg. In another particularly preferred embodiment, the pharmacologically active ingredient is buprenorphine, preferably its HCl salt, and the dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient is preferably contained in the dosage form in a total amount of from 2 to 12 mg.


When the pharmaceutical dosage form is particulate, the particles present in the dosage form according to the invention preferably comprise 1 to 75 wt.-% of the pharmacologically active ingredient, preferably the opioid, more preferably 2 to 60 wt.-% of the pharmacologically active ingredient, preferably the opioid, still more preferably 3 to 40 wt.-% of the pharmacologically active ingredient, preferably the opioid, most preferably 4 to 25 wt.-% of the pharmacologically active ingredient, preferably the opioid and in particular 4.5 to 17 wt.-% of the pharmacologically active ingredient, preferably the opioid, based on the total weight of a particle.


When the dosage form is particulate, the content of the pharmacologically active ingredient, preferably the opioid is preferably at least 1 wt.-%, more preferably at least 2 wt.-%, still more preferably at least 3 wt.-%, most preferably at least 4 wt.-% and in particular at least 5 wt.-%, based on the total weight of a particle.


When the dosage form is particulate, the content of the pharmacologically active ingredient, preferably the opioid is preferably at most 70 wt.-%, more preferably at most 65 wt.-%, still more preferably at most 50 wt.-%, yet more preferably at most 35 wt.-%, most preferably at most 20 wt.-%, based on the total weight of a particle.


In a preferred embodiment, when the dosage form is particulate, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 5±4 wt.-%, more preferably 5±3 wt.-%, still more preferably 5±2 wt.-%, most preferably 5±1 wt.-%, and in particular 5±0.5 wt.-%, based on the total weight of a particle. In another preferred embodiment, when the dosage form is particulate, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 10±9 wt.-%, more preferably 10±7 wt.-%, still more preferably 10±5 wt.-%, yet more preferably 10±3 wt.-%, most preferably 10±1 wt.-%, and in particular 10±0.5 wt.-%, based on the total weight of a particle. In still another preferred embodiment, when the dosage form is particulate, the content of the pharmacologically active ingredient, preferably the opioid is within the range of 15±14 wt.-%, more preferably 15±11 wt.-%, still more preferably 15±8 wt.-%, yet more preferably 15±5 wt.-%, most preferably 15±2 wt.-%, and in particular 15±0.5 wt.-%, based on the total weight of a particle.


The pharmacologically active ingredient, preferably the opioid that is included in the preparation of the dosage forms according to the invention preferably has an average particle size of less than 500 microns, still more preferably less than 300 microns, yet more preferably less than 200 or 100 microns. There is no lower limit on the average particle size and it may be, for example, 50 microns. The particle size of the pharmacologically active ingredient may be determined by any technique conventional in the art, e.g. laser light scattering, sieve analysis, light microscopy or image analysis. When the dosage form is particulate, it is preferable that the largest dimension of the pharmacologically active ingredient particle be less than the size of the particles (e.g. less than the smallest dimension of the particles).


In a preferred embodiment, the dosage form contains a combination of a pharmacologically active ingredient, preferably an opioid and a further pharmacologically active ingredient which is not an opioid.


In another preferred embodiment, apart from the pharmacologically active ingredient, preferably the opioid, the dosage form does not contain any further pharmacologically active ingredient.


Said further pharmacologically active ingredient is preferably selected from ATC classes [M01A], [M01C], [N02B] and [N02C] according to the WHO.


Preferably, the further pharmacologically active ingredient is selected from the group consisting of acetylsalicylic acid, aloxiprin, choline salicylate, sodium salicylate, salicylamide, salsalate, ethenzamide, morpholine salicylate, dipyrocetyl, benorilate, diflunisal, potassium salicylate, guacetisal, carbasalate calcium, imidazole salicylate, phenazone, metamizole sodium, aminophenazone, propyphenazone, nifenazone, paracetamol, phenacetin, bucetin, propacetamol, rimazolium, glafenine, floctafenine, viminol, nefopam, flupirtine, ziconotide, methoxyflurane, nabiximols, dihydroergotamine, ergotamine, methysergide, lisuride, flumedroxone, sumatriptan, naratriptan, zolmitriptan, rizatriptan, almotriptan, eletriptan, frovatriptan, pizotifen, clonidine, iprazochrome, dimetotiazine, oxetorone, phenylbutazone, mofebutazone, oxyphenbutazone, clofezone, kebuzone, indomethacin, sulindac, tolmetin, zomepirac, diclofenac, alclofenac, bumadizone, etodolac, lonazolac, fentiazac, acemetacin, difenpiramide, oxametacin, proglumetacin, ketorolac, aceclofenac, bufexamac, piroxicam, tenoxicam, droxicam, lornoxicam, meloxicam, ibuprofen, naproxen, ketoprofen, fenoprofen, fenbufen, benoxaprofen, suprofen, pirprofen, flurbiprofen, indoprofen, tiaprofenic acid, oxaprozin, ibuproxam, dexibuprofen, flunoxaprofen, alminoprofen, dexketoprofen, naproxcinod, mefenamic acid, tolfenamic acid, flufenamic acid, meclofenamic acid, celecoxib, rofecoxib, valdecoxib, parecoxib, etoricoxib, lumiracoxib, nabumetone, niflumic acid, azapropazone, glucosamine, benzydamine, glucosaminoglycan polysulfate, proquazone, orgotein, nimesulide, feprazone, diacerein, morniflumate, tenidap, oxaceprol, chondroitin sulfate, oxycinchophen, sodium aurothiomalate, sodium aurotiosulfate, auranofin, aurothioglucose, aurotioprol, penicillamine, bucillamine, their physiologically acceptable salts, as well as mixtures thereof.


If the dosage form comprises a further pharmacologically active ingredient, said further pharmacologically active ingredient preferably is present in the dosage form in a therapeutically effective amount. The amount that constitutes a therapeutically effective amount varies according to the further pharmacologically active ingredient being used, the condition being treated, the severity of said condition, the patient being treated, and the frequency of administration.


The content of the further pharmacologically active ingredient in the dosage form is not limited. The dose of the further pharmacologically active ingredient which is adapted for administration preferably is in the range of 0.1 mg to 4 g.


The matrix material and the dosage form, respectively, may contain additional pharmaceutical excipients conventionally contained in pharmaceutical dosage forms in conventional amounts, such as antioxidants, preservatives, lubricants, plasticizer, fillers, binders, and the like.


Preferably, the matrix material and the dosage form, respectively, only comprises excipients which are approved for oral use according to the Ph. Eur. and the USP, respectively. Therefore, in a preferred embodiment, the dosage form according to the present invention does not contain any compound which is not approved for oral use. More preferably, the dosage form does not contain poly(ε-caprolactone).


The skilled person will readily be able to determine appropriate further excipients as well as the quantities of each of these excipients. Specific examples of pharmaceutically acceptable carriers and excipients are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986).


In a preferred embodiment, the dosage form does not contain a disintegrant.


Preferably, the matrix material and the dosage form, respectively, further comprises an antioxidant. Suitable antioxidants include ascorbic acid, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), salts of ascorbic acid, monothioglycerol, phosphorous acid, vitamin C, vitamin E and the derivatives thereof, coniferyl benzoate, nordihydroguajaretic acid, gallus acid esters, sodium bisulfite, particularly preferably butylhydroxytoluene or butylhydroxyanisole and α-tocopherol. The antioxidant is preferably present in quantities of 0.01 wt.-% to 10 wt.-%, more preferably of 0.03 wt.-% to 5 wt.-%, most preferably of 0.05 wt.-% to 2.5 wt.-%, based on the total weight of the dosage form and the matrix material, respectively.


In a preferred embodiment, the matrix material and the dosage form, respectively, further comprise an acid, preferably citric acid. The amount of acid is preferably in the range of 0.01 wt.-% to about 20 wt.-%, more preferably in the range of 0.02 wt.-% to about 10 wt.-%, and still more preferably in the range of 0.05 wt.-% to about 5 wt.-%, and most preferably in the range of 0.1 wt.-% to about 1.0 wt.-%, based on the total weight of the dosage form and the matrix material, respectively.


In a preferred embodiment, the matrix material and the dosage form, respectively, contain at least one lubricant.


Especially preferred lubricants are selected from

    • magnesium stearate and stearic acid;
    • polyoxyethylene glycerol fatty acid esters, such as mixtures of mono-, di- and triesters of glycerol and di- and monoesters of macrogols having molecular weights within the range of from 200 to 4000 g/mol, e.g., macrogolglycerolcaprylocaprate, macrogolglycerollaurate, macrogolglycerolococoate, macrogolglycerollinoleate, macrogol-20-glycerolmonostearate, macrogol-6-glycerolcaprylocaprate, macrogolglycerololeate; macrogolglycerolstearate, macrogolglycerolhydroxystearate, and macrogolglycerolrizinoleate;
    • polyglycolyzed glycerides, such as the one known and commercially available under the trade name “Labrasol”;
    • fatty alcohols that may be linear or branched, such as cetylalcohol, stearylalcohol, cetylstearyl alcohol, 2-octyldodecane-1-ol and 2-hexyldecane-1-ol; and
    • polyethylene glycols having a molecular weight between 10.000 and 60.000 g/mol.


Preferably, the amount of the lubricant ranges from 0.01 wt.-% to about 10 wt.-%, more preferably in the range of 0.05 wt.-% to about 7.5 wt.-%, most preferably in the range of 0.1 wt.-% to about 5 wt.-%, and in particular in the range of 0.1 wt.-% to about 1 wt.-%, based on the total weight of the dosage form and the matrix material, respectively.


Preferably, the matrix material and the dosage form, respectively, further comprise a plasticizer. The plasticizer improves the matrix material. A preferred plasticizer is polyalkylene glycol, like polyethylene glycol, triacetin, fatty acids, fatty acid esters, waxes and/or microcrystalline waxes. Particularly preferred plasticizers are polyethylene glycols, such as PEG 6000.


Preferably, the content of the plasticizer is within the range of from 0.5 to 30 wt.-%, more preferably 1.0 to 25 wt.-%, still more preferably 2.5 wt.-% to 22.5 wt.-%, yet more preferably 5.0 wt.-% to 20 wt.-%, most preferably 6 to 20 wt.-% and in particular 7 wt.-% to 17.5 wt.-%, based on the total weight of the dosage form and the matrix material, respectively.


Plasticizers can sometimes act as a lubricant, and lubricants can sometimes act as a plasticizer.


In another preferred embodiment, the matrix material and the dosage form, respectively, contain no antioxidant and/or no acid and/or no lubricant and/or no plasticizer. More preferably, the matrix material and the dosage form, respectively, contain no excipients.


Preferred contents of the pharmacologically active ingredient, preferably the opioid, the alkyl cellulose, the heteropolysaccharide and excipients, relative to the total weight of the dosage form are summarized as embodiments A1 to A12 in the tables here below:
















wt.-%
A1
A2
A3
A4







pharmacologically
15 ± 14
15 ± 10
15 ± 7 
15 ± 5 


active ingredient






alkyl cellulose
85 ± 70
85 ± 50
85 ± 30
85 ± 10


heteropolysaccharide
10 ± 8 
10 ± 6 
10 ± 4 
10 ± 3 


pharmaceutical excipients
20 ± 20
20 ± 20
20 ± 20
20 ± 20























wt.-%
A5
A6
A7
A8







pharmacologically
15 ± 14
15 ± 10
15 ± 7 
15 ± 5 


active ingredient






alkyl cellulose
75 ± 60
75 ± 40
75 ± 20
75 ± 10


heteropolysaccharide
15 ± 10
15 ± 8 
15 ± 6 
15 ± 5 


pharmaceutical excipients
20 ± 20
20 ± 20
20 ± 20
20 ± 20























wt.-%
A9
A10
A11
A12







pharmacologically
15 ± 14
15 ± 10
15 ± 7 
15 ± 5 


active ingredient






alkyl cellulose
65 ± 50
65 ± 35
65 ± 20
65 ± 10


heteropolysaccharide
25 ± 20
25 ± 15
25 ± 10
25 ± 5 


pharmaceutical excipients
20 ± 20
20 ± 20
20 ± 20
20 ± 20









In a preferred embodiment, the dosage form, more preferably the matrix comprising the alkyl cellulose and the heteropolysaccharide provides prolonged release of the pharmacologically active ingredient, preferably the opioid. In another preferred embodiment, the dosage form, more preferably the matrix comprising the alkyl cellulose and the heteropolysaccharide provides immediate release of the pharmacologically active ingredient, preferably the opioid.


The term “prolonged release” is known to the skilled artisan. For the purpose of specification, the term “prolonged release” preferably refers to a release rate of the pharmacologically active ingredient from the formulation that has been reduced over time in order to maintain therapeutic activity, to reduce toxic effects, or for some other therapeutic purpose such as reducing the dosing frequency.


The term “immediate release” is known to the skilled artisan. For the purpose of specification, the term “immediate release” preferably refers to a release rate of the pharmacologically active ingredient from the formulation that is comparatively fast and not retarded.


In the dosage form according to the present invention, the release of the pharmacologically active ingredient is preferably not controlled by erosion of the surface of the dosage form. If the dosage form according to the present invention is particulate, the release of the pharmacologically active ingredient is preferably neither controlled by erosion of the surface of the particles, nor by erosion of the surface of the dosage form.


In a preferred embodiment, the dosage form provides prolonged release of the pharmacologically active ingredient, preferably the opioid. Preferably, the matrix provides for a prolonged release of the pharmacologically active ingredient, preferably the opioid from dosage form.


Preferably, under in vitro conditions the dosage form has released after 30 minutes 0.1 to 75%, after 240 minutes 0.5 to 99%, after 480 minutes 1.0 to 100% and after 720 minutes 2.5 to 100% of the pharmacologically active ingredient, preferably the opioid.


Suitable in vitro conditions are known to the skilled artisan. In this regard it can be referred to, e.g., the Eur. Ph. Preferably, the release profile is measured under the following conditions: Paddle apparatus, 50 rpm, 37±5° C., 900 mL 0.1 M HCl (pH 1.0) or simulated intestinal fluid pH 6.8 (phosphate buffer) or pH 4.5. In another preferred embodiment, the rotational speed of the paddle is increased to 75 rpm. In another preferred embodiment, the release profile is determined under the following conditions: basket method, 75 rpm, 37±5° C., 900 mL 0.1 N HCl or 900 mL of SIF sp (pH 6.8) or 900 mL of 0.1 N HCl+40 vol.-% ethanol.


Preferred release profiles R1 to R7 are summarized in the table here below [all data in wt.-% of released pharmacologically active ingredient]:




















time
R1
R1
R2
R3
R4
R5
R6
R7
























60
min
0-60
0-10
 2-20
 4-20
 5-30
15-40
15-50
20-65


120
min
0-90
1-60
 5-30
10-35
10-35
20-55
25-80
30-90


240
min
1-99
5-95
15-45
25-85
15-45
40-80
 35-100
50-95


480
min
 5-100
 7-100
25-85
 60-100
20-60
 60-100
 45-100
 70-100


720
min
10-100
10-100
 35-100
 80-100
30-80
>80
>80
 70-100


960
min
20-100
15-100
 50-100
>90
40-90
>90
>90
>80


1440
min
50-100
30-100
 60-100
>99
>60
>99
>99
>90


2160
min
>80
>80
>80

>80


>99









In a particularly preferred embodiment; under in vitro conditions in 900 mL 0.1 N HCl (pH 1.0), using the paddle method according to Ph. Eur. at 50 rpm, after 1 h under physiological conditions, the dosage form has released at most 80%, more preferably at most 70%, most preferably at most 65% and in particular at most 60% of the pharmacologically active ingredient, preferably the opioid relative to the total amount of the pharmacologically active ingredient originally contained in the dosage form.


In another preferred embodiment, the dosage form provides immediate release of the pharmacologically active ingredient, preferably the opioid. Preferably, the matrix provides for an immediate release of the pharmacologically active ingredient, preferably the opioid from the dosage form.


Preferably, under in vitro conditions the dosage form has released after 15 minutes 20 to 90%, after 30 minutes 35 to 99%, after 45 minutes 50 to 99% and after 60 minutes more than 60% or more than 70% or more than 80% or more than 90% or more than 95% of the pharmacologically active ingredient, preferably the opioid.


Suitable in vitro conditions are known to the skilled artisan. In this regard it can be referred to, e.g., the Eur. Ph. Preferably, the release profile is measured under the following conditions: Paddle apparatus, 50 rpm, 37±5° C., 900 mL 0.1 M HCl (pH 1.0) or simulated intestinal fluid pH 6.8 (phosphate buffer) or pH 4.5. In another preferred embodiment, the rotational speed of the paddle is increased to 75 rpm. In another preferred embodiment, the release profile is determined under the following conditions: basket method, 75 rpm, 37±5° C., 900 mL 0.1 N HCl or 900 mL of SIF sp (pH 6.8) or 900 mL of 0.1 N HCl+40% ethanol.


In a preferred embodiment, the dosage form according to the invention has a breaking strength of less than 300 N, more preferably less than 200 N, or, when the dosage form is particulate, the particles have a breaking strength of less than 300 N, more preferably less than 200 N. According to this embodiment, the dosage form preferably is particulate and in form of a filled capsule.


In another preferred embodiment, the dosage form according to the invention has a breaking strength of at least 200 N, more preferably at least 300 N, or, when the dosage form is particulate, the particles have a breaking strength of at least 200 N, more preferably at least 300 N. According to this embodiment, the dosage form or, when it is particulate, the particles according to the invention which contain the pharmacologically active ingredient preferably have a breaking strength of at least 300 N, at least 400 N, or at least 500 N, preferably at least 600 N, more preferably at least 700 N, still more preferably at least 800 N, yet more preferably at least 1000 N, most preferably at least 1250 N and in particular at least 1500 N. Further according to this embodiment, preferably, the dosage form and the particles, respectively, cannot be pulverized by the application of force with conventional means, such as for example a pestle and mortar, a hammer, a mallet or other usual means for pulverization, in particular devices developed for this purpose (dosage form crushers). In this regard “pulverization” means crumbling into small particles. Avoidance of pulverization virtually rules out oral or parenteral, in particular intravenous or nasal abuse.


The “breaking strength” (resistance to crushing) of a dosage form and of a particle is known to the skilled person. In this regard it can be referred to, e.g., W. A. Ritschel, Die Tablette, 2. Auflage, Editio Cantor Verlag Aulendorf, 2002; H Liebermann et al., Pharmaceutical dosage forms: Pharmaceutical dosage forms, Vol. 2, Informa Healthcare; 2 edition, 1990; and Encyclopedia of Pharmaceutical Technology, Informa Healthcare; 1 edition.


For the purpose of specification, the breaking strength is preferably defined as the amount of force that is necessary in order to fracture a dosage form and a particle, respectively (=breaking force). Therefore, for the purpose of specification, a dosage form and a particle, respectively, does preferably not exhibit the desired breaking strength when it breaks, i.e., is fractured into at least two independent parts that are separated from one another. In another preferred embodiment, however, the dosage form and particle, respectively, is regarded as being broken if the force decreases by 25% (threshold value) of the highest force measured during the measurement (see below).


Methods for measuring the breaking strength are known to the skilled artisan. Suitable devices are commercially available.


For example, the breaking strength (resistance to crushing) can be measured in accordance with the Eur. Ph. 5.0, 2.9.8 or 6.0, 2.09.08 “Resistance to Crushing of Pharmaceutical dosage forms”. The particles may be subjected to the same or similar breaking strength test as the dosage form. The test is intended to determine, under defined conditions, the resistance to crushing of dosage forms and individual particles, respectively, measured by the force needed to disrupt them by crushing. The apparatus consists of 2 jaws facing each other, one of which moves towards the other. The flat surfaces of the jaws are perpendicular to the direction of movement. The crushing surfaces of the jaws are flat and larger than the zone of contact with the dosage form and individual particle, respectively. The apparatus is calibrated using a system with a precision of 1 Newton. The dosage form and particle, respectively, is placed between the jaws, taking into account, where applicable, the shape, the break-mark and the inscription; for each measurement the dosage form and particle, respectively, is oriented in the same way with respect to the direction of application of the force (and the direction of extension in which the breaking strength is to be measured). The measurement is carried out on 10 dosage forms and particles, respectively, taking care that all fragments have been removed before each determination. The result is expressed as the mean, minimum and maximum values of the forces measured, all expressed in Newton.


A similar description of the breaking strength (breaking force) can be found in the USP. The breaking strength can alternatively be measured in accordance with the method described therein where it is stated that the breaking strength is the force required to cause a dosage form and particle, respectively, to fail (i.e., break) in a specific plane. The dosage forms and particles, respectively, are generally placed between two platens, one of which moves to apply sufficient force to the dosage form and particle, respectively, to cause fracture. For conventional, round (circular cross-section) dosage forms and particles, respectively, loading occurs across their diameter (sometimes referred to as diametral loading), and fracture occurs in the plane. The breaking force of dosage forms and particles, respectively, is commonly called hardness in the pharmaceutical literature; however, the use of this term is misleading. In material science, the term hardness refers to the resistance of a surface to penetration or indentation by a small probe. The term crushing strength is also frequently used to describe the resistance of dosage forms and particle, respectively, to the application of a compressive load. Although this term describes the true nature of the test more accurately than does hardness, it implies that dosage forms and particles, respectively, are actually crushed during the test, which is often not the case.


Alternatively, the breaking strength (resistance to crushing) can be measured in accordance with WO 2008/107149, which can be regarded as a modification of the method described in the Eur. Ph. The apparatus used for the measurement is preferably a “Zwick Z 2.5” materials tester, Fmax=2.5 kN with a maximum draw of 1150 mm, which should be set up with one column and one spindle, a clearance behind of 100 mm and a test speed adjustable between 0.1 and 800 mm/min together with testControl software. Measurement is performed using a pressure piston with screw-in inserts and a cylinder (diameter 10 mm), a force transducer, Fmax. 1 kN, diameter=8 mm, class 0.5 from 10 N, class 1 from 2 N to ISO 7500-1, with manufacturer's test certificate M according to DIN 55350-18 (Zwick gross force Fmax=1.45 kN) (all apparatus from Zwick GmbH & Co. KG, Ulm, Germany) with Order No BTC-FR 2.5 TH. D09 for the tester, Order No BTC-LC 0050N. P01 for the force transducer, Order No BO 70000 S06 for the centring device.


In a preferred embodiment, the dosage form and particle, respectively, is regarded as being broken if it is fractured into at least two separate pieces.


The dosage form according to the invention provides tamper resistance in terms of resistance against dose-dumping in aqueous ethanol.


In a preferred embodiment, the dosage form, more preferably the matrix, further provides resistance against solvent extraction and/or resistance against grinding.


Preferably, the dosage form, more preferably the matrix, provides tamper resistance. Tamper resistance preferably means that the dosage form and the matrix, respectively,

    • (i) provides resistance against dose-dumping in aqueous ethanol; and
    • (ii) preferably provides resistance against solvent extraction; and/or
    • (iii) preferably provides resistance against grinding.


Thus, the dosage form and the matrix, respectively, apart from exhibiting resistance (i), does not necessarily need to further exhibit resistances (ii) and (iii); but may preferably exhibit a combination thereof; namely a combination of only (i) and (ii); a combination of only (i) and (iii); or a combination of (i) and (ii) and (iii).


As used herein, the term “tamper-resistant” refers to dosage forms or segments that are resistant to conversion into a form suitable for misuse or abuse, particular for nasal and/or intravenous administration, by conventional means.


The dosage form according to the invention provides resistance against dose dumping in aqueous ethanol. Preferably, the matrix provides the dosage form with resistance against dose dumping in aqueous ethanol.


The dosage form can be tested in vitro using 0.1 N HCl with 40 vol.-% ethanol to evaluate alcohol extractability. Testing is preferably performed using standard procedures, e.g. USP Apparatus 1 (basket) or USP Apparatus 2 (paddle) at e.g. 50 rpm in e.g. 900 mL of media at 37° C., using a Perkin Elmer UV/VIS Spectrometer Lambda 20, UV at an appropriate wavelength for detection of the pharmacologically active ingredient present therein. Sample time points preferably include 0.5 and 1 hour.


Preferably, when comparing the in vitro release profile at 37° C. in 0.1 N HCl with the in vitro release profile in 0.1 N HCl/ethanol (40 vol.-%) at 37° C., the in vitro release 0.1 N HCl/ethanol (40 vol.-%) is preferably not substantially accelerated compared to the in vitro release in 0.1 N HCl. Preferably, in this regard “substantially” means that at any given time point the in vitro release in 0.1 N HCl/ethanol (40 vol.-%) relatively deviates from the in vitro release in 0.1 N HCl by not more than +15%, more preferably not more than +10%, still more preferably not more than +8%, yet more preferably not more than +6%, even more preferably not more than +4%, most preferably not more than +2% and in particular not more than +1% or not more than +0.5% or not more than +0.1%.


Preferably, with the dosage forms according to the invention, a substantial relative deceleration of the in vitro release in 0.1 N HCl/ethanol (40 vol.-%) compared to the in vitro release in 0.1 N HCl is observed. In a particularly preferred embodiment, at any given time point the in vitro release in 0.1 N HCl/ethanol (40 vol.-%) relatively deviates from the in vitro release in 0.1 N HCl by at least −0.01%, more preferably at least −0.05%, still more preferably at least −0.1%, most preferably at least −0.5% and in particular at least −1%.


Further, the dosage form can be tested in vitro using ethanol/simulated gastric fluid of 0%, 20% and 40% to evaluate alcohol extractability. Testing is preferably performed using standard procedures, e.g. USP Apparatus 1 (basket) or USP Apparatus 2 (paddle) at e.g. 50 rpm in e.g. 900 mL of media at 37° C., using a Perkin Elmer UV/VIS Spectrometer Lambda 20, UV at an appropriate wavelength for detection of the pharmacologically active ingredient present therein. Sample time points preferably include 0.5 and 1 hour.


Preferably, when comparing the in vitro release profile at 37° C. in simulated gastric fluid with the in vitro release profile in ethanol/simulated gastric fluid (40 vol.-%) at 37° C., the in vitro release in ethanol/simulated gastric fluid (40 vol.-%) is preferably not substantially accelerated compared to the in vitro release in simulated gastric fluid. Preferably, in this regard “substantially” means that at any given time point the in vitro release in ethanol/simulated gastric fluid (40 vol.-%) relatively deviates from the in vitro release in simulated gastric fluid by not more than +15%, more preferably not more than +10%, still more preferably not more than +8%, yet more preferably not more than +6%, even more preferably not more than +4%, most preferably not more than +2% and in particular not more than +1%.


Preferably, with the dosage forms according to the invention, a substantial relative deceleration of the in vitro release in ethanol/simulated gastric fluid (40 vol.-%) compared to the in vitro release in simulated gastric fluid is observed. In a particularly preferred embodiment, at any given time point the in vitro release in ethanol/simulated gastric fluid (40 vol.-%) relatively deviates from the in vitro release in simulated gastric fluid by at least −0.01%, more preferably at least −0.05%, still more preferably at least −0.1%, most preferably at least −0.5% and in particular at least −1%.


The dosage form according to the invention preferably exhibits resistance against solvent extraction. Preferably, the matrix provides the dosage form according to the invention with resistance against solvent extraction.


Preferably, when trying to tamper the pharmaceutical dosage form in order to prepare a formulation suitable for abuse by intravenous administration, the liquid part of the formulation that can be separated from the remainder by means of a syringe at room temperature is as little as possible, preferably it contains not more than 45 or 40 wt.-%, more preferably not more than 35 wt.-%, still more preferably not more than 30 wt.-%, yet more preferably not more than 25 wt.-%, even more preferably not more than 20 wt.-%, most preferably not more than 15 wt.-% and in particular not more than 10 wt.-% of the original content of the pharmacologically active ingredient, preferably the opioid.


Preferably, this property is tested by (i) dispensing a dosage form that is either intact or has been manually comminuted by means of two spoons in 5 ml of solvent, either purified water or aqueous ethanol (40 vol. %), (ii) allowing the dispersion to stand for 10 min at room temperature, (iii) drawing up the hot liquid into a syringe (needle 21G equipped with a cigarette filter), and (iv) determining the amount of the pharmacologically active ingredient contained in the liquid within the syringe.


In a preferred embodiment, the dosage form exhibits resistance against grinding. In another preferred embodiment, the dosage form does not exhibit resistance against grinding.


Preferably, the dosage form according to the invention is particulate, wherein the particles are obtained by wet granulation, dry granulation or fluid bed granulation.


A further aspect of the invention relates to a process for the production of an oral pharmaceutical dosage form as described herein comprising the steps of

  • (i) mixing a pharmacologically active ingredient, preferably an opioid; an alkyl cellulose; a heteropolysaccharide and optionally ethanol; and
  • (ii) granulating the mixture obtained in step (i).


Preferably, the process further comprises the steps of

  • (iii) screening the granules obtained in step (ii) through a sieve having a mesh size of preferably 1,000 μm; and
  • (iv) drying the screened granules obtained in step (iii); and
  • (v) filling the dried granules obtained in step (iv) in a capsule; and
  • (vi) optionally providing a film coating.


In another preferred embodiment, the granules preferably obtained in any of steps (ii) to (iv), preferably in combination with an outer matrix material, are compressed into tablets.


In still another preferred embodiment, the dosage form or, when it is particulate, the particles that contain the pharmacologically active ingredient are preferably thermoformed, preferably by melt-extrusion, although also other methods of thermoforming may be useful, such as press-molding at elevated temperature or heating of compacts that were manufactured by conventional compression in a first step and then heated above the softening temperature of the matrix material, in a second step to form break resistant, hardened compacts, i.e. monolithic dosage forms or particles, respectively. In this regard, thermoforming preferably means the forming or molding of a mass after, before or during the application of heat. Preferably, thermoforming is performed by hot-melt extrusion.


In a preferred embodiment, when the dosage form is particulate and the particles are hot-melt extruded, the dosage form is a filled capsule.


In a preferred embodiment, hot-melt extrusion is performed by means of a twin-screw-extruder. Melt extrusion preferably provides a melt-extruded strand that is preferably cut into monoliths, which are then optionally compressed and formed. Preferably, compression is achieved by means of a die and a punch, preferably from a monolithic mass obtained by melt extrusion. If obtained via melt extrusion, the compressing step is preferably carried out with a monolithic mass exhibiting ambient temperature, that is, a temperature in the range from 20 to 25° C.


When the dosage forms and particles, respectively, are manufactured by thermoforming, they may be produced by different processes. Several suitable processes have already been described in the prior art. In this regard it can be referred to, e.g., WO 2005/016313, WO 2005/016314, WO 2005/063214, WO 2005/102286, WO 2006/002883, WO 2006/002884, WO 2006/002886, WO 2006/082097, and WO 2006/082099.


In a preferred embodiment, when the dosage form is in form of a tablet, it is prepared by compression. Thus, when the dosage form is particulate, the particles as hereinbefore defined are preferably mixed, e.g. blended and/or granulated (e.g. wet granulated), with outer matrix material and the resulting mix (e.g. blend or granulate) is then compressed, preferably in molds, to form dosage forms. It is also envisaged that the particles herein described may be incorporated into a matrix using other processes, such as by melt granulation (e.g. using fatty alcohols and/or water-soluble waxes and/or water-insoluble waxes) or high shear granulation, followed by compression.


When the dosage forms according to the invention are manufactured by means of an eccentric press, the compression force is preferably within the range of from 5 to 15 kN. When the dosage forms according to the invention are manufactured by means of a rotating press, the compression force is preferably within the range of from 5 to 40 kN, in certain embodiments >25 kN, in other embodiments about 13 kN.


Another aspect of the invention relates to a dosage form which is obtainable by any of the processes described above.


Preferably, the release profile, the pharmacologically active ingredient, the alkyl cellulose, the heteropolysaccharide and optionally present pharmaceutical excipients are stable upon storage, preferably upon storage at elevated temperature, e.g. 40° C., for 3 months in sealed containers.


In connection with the release profile “stable” preferably means that when comparing the initial release profile with the release profile after storage, at any given time point the release profiles deviate from one another by not more than 20%, more preferably not more than 15%, still more preferably not more than 10%, yet more preferably not more than 7.5%, most preferably not more than 5.0% and in particular not more than 2.5%.


In connection with the pharmacologically active ingredient, the alkyl cellulose, the heteropolysaccharide, the optionally present further pharmacologically active ingredient and the optionally present pharmaceutical excipients “stable” preferably means that the dosage forms satisfy the requirements of EMEA concerning shelf-life of pharmaceutical products.


Preferably, after storage for 4 weeks, more preferably 6 months, at 40° C. and 75% rel. humidity, the content of the pharmacologically active ingredient, preferably the opioid in the dosage form according to the invention amounts to at least 98.0%, more preferably at least 98.5%, still more preferably at least 99.0%, yet more preferably at least 99.2%, most preferably at least 99.4% and in particular at least 99.6%, of its original content before storage.


In a preferred embodiment, the dosage form according to the invention contains no substances which irritate the nasal passages and/or pharynx, i.e. substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the patient that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active compound, for example due to increased nasal secretion or sneezing. Further examples of substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli. Corresponding substances and the quantities thereof which are conventionally to be used are known to the person skilled in the art. Some of the substances which irritate the nasal passages and/or pharynx are accordingly based on one or more constituents or one or more plant parts of a hot substance drug. Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in “Pharmazeutische Biologie—Drogen and ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982, pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.


The dosage form according to the invention furthermore preferably contains no antagonists for the pharmacologically active ingredient, preferably the opioid and the optionally present further pharmacologically active ingredient, preferably no antagonists against psychotropic substances, in particular no antagonists against opioids. Antagonists suitable for a given pharmacologically active ingredient are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof. The dosage form according to the invention preferably contains no antagonists selected from among the group comprising naloxone, naltrexone, nalmefene, nalide, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate; and no neuroleptics, for example a compound selected from among the group comprising haloperidol, promethacine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopenthixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.


The dosage form according to the invention furthermore preferably contains no emetic. Emetics are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof. The dosage form according to the invention preferably contains no emetic based on one or more constituents of ipecacuanha (ipecac) root, for example based on the constituent emetine, as are, for example, described in “Pharmazeutische Biologie—Drogen and ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, N.Y., 1982. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure. The dosage form according to the invention preferably also contains no apomorphine as an emetic.


Finally, the dosage form according to the invention preferably also contains no bitter substance. Bitter substances and the quantities effective for use may be found in US 2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference. Examples of bitter substances are aromatic oils, such as peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate.


The dosage form according to the invention accordingly preferably contains neither substances which irritate the nasal passages and/or pharynx, nor antagonists for the pharmacologically active ingredient, nor emetics, nor bitter substances.


In a preferred embodiment, the dosage form according to the invention is adapted for administration once daily, preferably orally. In another preferred embodiment, the dosage form according to the invention is adapted for administration twice daily, preferably orally. In still another preferred embodiment, the dosage form according to the invention is adapted for administration thrice daily, preferably orally. In yet another preferred embodiment, the dosage form according to the invention is adapted for administration more frequently than thrice daily, for example 4 times daily, 5 times daily, 6 times daily, 7 times daily or 8 times daily, in each case preferably orally.


For the purpose of the specification, “twice daily” means equal or nearly equal time intervals, i.e., about every 12 hours, or different time intervals, e.g., 8 and 16 hours or 10 and 14 hours, between the individual administrations.


For the purpose of the specification, “thrice daily” means equal or nearly equal time intervals, i.e., about every 8 hours, or different time intervals, e.g., 6, 6 and 12 hours; or 7, 7 and 10 hours, between the individual administrations.


The dosage forms according to the invention may be used in medicine, e.g. as an analgesic. The dosage forms are therefore particularly suitable for the treatment or management of pain.


A further aspect of the invention relates to the dosage form as described above for use in the treatment of pain.


A further aspect of the invention relates to the use of a pharmacologically active ingredient, preferably an opioid for the manufacture of a dosage form as described above for treating pain.


A further aspect of the invention relates to a method of treating pain comprising the administration of the dosage form as described above to a subject in need thereof.


A further aspect according to the invention relates to the use of a dosage form as described above for avoiding or hindering the unintentional overdose of the pharmacologically active ingredient, preferably the opioid contained therein.


In this regard, the invention also relates to the use of a dosage form as described above for the prophylaxis and/or the treatment of a disorder, thereby preventing an overdose of the pharmacologically active ingredient, preferably the opioid, particularly due to dose dumping in aqueous ethanol.


In a particularly preferred embodiment, the dosage form is particulate and in form of a filled capsule, wherein

    • the pharmacologically active ingredient is selected from the group consisting of oxycodone, oxymorphone, hydrocodone, hydromorphone, tramadol, tapentadol, morphine, buprenorphine and the physiologically acceptable salts thereof; and
    • the alkyl cellulose is ethyl cellulose; and
    • the heteropolysaccharide is xanthan gum; and
    • the relative weight ratio of xanthan gum to ethyl cellulose is within the range of from 1:18 to 1:1.


In a particularly preferred embodiment

    • the weight ratio of heteropolysaccharide to alkyl cellulose is within the range of from 1:18 to 1:1; and/or
    • the total content of alkyl cellulose and heteropolysaccharide is at least 95 wt.-%, relative to the total weight of the matrix material, or the matrix material consists of the alkyl cellulose and the heteropolysaccharide; and/or
    • the alkyl cellulose is selected from unsubstituted C1-6-alkyl celluloses; and/or
    • the alkyl cellulose is ethyl cellulose having an ethoxyl content of from 40 wt.-% to 60 wt.-%; and/or having a solution viscosity within the range of from 70 mPa·s to 130 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter; and/or
    • the content of the alkyl cellulose in the matrix material is at most 90 wt.-%, relative to the total weight of the matrix material; and/or
    • the content of the alkyl cellulose is within the range of from 45 to 89 wt.-%, relative to the total weight of the dosage form; and/or
    • the heteropolysaccharide is selected from acidic heteropolysaccharides; and/or
    • the heteropolysaccharide is xanthan gum; and/or
    • the content of the heteropolysaccharide in the matrix material is at least 10 wt.-%, relative to the total weight of the matrix material; and/or
    • the content of the heteropolysaccharide is within the range of from 8 to 27 wt.-%, relative to the total weight of the dosage form; and/or
    • the dosage form contains only one pharmacologically active ingredient selected from the group consisting of oxycodone, oxymorphone, hydrocodone, hydromorphone, tramadol, tapentadol, morphine, buprenorphine and the physiologically acceptable salts thereof; and/or
    • the pharmacologically active ingredient, preferably the opioid is present in the dosage form in a therapeutically effective amount; and/or
    • apart from the pharmacologically active ingredient, preferably the opioid, the dosage form does not contain any further pharmacologically active ingredient; and/or
    • the dosage form has a breaking strength of less than 200 N, or, when the dosage form is particulate, the particles have a breaking strength of less than 200 N; and/or
    • at any given time point the in vitro release of the pharmacologically active ingredient, preferably the opioid from the dosage form in 0.1 N HCl/ethanol (40 vol.-%) relatively deviates from the in vitro release in 0.1 N HCl by not more than +1%; or by at least −1%; and/or
    • the dosage form provides prolonged release of the pharmacologically active ingredient, preferably the opioid; and/or
    • the dosage form is particulate, wherein the particles have been manufactured by granulation; and/or
    • the dosage form is a filled capsule; and/or
    • the dosage form and, when the dosage form is particulate, the particles is/are not coated; and/or
    • the dosage form does not contain any outer matrix material.


EXAMPLES

General Procedure:


Mixtures of the ingredients in powder form (Tramadol HCl, Ethylcellulose Ph. Eur. (Ethocel Standard 100 Premium), Xanthan Gum Type 602) were granulated with 70% (v/v) ethanol by using a mortar and pestle. The moist granulate was screened (mesh size 1,000 μm) and the thus obtained particles were dried in a drying cabinet for 17 to 18 hours. Thereafter, the particles were filled into capsules (DBcaps AA).


The xanthan gum was found to have a viscosity of 281 mPa·s, measured in a 1% aqueous solution at a shear rate of 50 s−1 rotationally at 20° C. after 1 minute equilibration using a 6 cm acrylic cone (1°), wherein the shear was ramped up linearly from 1 to 50 s−1 in 25 steps over 29 s.


The release profiles were determined in 0.1 N HCl with and without addition of 40% (v/v) ethanol in a USP Apparatus 2 (paddle) at 75 rpm in 600 mL of media at 37° C. with a LabSwiss sinker, using a HPLC method. The mobile phase consisted of 1460 mL potassium dihydrogenphosphate buffer pH 2.7 with 540 mL methanol with a flow rate of 2.5 mL/min. The stationary phase was a Supelcosil LC-8 DB 5 μm 150*4.6 mm chromatographic column conditioned at 35° C. Injected volume was 30 μL, detection was performed by UV absorption at a wavelength of 215 nm.


The obtained release data were normalized in that always the highest value measured after quickly stirring for a longer time was taken as 100% value (“infinity value”).


Example 1

Capsules having the composition summarized in Table 1 below were prepared according to the general procedure:











TABLE 1






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
50.0
10.0


Ethylcellulose Ph. Eur.
400.0
80.0


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
50.0
10.0


total
500.0
100.0








relative weight ratio of xanthan gum to ethyl
1:8


cellulose



total content of ethyl cellulose and xanthan gum
90.0










FIG. 1 shows the release profile of the capsules in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively.


As can be seen from FIG. 1, the release of the active ingredient is prolonged and is not influenced by the addition of ethanol.


Example 2

Capsules having the composition summarized in Table 2 below were prepared according to the general procedure:











TABLE 2






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
25.0
5.0


Ethylcellulose Ph. Eur.
422.0
84.4


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
53.0
10.6


total
500.0
100.0








relative weight ratio of xanthan gum to ethyl
1:8


cellulose



total content of ethyl cellulose and xanthan gum
95.0










FIG. 2 shows the release profile of the capsules in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively. The data are also summarized in Table 10.


As can be seen from FIG. 2, the release of the active ingredient is slightly prolonged and the addition of ethanol has a retarding influence on the release.


Example 3

Capsules having the composition summarized in Table 3 below were prepared according to the general procedure:











TABLE 3






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
75.0
15.0


Ethylcellulose Ph. Eur.
378.0
75.6


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
47.0
9.4


total
500.0
100.0








relative weight ratio of xanthan gum to ethyl
1:8


cellulose



total content of ethyl cellulose and xanthan gum
85.0










FIG. 3 shows the release profile of the capsules in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively. The data are also summarized in Table 10.


As can be seen from FIG. 3, the release of the active ingredient is not prolonged. However, the addition of ethanol has a retarding influence on the release.


Example 4

Capsules having the composition summarized in Table 4 below were prepared according to the general procedure:











TABLE 4






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
50.0
10.0


Ethylcellulose Ph. Eur.
337.5
67.5


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
112.5
22.5


total
500.0
100.0








relative weight ratio of xanthan gum to ethyl
1:3


cellulose



total content of ethyl cellulose and xanthan gum
90.0










FIG. 4 shows the release profile of the capsules in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively. The data are also summarized in Table 10.


As can be seen from FIG. 4, in both media the release of the active ingredient is distinctly prolonged and is further retarded by addition of ethanol.


Example 5

Capsules having the composition summarized in Table 5 below were prepared according to the general procedure:











TABLE 5






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
50.0
10.0


Ethylcellulose Ph. Eur.
382.5
76.5


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
67.5
13.5


total
500.0
100.0 








relative weight ratio of xanthan gum to ethyl
1:5.7


cellulose



total content of ethyl cellulose and xanthan gum
90.0










FIG. 5 shows the release profile of the capsules in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively. The data are also summarized in Table 10.


As can be seen from FIG. 5, the release in 0.1 N HCl is not prolonged (i.e. immediate release). However, in the presence of ethanol, the release is distinctly prolonged.


Summing up, an extended release profile was not observed in all Examples 1 to 5. However, in all Examples the release was further retarded by the addition of ethanol. This result was completely unexpected because of the solubility of the matrix material ethylcellulose in ethanol.


An optimum extended release profile was observed in Example 4.


Example 6

Capsules having the composition summarized in Table 6 below were prepared according to the general procedure:











TABLE 6






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
45.0
10.0


Ethylcellulose Ph. Eur.
382.5
85.0


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
22.5
5.0


total
450.0
100.0








relative weight ratio of xanthan gum to ethyl
1:17


cellulose



total content of ethyl cellulose and xanthan gum
90.0









The data obtained from dissolution tests in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively, are summarized in Table 10.


Example 7

Capsules having the composition summarized in Table 7 below were prepared according to the general procedure:











TABLE 7






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
45.0
10.0


Ethylcellulose Ph. Eur.
292.5
65.0


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
112.5
25.0


total
450.0
100.0 








relative weight ratio of xanthan gum to ethyl
1:2.6


cellulose



total content of ethyl cellulose and xanthan gum
90.0









The data obtained from dissolution tests in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively, are summarized in Table 10.


Example 8

Capsules having the composition summarized in Table 8 below were prepared according to the general procedure:











TABLE 8






m in mg




(per capsule)
m in wt.-%

















Tramadol HCl
45.0
10.0


Ethylcellulose Ph. Eur.
360.0
80.0


(Ethocel Standard 100




Premium)




Xanthan Gum Type 602
45.0
10.0


total
450.0
100.0








relative weight ratio of xanthan gum to ethyl
1:8


cellulose



total content of ethyl cellulose and xanthan gum
90.0









The data obtained from dissolution tests in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively, are summarized in Table 10.


Process Parameters


The process parameters are summarized in Table 9 below.
















TABLE 9





Process









parameter
Example
Example
Example
Example
Example
Example
Example


granule:
2
3
4
5
6
7
8






















Blending
2
2
2
2
2
2
2


time [min]









(granulated









material)









Granulation
6
5
6
6
16
16
12


time









[min]









(granulated









material)









Amount
108.1
91.85
72.3
90.7
68.9
57.7
61.6


of 70%









ethanol [g]









(granulated









material)









Drying time/
17 h
17 h
17 h
17h
18 h
18 h
18 h


Drying
50 min/50° C.
50 min/50° C.
50 min/50° C.
50 min/50° C.
03 min/50° C.
03 min/50° C.
03 min/50° C.


temperature









(granulated









material)









Loss on
−2.59
−2.56
−4.31
−2.98
−1.70
−2.54
−1.49


drying [%]









(granulated









material)









Granule
453
456
454
457
457
456
458


weight on









capsule [mg]









(granulate









in capsule)









Release Profiles


The data obtained from the dissolution tests in 0.1 N HCl and in a mixture of 0.1 N HCl and 40% ethanol, respectively, are summarized in Table 10 below.
















TABLE 10





In brackets:
Example
Example
Example
Example
Example
Example
Example


normalized values
2
3
4
5
6
7
8







Dissolution 0.1N









HCl [%] (n = 3)









after 15 min
38 (71) 
68 (80) 
25 (28) 
46 (55) 
40 (49) 
55 (72) 
41 (58) 


after 30 min
43 (79) 
76 (89) 
39 (45) 
68 (81) 
52 (64) 
64 (84) 
50 (70) 


after 45 min
45 (84) 
79 (93) 
51 (59) 
75 (89) 
59 (73) 
68 (89) 
55 (77) 


after 60 min
47 (87) 
80 (94) 
58 (67) 
78 (93) 
63 (78) 
71 (93) 
58 (81) 


after 120 min
51 (95) 
83 (98) 
73 (83) 
82 (98) 
74 (90) 
74 (97) 
66 (92) 


after 180 min
54 (101)
84 (99) 
79 (90) 
83 (99) 
78 (95) 
76 (100)
69 (98) 


after 240 min
54 (100)
85 (100)
83 (95) 
83 (100)
79 (97) 
75 (99) 
71 (99) 


Infinity value
54 (100)
85 (100)
88 (100)
84 (100)
82 (100)
76 (100)
71 (100)


(30 min 250 rpm) [%]









Dissolution 0.1N HCl +









40% Ethanol [%] (n = 3)









after 15 min
47 (47)
63 (64) 
24 (28) 
53 (54) 
53 (54) 
18 (24) 
34 (37) 


after 30 min
66 (66)
81 (82) 
37 (43) 
68 (69) 
68 (69) 
29 (39) 
45 (49) 


after 45 min
76 (76)
87 (89) 
46 (53) 
74 (75) 
74 (75) 
36 (48) 
52 (57) 


after 60 min
84 (84)
91 (92) 
52 (60) 
78 (79) 
78 (79) 
42 (56) 
59 (65) 


after 120 min
95 (95)
97 (98) 
67 (78) 
85 (86) 
85 (86) 
55 (74) 
71 (77) 


after 180 min
99 (98)
98 (99) 
77 (90) 
90 (92) 
90 (92) 
70 (93) 
80 (88) 


after 240 min
99 (99)
99 (100)
82 (96) 
93 (95) 
93 (95) 
71 (95) 
83 (91) 


Infinity value
101 (100)
99 (100)
86 (100)
98 (100)
98 (100)
75 (100)
91 (100)


(30 min 250 rpm) [%]








Claims
  • 1. An oral pharmaceutical dosage form comprising a pharmacologically active ingredient embedded in a matrix material, wherein: the pharmacologically active ingredient is one selected from pharmacologically active ingredients classified in Anatomical Therapeutic Chemical Classification System (ATC), class Nervous System;the matrix material comprises a mixture of an alkyl cellulose and a heteropolysaccharide;the alkyl cellulose is present in the dosage form in an amount of at least 50 wt.-% relative to the total weight of the dosage form;the heteropolysaccharide is present in the dosage form in an amount of below 50 wt.-% relative to the total weight of the dosage form;the total content of alkyl cellulose and heteropolysaccharide is at least 60 wt.-% relative to the total weight of the dosage form;the pharmaceutical dosage form releases by 60 minutes more than 60% of the pharmacologically active ingredient when release of the pharmacologically active ingredient from the pharmaceutical dosage form is measured with a paddle apparatus at 50 rpm, at 37±5° C., in 900 mL 0.1 M HCl (pH 1.0) or simulated intestinal fluid at pH 6.8 (phosphate buffer) or pH 4.5; andthe pharmaceutical dosage form provides resistance against dose dumping in aqueous ethanol.
  • 2. The dosage form according to claim 1, wherein the alkyl cellulose is ethyl cellulose; and/orthe heteropolysaccharide is xanthan gum.
  • 3. The dosage form according to claim 1, which provides prolonged release of the pharmacologically active ingredient.
  • 4. The dosage form according to claim 1, wherein the content of the heteropolysaccharide is below 45 wt.-%, relative to the total weight of the dosage form.
  • 5. The dosage form according to claim 4, wherein the content of the heteropolysaccharide is below 30 wt.-%, relative to the total weight of the dosage form.
  • 6. The dosage form according to claim 1, wherein the total content of alkyl cellulose and heteropolysaccharide is at least 70 wt.-%, relative to the total weight of the dosage form.
  • 7. The dosage form according to claim 1, wherein the alkyl cellulose is ethyl cellulose having an ethoxyl content of from 40 wt.-% to 60 wt.-%.
  • 8. The dosage form according to claim 1, wherein the alkyl cellulose is ethyl cellulose having a solution viscosity within the range of from 70 mPa·s to 130 mPa·s, measured in a 5 wt.-% solution of 80 wt.-% toluene and 20 wt.-% ethanol at 25° C. in an Ubbelohde viscosimeter.
  • 9. The dosage form according to claim 1, wherein the pharmacologically active ingredient is an opioid.
  • 10. The dosage form according to claim 9, wherein the pharmacologically active ingredient is selected from the group consisting of oxycodone, oxymorphone, hydrocodone, hydromorphone, tramadol, tapentadol, morphine, buprenorphine, and the physiologically acceptable salts thereof.
  • 11. The dosage form according to claim 1, which is particulate.
  • 12. The dosage form according to claim 1, which is a filled capsule or a tablet.
  • 13. The dosage form according to claim 1, which is particulate and in form of a filled capsule, wherein the pharmacologically active ingredient is selected from the group consisting of oxycodone, oxymorphone, hydrocodone, hydromorphone, tramadol, tapentadol, morphine, buprenorphine, and the physiologically acceptable salts thereof; andthe alkyl cellulose is ethyl cellulose; andthe heteropolysaccharide is xanthan gum; andthe relative weight ratio of xanthan gum to ethyl cellulose is within the range of from 1:18 to 1:1.
  • 14. A method for treating pain in a patient in need thereof, said method comprising administering to said patient an effective amount therefor of a dosage form according to claim 1.
  • 15. The dosage form according to claim 1, wherein the content of the alkyl cellulose is at least 63 wt.-%, relative to the total weight of the dosage form.
  • 16. The dosage form according to claim 1, which releases by 3 hours at least 90% of the pharmacologically active ingredient.
Priority Claims (1)
Number Date Country Kind
14169801 May 2014 EP regional
US Referenced Citations (441)
Number Name Date Kind
2524855 Schnider et al. Oct 1950 A
2806033 Lewenstein et al. Sep 1957 A
2987445 Levesque Jun 1961 A
3332950 Blumberg et al. Jul 1967 A
3370035 Ogura et al. Feb 1968 A
3652589 Flick et al. Mar 1972 A
3806603 Gaunt et al. Apr 1974 A
3865108 Hartop Feb 1975 A
3941865 Miller et al. Mar 1976 A
3966747 Monkovic et al. Jun 1976 A
3980766 Shaw et al. Sep 1976 A
4002173 Manning et al. Jan 1977 A
4014965 Stube et al. Mar 1977 A
4070494 Hoffmeister et al. Jan 1978 A
4070497 Wismer et al. Jan 1978 A
4175119 Porter Nov 1979 A
4200704 Stanley et al. Apr 1980 A
4207893 Michaels Jun 1980 A
4262017 Kuipers et al. Apr 1981 A
4343789 Kawata et al. Aug 1982 A
4353887 Hess et al. Oct 1982 A
4404183 Kawata et al. Sep 1983 A
4427681 Munshi et al. Jan 1984 A
4427778 Zabriskie Jan 1984 A
4457933 Gordon et al. Jul 1984 A
4462941 Lee et al. Jul 1984 A
4473640 Combie et al. Sep 1984 A
4483847 Augart Nov 1984 A
4485211 Okamoto Nov 1984 A
4529583 Porter Jul 1985 A
4599342 La Hann Jul 1986 A
4603143 Schmidt Jul 1986 A
4612008 Wong et al. Sep 1986 A
4629621 Snipes Dec 1986 A
4667013 Reichle May 1987 A
4690822 Uemura Sep 1987 A
4713243 Schiraldi et al. Dec 1987 A
4744976 Snipes et al. May 1988 A
4764378 Keitn et al. Aug 1988 A
4765989 Wong et al. Aug 1988 A
4774074 Snipes Sep 1988 A
4774092 Hamilton Sep 1988 A
4783337 Wong et al. Nov 1988 A
4806337 Snipes et al. Feb 1989 A
RE33093 Schiraldi et al. Oct 1989 E
4880585 Klimesch et al. Nov 1989 A
4892778 Theeuwes et al. Jan 1990 A
4892889 Kirk Jan 1990 A
4940556 MacFarlane et al. Jul 1990 A
4954346 Sparta et al. Sep 1990 A
4957668 Plackard et al. Sep 1990 A
4957681 Klimesch et al. Sep 1990 A
4960814 Wu et al. Oct 1990 A
4992278 Khanna Feb 1991 A
4992279 Palmer et al. Feb 1991 A
5004601 Snipes Apr 1991 A
5051261 McGinty Sep 1991 A
5073379 Klimesch et al. Dec 1991 A
5082668 Wong et al. Jan 1992 A
5126151 Bodor et al. Jun 1992 A
5139790 Snipes Aug 1992 A
5145944 Steinmann Sep 1992 A
5149538 Granger et al. Sep 1992 A
5169645 Shukla et al. Dec 1992 A
5190760 Baker Mar 1993 A
5198226 MacFarlane et al. Mar 1993 A
5200197 Wright et al. Apr 1993 A
5211892 Gueret May 1993 A
5225417 Dappen Jul 1993 A
5227157 Mc Ginity et al. Jul 1993 A
5229164 Pins et al. Jul 1993 A
5273758 Royce Dec 1993 A
5326852 Fujikake Jul 1994 A
5350741 Takada Sep 1994 A
5378462 Boedecker et al. Jan 1995 A
5387420 Mitchell Feb 1995 A
5427798 Ludwig et al. Jun 1995 A
RE34990 Khanna et al. Jul 1995 E
5458887 Chen Oct 1995 A
5460826 Merrill et al. Oct 1995 A
5472943 Crain et al. Dec 1995 A
5508042 Oshlack et al. Apr 1996 A
5552159 Mueller et al. Sep 1996 A
5556640 Ito et al. Sep 1996 A
5562920 Demmer et al. Oct 1996 A
5591452 Miller et al. Jan 1997 A
5593694 Hayashida et al. Jan 1997 A
5601842 Bartholomaeus Feb 1997 A
5620697 Tormala et al. Apr 1997 A
5679685 Cincotta et al. Oct 1997 A
5681517 Metzger Oct 1997 A
5707636 Rodriguez et al. Jan 1998 A
5741519 Rosenberg et al. Apr 1998 A
5792474 Rauchfuss Aug 1998 A
5801201 Gradums et al. Sep 1998 A
5811126 Krishnamurthy Sep 1998 A
5849240 Miller et al. Dec 1998 A
5866164 Kuczynski et al. Feb 1999 A
5900425 Kanikanti et al. May 1999 A
5908850 Zeitlin et al. Jun 1999 A
5916584 O'Donoghue et al. Jun 1999 A
5928739 Pophusen et al. Jul 1999 A
5939099 Grabowski et al. Aug 1999 A
5945125 Kim Aug 1999 A
5948787 Merrill et al. Sep 1999 A
5962488 Lang Oct 1999 A
5965161 Oshlack et al. Oct 1999 A
5968925 Knidlberger Oct 1999 A
6001391 Zeidler et al. Dec 1999 A
6009390 Gupta et al. Dec 1999 A
6009690 Rosenberg et al. Jan 2000 A
6051253 Zettler et al. Apr 2000 A
6071970 Mueller et al. Jun 2000 A
6077538 Merrill et al. Jun 2000 A
6090411 Pillay et al. Jul 2000 A
6093420 Baichwal Jul 2000 A
6096339 Ayer et al. Aug 2000 A
6117453 Seth et al. Sep 2000 A
6120802 Breitenbach et al. Sep 2000 A
6133241 Bok et al. Oct 2000 A
6183781 Burke Feb 2001 B1
6228863 Palermo et al. May 2001 B1
6235825 Yoshida et al. May 2001 B1
6238697 Kumar et al. May 2001 B1
6245357 Edgren et al. Jun 2001 B1
6248737 Buschmann et al. Jun 2001 B1
6254887 Miller et al. Jul 2001 B1
6261599 Oshlack Jul 2001 B1
6290990 Grabowski et al. Sep 2001 B1
6306438 Oshlack et al. Oct 2001 B1
6309668 Bastin et al. Oct 2001 B1
6318650 Breitenbach et al. Nov 2001 B1
6322819 Burnside et al. Nov 2001 B1
6326027 Miller et al. Dec 2001 B1
6335035 Drizen et al. Jan 2002 B1
6337319 Wang Jan 2002 B1
6340475 Shell et al. Jan 2002 B2
6344215 Bettman et al. Feb 2002 B1
6344535 Timmermann et al. Feb 2002 B1
6348469 Seth Feb 2002 B1
6355656 Zeitlin et al. Mar 2002 B1
6375957 Kaiko et al. Apr 2002 B1
6375963 Repka et al. Apr 2002 B1
6387995 Sojka May 2002 B1
6399100 Clancy et al. Jun 2002 B1
6419954 Chu et al. Jul 2002 B1
6436441 Sako et al. Aug 2002 B1
6461644 Jackson et al. Oct 2002 B1
6488939 Zeidler et al. Dec 2002 B1
6488962 Berner et al. Dec 2002 B1
6488963 McGinity et al. Dec 2002 B1
6534089 Ayer et al. Mar 2003 B1
6547977 Yan et al. Apr 2003 B1
6547997 Breithenbach et al. Apr 2003 B1
6562375 Sako et al. May 2003 B1
6569506 Jerdee et al. May 2003 B1
6572889 Guo Jun 2003 B1
6592901 Durig et al. Jul 2003 B2
6623754 Guo et al. Sep 2003 B2
6635280 Shell et al. Oct 2003 B2
6696088 Oshlack et al. Feb 2004 B2
6699503 Sako et al. Mar 2004 B1
6723340 Gusler et al. Apr 2004 B2
6723343 Kugelmann Apr 2004 B2
6733783 Oshlack et al. May 2004 B2
6753009 Luber et al. Jun 2004 B2
6821588 Hammer et al. Nov 2004 B1
6979722 Hamamoto et al. Dec 2005 B2
7074430 Miller et al. Jul 2006 B2
7129248 Chapman et al. Oct 2006 B2
7141250 Oshlack et al. Nov 2006 B2
7157103 Sackler Jan 2007 B2
7176251 Bastioli et al. Feb 2007 B1
RE39593 Buschmann et al. Apr 2007 E
7201920 Kumar et al. Apr 2007 B2
7214385 Gruber May 2007 B2
7230005 Shafer et al. Jun 2007 B2
7300668 Pryce et al. Nov 2007 B2
7332182 Sackler Feb 2008 B2
7388068 Falk et al. Jun 2008 B2
7399488 Hirsh et al. Jul 2008 B2
7510726 Kumar et al. Mar 2009 B2
7674799 Chapman et al. Mar 2010 B2
7674800 Chapman et al. Mar 2010 B2
7683072 Chapman et al. Mar 2010 B2
7776314 Bartholomaus et al. Aug 2010 B2
7842307 Oshlack et al. Nov 2010 B2
7851482 Dung et al. Dec 2010 B2
7939543 Kupper May 2011 B2
7968119 Farrell Jun 2011 B2
7994364 Fischer et al. Aug 2011 B2
8075872 Arkenau-Maric Dec 2011 B2
8101630 Kumar et al. Jan 2012 B2
8114383 Bartholomaeus et al. Feb 2012 B2
8114384 Arkenau et al. Feb 2012 B2
8114838 Marchionni Feb 2012 B2
8192722 Arkenau-Maric et al. Jun 2012 B2
8202542 Mehta et al. Jun 2012 B1
8309060 Bartholomeus et al. Nov 2012 B2
8309122 Kao et al. Nov 2012 B2
8323889 Arkenau-Maric et al. Dec 2012 B2
8329216 Kao et al. Dec 2012 B2
8337888 Wright et al. Dec 2012 B2
8383152 Jans et al. Feb 2013 B2
8420056 Arkenau-Maric et al. Apr 2013 B2
8445023 Guimberteau et al. May 2013 B2
8722086 Arkenau-Maric et al. May 2014 B2
8858963 Devarakonda et al. Oct 2014 B1
9192578 McGinity et al. Nov 2015 B2
20010038852 Kolter et al. Nov 2001 A1
20020012701 Kolter et al. Jan 2002 A1
20020015730 Hoffmann et al. Feb 2002 A1
20020187192 Joshi et al. Feb 2002 A1
20020051820 Shell et al. May 2002 A1
20020114838 Ayer et al. Aug 2002 A1
20020132359 Waterman Sep 2002 A1
20020132395 Iyer et al. Sep 2002 A1
20020176888 Bartholomaeus et al. Nov 2002 A1
20020192277 Oshlack et al. Dec 2002 A1
20030008409 Spearman et al. Jan 2003 A1
20030015814 Krull et al. Jan 2003 A1
20030017532 Biswas et al. Jan 2003 A1
20030021546 Sato Jan 2003 A1
20030044458 Wright et al. Mar 2003 A1
20030044464 Ziegler et al. Mar 2003 A1
20030064099 Oshlack et al. Apr 2003 A1
20030068276 Hughes et al. Apr 2003 A1
20030068370 Sackler et al. Apr 2003 A1
20030068371 Oshlack et al. Apr 2003 A1
20030068375 Wright et al. Apr 2003 A1
20030068392 Sackler Apr 2003 A1
20030069263 Breder et al. Apr 2003 A1
20030077297 Chen et al. Apr 2003 A1
20030091630 Louie-Helm et al. May 2003 A1
20030092724 Huaihung et al. May 2003 A1
20030104052 Berner et al. Jun 2003 A1
20030104053 Gusler et al. Jun 2003 A1
20030118641 Maloney et al. Jun 2003 A1
20030124185 Oshlack et al. Jul 2003 A1
20030125347 Anderson et al. Jul 2003 A1
20030129230 Baichwal et al. Jul 2003 A1
20030133985 Louie-Helm et al. Jul 2003 A1
20030143269 Oshlack et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158242 Kugelmann Aug 2003 A1
20030175326 Thombre Sep 2003 A1
20030198677 Pryce Lewis et al. Oct 2003 A1
20030215508 Davis et al. Nov 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040010000 Ayer et al. Jan 2004 A1
20040011806 Luciano et al. Jan 2004 A1
20040052731 Hirsh et al. Mar 2004 A1
20040052844 Hsiao et al. Mar 2004 A1
20040081694 Oshlack Apr 2004 A1
20040091528 Rogers et al. May 2004 A1
20040126428 Hughes et al. Jul 2004 A1
20040131671 Zhang et al. Jul 2004 A1
20040156899 Louie-Helm et al. Aug 2004 A1
20040170567 Sackler Sep 2004 A1
20040170680 Oshlack et al. Sep 2004 A1
20040185105 Berner et al. Sep 2004 A1
20040213845 Sugihara Oct 2004 A1
20040213848 Li et al. Oct 2004 A1
20050015730 Gunturi et al. Jan 2005 A1
20050031546 Bartholomaeus et al. Feb 2005 A1
20050058706 Bartholomaeus et al. Mar 2005 A1
20050063214 Takashima Mar 2005 A1
20050089475 Gruber Apr 2005 A1
20050089569 Bar-Shalom Apr 2005 A1
20050095291 Oshlack et al. May 2005 A1
20050106249 Hwang et al. May 2005 A1
20050112067 Kumar et al. May 2005 A1
20050127555 Gusik et al. Jun 2005 A1
20050152843 Bartholomaeus et al. Jul 2005 A1
20050181046 Oshlack et al. Aug 2005 A1
20050186139 Bartholomaus et al. Aug 2005 A1
20050191244 Bartholomaeus et al. Sep 2005 A1
20050191352 Hayes Sep 2005 A1
20050192333 Hinze et al. Sep 2005 A1
20050214223 Bartholomaeus et al. Sep 2005 A1
20050220877 Patel Oct 2005 A1
20050222188 Chapman et al. Oct 2005 A1
20050236741 Arkenau et al. Oct 2005 A1
20050245556 Brogman et al. Nov 2005 A1
20050266084 Li et al. Dec 2005 A1
20060002859 Arkenau et al. Jan 2006 A1
20060002860 Bartholomaus et al. Jan 2006 A1
20060004034 Hinze et al. Jan 2006 A1
20060009478 Friedman et al. Jan 2006 A1
20060012701 Sung-Bin Jan 2006 A1
20060017916 Clarke et al. Jan 2006 A1
20060039864 Bartholomaus et al. Feb 2006 A1
20060073102 Huaihung et al. Apr 2006 A1
20060099250 Tian et al. May 2006 A1
20060104909 Vaghefi May 2006 A1
20060182801 Breder et al. Aug 2006 A1
20060188447 Arkenau-Maric et al. Aug 2006 A1
20060193782 Bartholomaus et al. Aug 2006 A1
20060193914 Ashworth et al. Aug 2006 A1
20060194759 Edelson Aug 2006 A1
20060194826 Oshlack et al. Aug 2006 A1
20060240105 Devane et al. Oct 2006 A1
20060240110 Kiick et al. Oct 2006 A1
20060269603 Brown Miller et al. Nov 2006 A1
20070003616 Arkenau-Maric et al. Jan 2007 A1
20070003617 Fischer et al. Jan 2007 A1
20070020188 Sackler Jan 2007 A1
20070020335 Chen et al. Jan 2007 A1
20070042044 Fischer et al. Feb 2007 A1
20070048228 Arkenau-Maric et al. Mar 2007 A1
20070065365 Kugelmann et al. Mar 2007 A1
20070092573 Joshi et al. Apr 2007 A1
20070183979 Arkenau-Maric et al. Aug 2007 A1
20070183980 Arkenau-Maric et al. Aug 2007 A1
20070184117 Gregory et al. Aug 2007 A1
20070190142 Breitenbach et al. Aug 2007 A1
20070196396 Pilgaonkar et al. Aug 2007 A1
20070196481 Amidon et al. Aug 2007 A1
20070224129 Guimberteau et al. Sep 2007 A1
20070231268 Emigh et al. Oct 2007 A1
20070259045 Mannion et al. Nov 2007 A1
20070264327 Kumar et al. Nov 2007 A1
20070269505 Flath et al. Nov 2007 A1
20070292508 Szamosi et al. Dec 2007 A1
20080020032 Crowley et al. Jan 2008 A1
20080063725 Guimberteau et al. Mar 2008 A1
20080069871 Vaughn et al. Mar 2008 A1
20080075669 Soscia et al. Mar 2008 A1
20080075768 Vaughn Mar 2008 A1
20080081290 Wada et al. Mar 2008 A1
20080085304 Baichwal et al. Apr 2008 A1
20080131503 Holm et al. Jun 2008 A1
20080145429 Leyenecker et al. Jun 2008 A1
20080152595 Emigh et al. Jun 2008 A1
20080181932 Bortz et al. Jul 2008 A1
20080220079 Chen Sep 2008 A1
20080233178 Reidenberg et al. Sep 2008 A1
20080234352 Fischer et al. Sep 2008 A1
20080247959 Bartholomaus et al. Oct 2008 A1
20080248113 Bartholomaus et al. Oct 2008 A1
20080280975 Badul et al. Nov 2008 A1
20080311049 Arkenau-Maric et al. Dec 2008 A1
20080311187 Ashworth et al. Dec 2008 A1
20080311197 Arkenau-Maric et al. Dec 2008 A1
20080311205 Habib et al. Dec 2008 A1
20080312264 Arkenau-Maric et al. Dec 2008 A1
20080317695 Everaert et al. Dec 2008 A1
20080317854 Arkenau et al. Dec 2008 A1
20090004267 Arkenau-Maric et al. Jan 2009 A1
20090005408 Arkenau-Maric et al. Jan 2009 A1
20090011016 Cailly-Dufestel et al. Jan 2009 A1
20090017121 Berner et al. Jan 2009 A1
20090022798 Rosenberg et al. Jan 2009 A1
20090081287 Wright et al. Mar 2009 A1
20090081290 McKenna et al. Mar 2009 A1
20090117191 Brown Miller et al. May 2009 A1
20090202634 Jans et al. Aug 2009 A1
20090215808 Yum et al. Aug 2009 A1
20090232887 Odidi et al. Sep 2009 A1
20090253730 Kumar et al. Oct 2009 A1
20090317355 Roth et al. Dec 2009 A1
20090318395 Schramm et al. Dec 2009 A1
20100015223 Cailly-Deufestel et al. Jan 2010 A1
20100035886 Cincotta et al. Feb 2010 A1
20100047345 Crowley et al. Feb 2010 A1
20100092553 Guimberteau et al. Apr 2010 A1
20100098758 Bartholomaus et al. Apr 2010 A1
20100099696 Soscia et al. Apr 2010 A1
20100104638 Dai et al. Apr 2010 A1
20100151028 Ashworth et al. Jun 2010 A1
20100168148 Wright et al. Jul 2010 A1
20100172989 Roth et al. Jul 2010 A1
20100203129 Anderson et al. Aug 2010 A1
20100221322 Bartholomaus et al. Sep 2010 A1
20100249045 Babul Sep 2010 A1
20100260833 Bartholomaus et al. Oct 2010 A1
20100280047 Kolter et al. Nov 2010 A1
20100291205 Downie et al. Nov 2010 A1
20100297229 Sesha Nov 2010 A1
20110020451 Bartholomaus et al. Jan 2011 A1
20110020454 Lamarca Casado Jan 2011 A1
20110038930 Barnscheid et al. Feb 2011 A1
20110082214 Faure et al. Apr 2011 A1
20110092515 Qiu et al. Apr 2011 A1
20110097404 Oshlack et al. Apr 2011 A1
20110129535 Mantelle Jun 2011 A1
20110159100 Anderson et al. Jun 2011 A1
20110187017 Haupts Aug 2011 A1
20110245783 Stinchcomb Oct 2011 A1
20110262496 Desai Oct 2011 A1
20120034171 Arkenau-Maric et al. Feb 2012 A1
20120059065 Barnscheid et al. Mar 2012 A1
20120065220 Barnscheid et al. Mar 2012 A1
20120077879 Vasanthavada et al. Mar 2012 A1
20120107250 Bartholomaus et al. May 2012 A1
20120108622 Wright et al. May 2012 A1
20120135071 Bartholomaus et al. May 2012 A1
20120136021 Barnscheid et al. May 2012 A1
20120141583 Mannion et al. Jun 2012 A1
20120202838 Ghosh et al. Aug 2012 A1
20120225901 Leyendecker et al. Sep 2012 A1
20120231083 Carley et al. Sep 2012 A1
20120251637 Bartholomaus et al. Oct 2012 A1
20120321716 Vachon et al. Dec 2012 A1
20130028970 Schwier et al. Jan 2013 A1
20130090349 Gei Ler et al. Apr 2013 A1
20130129825 Billoet et al. May 2013 A1
20130129826 Gei Ler et al. May 2013 A1
20130171075 Arkenau-Maric et al. Jul 2013 A1
20130209557 Barnscheid Aug 2013 A1
20130225625 Barnscheid et al. Aug 2013 A1
20130251643 Bartholomäus et al. Sep 2013 A1
20130289062 Kumar et al. Oct 2013 A1
20130303623 Barnscheid et al. Nov 2013 A1
20130330409 Mohammad Dec 2013 A1
20140010874 Sackler Jan 2014 A1
20140079780 Arkenau Maric et al. Mar 2014 A1
20140080858 Bartholomäus et al. Mar 2014 A1
20140080915 Bartholomäus et al. Mar 2014 A1
20140094481 Fleischer et al. Apr 2014 A1
20140112984 Arkenau Maric et al. Apr 2014 A1
20140112989 Bartholomäus et al. Apr 2014 A1
20140170079 Arkenau Maric et al. Jun 2014 A1
20140186440 Han et al. Jul 2014 A1
20140356426 Barnscheid et al. Dec 2014 A1
20140356428 Barnscheid et al. Dec 2014 A1
20140378498 Devarakonda et al. Dec 2014 A1
20150017250 Wenig et al. Jan 2015 A1
20150030677 Adjei et al. Jan 2015 A1
20150064250 Ghebre-Sellassie et al. Mar 2015 A1
20150079150 Fischer et al. Mar 2015 A1
20150118300 Haswani et al. Apr 2015 A1
20150118302 Haswani et al. Apr 2015 A1
20150118303 Haswani et al. Apr 2015 A1
20150374630 Arkenau Maric et al. Dec 2015 A1
20160184297 Arkenau-Maric et al. Jun 2016 A1
20160256456 Caruso et al. Sep 2016 A1
20160263037 Arkenau-Maric et al. Sep 2016 A1
20160361308 Bartholomaeus et al. Dec 2016 A1
20160367549 Bartholomaeus et al. Dec 2016 A1
20170027886 Bartholomaus et al. Feb 2017 A1
Foreign Referenced Citations (470)
Number Date Country
046994 Dec 2004 AR
045353 Oct 2005 AR
049562 Aug 2006 AR
053304 May 2007 AR
054222 Jun 2007 AR
054328 Jun 2007 AR
769807 Mar 2001 AU
2003237944 Dec 2003 AU
2003274071 May 2004 AU
2003278133 May 2004 AU
2003279317 May 2004 AU
2004264666 Feb 2005 AU
2004264667 Feb 2005 AU
2004308653 Apr 2005 AU
2005259476 Jan 2006 AU
2005259478 Jan 2006 AU
2006210145 32 Aug 2006 AU
2006210145 Aug 2006 AU
2009207796 Jul 2009 AU
2009243681 Nov 2009 AU
2006311116 Jan 2013 AU
P10413318 Oct 2006 BR
P10413361 Oct 2006 BR
P10513300 May 2008 BR
P10606145 Feb 2009 BR
0722109 Nov 1965 CA
2082573 May 1993 CA
2577233 Oct 1997 CA
2650637 Oct 1997 CA
229621 Mar 1998 CA
2317747 Jul 1999 CA
2343234 Mar 2000 CA
2352874 Jun 2000 CA
2414349 Jan 2002 CA
2456322 Feb 2003 CA
2502965 May 2004 CA
2503155 May 2004 CA
2534925 Feb 2005 CA
2534932 Feb 2005 CA
2489855 Apr 2005 CA
2551231 Jul 2005 CA
2572352 Jan 2006 CA
2572491 Jan 2006 CA
2595954 Jul 2006 CA
2229650 Aug 2006 CA
2594713 Aug 2006 CA
2595979 Aug 2006 CA
2625055 Apr 2007 CA
2713128 Jul 2009 CA
2723438 Nov 2009 CA
2595954 Jan 2011 CA
689109 Oct 1998 CH
20162004 May 2005 CL
20172004 May 2005 CL
200403308 Sep 2005 CL
200500952 Nov 2005 CL
200501624 Dec 2005 CL
200501625 Jun 2006 CL
424-2013 Mar 2012 CL
437-2013 Mar 2012 CL
87102755 Oct 1987 CN
1135175 Nov 1996 CN
1473562 Feb 2004 CN
1980643 Apr 2005 CN
101010071 Jun 2005 CN
1671475 Sep 2005 CN
1863513 Nov 2006 CN
1863514 Nov 2006 CN
101022787 Dec 2006 CN
1917862 Feb 2007 CN
1942174 Apr 2007 CN
101011395 Aug 2007 CN
101027044 Aug 2007 CN
101057849 Oct 2007 CN
101484135 Nov 2007 CN
101091721 Dec 2007 CN
101111232 Jan 2008 CN
101175482 Feb 2008 CN
101370485 Feb 2009 CN
101394839 Mar 2009 CN
101652128 Feb 2010 CN
2530563 Jan 1977 DE
4229085 Mar 1994 DE
4309528 Sep 1994 DE
4446470 Aug 1996 DE
69400215 Oct 1996 DE
19522899 Dec 1996 DE
2808505 Jan 1997 DE
19753534 Jun 1999 DE
19800689 Jul 1999 DE
19800698 Jul 1999 DE
19822979 Dec 1999 DE
69229881 Dec 1999 DE
19855440 Jun 2000 DE
19856147 Jun 2000 DE
19940740 Mar 2001 DE
19960494 Jun 2001 DE
10036400 Jun 2002 DE
69429710 Aug 2002 DE
10250083 Dec 2003 DE
10250084 May 2004 DE
10250087 May 2004 DE
10250088 May 2004 DE
10336400 Mar 2005 DE
10361596 Sep 2005 DE
102004019916 Nov 2005 DE
102004020220 Nov 2005 DE
102004032049 Jan 2006 DE
102004032051 Jan 2006 DE
102004032103 Jan 2006 DE
102005005446 Aug 2006 DE
102005005449 Aug 2006 DE
102007011485 Sep 2008 DE
1658055 Jul 2007 DK
1658054 Oct 2007 DK
1515702 Jan 2009 DK
SP066345 Aug 2006 EC
0008131 Feb 1980 EP
0043254 Jan 1982 EP
0008131 Dec 1982 EP
0177893 Apr 1986 EP
0216453 Apr 1987 EP
0226061 Jun 1987 EP
0228417 Jul 1987 EP
0229652 Jul 1987 EP
0232877 Aug 1987 EP
0239973 Oct 1987 EP
0240906 Oct 1987 EP
0261616 Mar 1988 EP
0261616 Mar 1988 EP
0270954 Jun 1988 EP
0277289 Aug 1988 EP
0293066 Nov 1988 EP
0328775 Aug 1989 EP
0228417 Sep 1990 EP
0229652 Oct 1991 EP
0477135 Mar 1992 EP
0277289 Apr 1992 EP
0293066 Apr 1993 EP
0270954 May 1993 EP
0544144 Jun 1993 EP
0583726 Feb 1994 EP
0598606 May 1994 EP
0636370 Feb 1995 EP
0641195 Mar 1995 EP
0647448 Apr 1995 EP
0654263 May 1995 EP
0661045 Jul 1995 EP
0675710 Oct 1995 EP
0682945 Nov 1995 EP
0693475 Jan 1996 EP
0820693 Jan 1996 EP
0696598 Feb 1996 EP
0216453 Mar 1996 EP
0583726 131 Nov 1996 EP
0756480 Feb 1997 EP
0760654 Mar 1997 EP
0761211 Mar 1997 EP
0780369 Jun 1997 EP
0785775 Jul 1997 EP
0809488 Dec 1997 EP
0820698 Jan 1998 EP
0820753 Jan 1998 EP
0857062 Aug 1998 EP
0864324 Sep 1998 EP
0598606 Jun 1999 EP
0675710 Aug 1999 EP
0661045 81 Jul 2002 EP
1658054 Feb 2005 EP
1658055 Feb 2005 EP
1515702 Mar 2005 EP
1527775 Apr 2005 EP
1558221 Aug 2005 EP
1558257 Aug 2005 EP
1560585 Aug 2005 EP
1611880 Jan 2006 EP
1658054 May 2006 EP
1740161 Jan 2007 EP
1658055 Mar 2007 EP
1765303 Mar 2007 EP
1786403 May 2007 EP
1558221 Jun 2007 EP
1842533 Oct 2007 EP
1845955 Oct 2007 EP
1845956 Oct 2007 EP
1859789 Nov 2007 EP
1980245 Oct 2008 EP
1897545 Dec 2008 EP
2131830 Dec 2009 EP
2246063 Nov 2010 EP
2249811 Nov 2010 EP
2273983 Jan 2011 EP
2402004 Jan 2012 EP
2336571 Dec 2004 ES
2260042 Nov 2006 ES
2285497 Nov 2007 ES
2288621 Jan 2008 ES
2289542 Feb 2008 ES
2315505 Apr 2009 ES
1147210 Apr 1969 GB
1567727 May 1980 GB
2047095 Nov 1980 GB
2057878 Apr 1981 GB
2238478 Jun 1991 GB
20070456 Jun 2007 HR
20070272 Nov 2007 HR
S36-022895 Nov 1961 JP
S55162714 Dec 1980 JP
S5659708 May 1981 JP
S56169622 Dec 1981 JP
S62240061 Oct 1987 JP
H0249719 Feb 1990 JP
03-501737 Apr 1991 JP
H0517566 Jan 1993 JP
H06507645 Sep 1994 JP
08053331 Feb 1996 JP
8-505076 Jun 1996 JP
H09508410 Aug 1997 JP
H1057450 Mar 1998 JP
H10251149 Sep 1998 JP
2002524150 Aug 2002 JP
2002-275175 Sep 2002 JP
2003125706 May 2003 JP
2005506965 Mar 2005 JP
2005515152 May 2005 JP
2005534664 Nov 2005 JP
2007501201 Jan 2007 JP
2007501202 Jan 2007 JP
2007513147 May 2007 JP
2007533692 Nov 2007 JP
2008024603 Feb 2008 JP
2008504327 Feb 2008 JP
2008528654 Jul 2008 JP
2009523833 Jun 2009 JP
2009531453 Sep 2009 JP
2009537456 Oct 2009 JP
2011504455 Feb 2011 JP
2011506493 Mar 2011 JP
2013536810 Sep 2013 JP
2014505736 Mar 2014 JP
2014528437 Oct 2014 JP
1020060069832 Jun 2006 KR
20070039041 Apr 2007 KR
20070111510 Nov 2007 KR
20090085312 Aug 2009 KR
20100111303 Oct 2010 KR
20110016921 Feb 2011 KR
2007000008 Mar 2007 MX
2007000009 Mar 2007 MX
2007009393 Aug 2007 MX
2010008138 Aug 2010 MX
2010012039 Nov 2010 MX
20061054 Mar 2006 NO
20070578 Jan 2007 NO
20074412 Nov 2007 NO
528302 Feb 2007 NZ
1699440 Dec 2004 PT
1658054 May 2006 PT
1658055 Jul 2007 PT
1515702 Dec 2008 PT
2131244 Jun 1999 RU
2198197 Feb 2003 RU
2396944 Jul 2004 RU
2220715 Nov 2004 RU
2326654 02 Sep 2005 RU
2339365 Dec 2007 RU
2354357 Dec 2007 RU
2007103712 Sep 2008 RU
2007103707 Nov 2008 RU
2007132975 Apr 2009 RU
2567723 Nov 2015 RU
1515702 Apr 2009 SI
1699440 Nov 2009 SI
10612003 Jan 2004 SK
1759445 Sep 1992 SU
1254634 May 2006 TW
WO 1980000841 May 1980 WO
WO 1989005624 Jun 1989 WO
WO 1990003776 Apr 1990 WO
WO 1993006723 Apr 1993 WO
WO 9310765 Jun 1993 WO
WO 1993010758 Jun 1993 WO
WO 1993011749 Jun 1993 WO
WO 1993023017 Nov 1993 WO
WO 1994006414 Mar 1994 WO
WO 1994008567 Apr 1994 WO
WO 1995017174 Jun 1995 WO
WO 1995020947 Aug 1995 WO
WO 1995022319 Aug 1995 WO
WO 1995030422 Nov 1995 WO
WO 1996000066 Jan 1996 WO
WO 1996003979 Feb 1996 WO
WO 1996014058 May 1996 WO
WO 1997000673 Jan 1997 WO
WO 1997033566 Sep 1997 WO
WO 1997049384 Dec 1997 WO
WO 1998035655 Feb 1998 WO
WO 1998020073 May 1998 WO
WO 1998028698 Jul 1998 WO
WO 1998035655 Aug 1998 WO
WO 1998051758 Nov 1998 WO
WO 1999012864 Mar 1999 WO
WO 1999032120 Jul 1999 WO
WO 1999044591 Sep 1999 WO
WO1999045887 Sep 1999 WO
WO 1999048481 Sep 1999 WO
WO 2000013647 Mar 2000 WO
WO 2000033835 Jun 2000 WO
WO 2000040205 Jul 2000 WO
WO 2001008661 Feb 2001 WO
WO 2001012230 Feb 2001 WO
WO 2001052651 Jul 2001 WO
WO 2001058451 Aug 2001 WO
WO 2001015667 Dec 2001 WO
WO 2001097783 Dec 2001 WO
WO 2002026061 Apr 2002 WO
WO 2002026262 Apr 2002 WO
WO 2002026928 Apr 2002 WO
WO 2002035991 May 2002 WO
WO 2002071860 Sep 2002 WO
WO 2002088217 Nov 2002 WO
WO 2002094254 Nov 2002 WO
WO 2003006723 Jan 2003 WO
WO 2003013433 Feb 2003 WO
WO 2003013476 Feb 2003 WO
WO 2003013479 Feb 2003 WO
WO 2003013538 Feb 2003 WO
WO 2003015531 Feb 2003 WO
WO 2003018015 Mar 2003 WO
WO 2003024426 Mar 2003 WO
WO 2003024430 Mar 2003 WO
WO 2003026624 Apr 2003 WO
WO 2003026743 Apr 2003 WO
WO 2003028698 Apr 2003 WO
WO 2003028990 Apr 2003 WO
WO 2003031546 Apr 2003 WO
WO 2003035029 May 2003 WO
WO 2003035053 May 2003 WO
WO 2003035054 May 2003 WO
WO 2003035177 May 2003 WO
WO 2003039561 May 2003 WO
WO 2003049689 Jun 2003 WO
WO 2003053417 Jul 2003 WO
WO 2003068392 Aug 2003 WO
WO 2003070191 Aug 2003 WO
2003526598 Sep 2003 WO
WO 2003092648 Nov 2003 WO
WO 2003094812 Nov 2003 WO
WO 2003105808 Dec 2003 WO
WO 2004004693 Jan 2004 WO
WO 2004043967 Feb 2004 WO
WO 2004026262 Apr 2004 WO
WO 2004026263 Apr 2004 WO
WO 2004026280 Apr 2004 WO
WO 2004037230 May 2004 WO
WO 2004037259 May 2004 WO
WO 2004037260 May 2004 WO
WO 2004066910 Aug 2004 WO
WO 2004078212 Sep 2004 WO
WO 2004084869 Oct 2004 WO
WO 2004093801 Nov 2004 WO
WO 2004093819 Nov 2004 WO
WO 2004098567 Nov 2004 WO
WO 2004100894 Nov 2004 WO
WO 2005016313 Feb 2005 WO
WO 2005016314 Feb 2005 WO
WO 2005032524 Apr 2005 WO
WO 2005041968 May 2005 WO
WO 2005053587 Jun 2005 WO
WO 2005053656 Jun 2005 WO
WO 2005055981 Jun 2005 WO
WO 2005060942 Jul 2005 WO
WO 2005063214 Jul 2005 WO
WO 2005065646 Jul 2005 WO
WO 2005066183 Jul 2005 WO
WO 2005079760 Sep 2005 WO
WO 2005102286 Nov 2005 WO
WO 2005102294 Nov 2005 WO
WO 2005102294 Nov 2005 WO
WO 2005105036 Nov 2005 WO
WO 2006002883 Jan 2006 WO
WO 2006002884 Jan 2006 WO
WO 2006002886 Jan 2006 WO
WO 2006002884 Mar 2006 WO
WO 2006039692 Apr 2006 WO
WO 2006058249 Jun 2006 WO
WO 2006082097 Aug 2006 WO
WO 2006082099 Aug 2006 WO
WO 2006105615 Oct 2006 WO
WO 2006128471 Dec 2006 WO
WO 2007005716 Jan 2007 WO
WO 2007008752 Jan 2007 WO
WO 2007014061 Feb 2007 WO
WO 2007048233 May 2007 WO
WO 2007053698 May 2007 WO
WO 2007085024 Jul 2007 WO
WO 2007085024 Jul 2007 WO
WO 2007103105 Sep 2007 WO
WO 2007103286 Sep 2007 WO
WO 2007112273 Oct 2007 WO
WO 2007112285 Oct 2007 WO
WO 2007112286 Oct 2007 WO
WO 2007131357 Nov 2007 WO
WO 2008023261 Feb 2008 WO
WO 2008033523 Mar 2008 WO
WO 2008069941 Jun 2008 WO
WO 2008086804 Jul 2008 WO
WO 200807149 Sep 2008 WO
WO 2008107149 Sep 2008 WO
WO 2008109462 Sep 2008 WO
WO 2008132707 Nov 2008 WO
WO 2008142627 Nov 2008 WO
WO 2008148798 Dec 2008 WO
WO 2009005803 Jan 2009 WO
WO 2009014534 Jan 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009035474 Mar 2009 WO
WO 2009051819 Apr 2009 WO
WO 2009076764 Jun 2009 WO
WO 2009092601 Jul 2009 WO
WO 2009110005 Sep 2009 WO
WO 2009112273 Sep 2009 WO
WO 2009135680 Nov 2009 WO
WO 2010022193 Feb 2010 WO
WO 2010044842 Apr 2010 WO
WO 2010057036 May 2010 WO
WO 2010066034 Jun 2010 WO
WO 2010069050 Jun 2010 WO
WO 2010083843 Jul 2010 WO
WO 2010083894 Jul 2010 WO
WO 2010088911 Aug 2010 WO
WO 2010105672 Sep 2010 WO
WO 2010140007 Dec 2010 WO
WO 2010140007 Dec 2010 WO
WO 2010149169 Dec 2010 WO
WO 2011008298 Jan 2011 WO
WO 2011009602 Jan 2011 WO
WO 2011009603 Jan 2011 WO
WO 2011009604 Jan 2011 WO
WO 2011095314 Aug 2011 WO
WO 2011095314 Aug 2011 WO
WO 2011128630 Oct 2011 WO
WO 2011154414 Dec 2011 WO
WO 2012028317 Mar 2012 WO
WO 2012028318 Mar 2012 WO
WO 2012028319 Mar 2012 WO
WO 2012061779 May 2012 WO
WO 2012076907 Jun 2012 WO
WO 2012119727 Sep 2012 WO
WO 2012166474 Dec 2012 WO
WO 2013003845 Jan 2013 WO
WO 2013017234 Feb 2013 WO
WO 2013017242 Feb 2013 WO
WO 2013030177 Mar 2013 WO
WO 2013050539 Apr 2013 WO
WO 2013072395 May 2013 WO
WO 2013084059 Jun 2013 WO
WO 2013127830 Sep 2013 WO
WO 2013127831 Sep 2013 WO
WO 2013128276 Sep 2013 WO
WO 2013156453 Oct 2013 WO
WO 2013167735 Nov 2013 WO
WO 2014059512 Apr 2014 WO
WO 2014190440 Dec 2014 WO
WO 2014191396 Dec 2014 WO
WO 2014191397 Dec 2014 WO
WO 2015004245 Jan 2015 WO
WO 2015103379 Jul 2015 WO
Non-Patent Literature Citations (386)
Entry
Chibuzor et al. (Hindawi Publ. Corporation ISRN Pharmaceutics, vol. 2013, Article ID 838403, 8 pages.
Sathish et al. (International J. of Pharmaceutical sciences; 5(4) (2013).
Verhoeven et al (European Journal of Pharmaceutics and Biopharmaceutics, 63(3) 320-330; (2006).
2.9 Methoden der pharmazeutischen Technologie, European Pharmacopeia, 143-144, 1997, (Full English translation attached).
Albertini, B. “New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances” European Journal of Pharmaceutics and Biopharmaceutics 69 (2008) 348-357.
Almeida, A. et al., Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion, European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 297-305.
Almeida, A. et al., Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide, European Journal of Pharmaceutics and Biopharmaceutics 82 (2012) 526-533.
Andre et al., “O-Demethylation of Opiod Derivatives With Methane Sulfonic Acid/Methoinine: Application to the Synthesis of Naloxone and Analogues” Synthetic Comm. 22(16), pp. 2313-2327, 1992.
Apicella A.et al., Biomaterials, vol. 14, No. 2, pp. 83-90,1993.
Application of a modelling system in the formuiation of extended release hydrophilic matrices, Reprinted from Pharmaceutical Technology Europe, Jul. 2006.
Application of Opadry II, complete film coating system, on metformin HCI extended release matrices containing Polyox water soluble resin, Colorcon Apr. 2009.
Arnold C., “Teen Abuse of Painkiller OxyContin on the Rise,” www.npr.org, Dec. 19, 2005.
Augustine, R.L., Catalytic Hydrogenation of a, B-Unsaturated Ketones. III The Effect of Quantity and Type of Catalysts,′ J.Org Chem. 28(1), pp. 152-155, Abstract 1963.
Avis, Kenneth, Parenteral Preparations. Chapter 85. pp. 1518-1541In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Bailey, F.E., et al., “Some properties of poly(ethylene oxide)′ in aqueous solution,” Journal of Applied Polymer Science, vol. 1, Issue No. 1, pp. 56-62, 1959.
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Eight Edition 2006. Stuttgart, pp. 343-352.
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Sixth Edition 1999. Stuttgart, pp. xIX-XV, Table of contents. (Full English translation attached).
Bauer, Kurt H., et al., Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials, 1st edition, 1998, CRC Press, Medpharm Scientific Publishers. (Preface, Table of Content, List of Abbreviations, Explanation of Terms only).
Baum et al.,“The impact of the addition of naloxone on the use and abuse of pentazocine”, Public Health Reports, Jul.-Aug. 1987, vol. 102, No. 4, p. 426-429.
Block, Lawrence. Medicated Applications. Chapter 88. In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Braun, et al. A study of Bite Force. Part 2: Relationship to Various cephalometric Measurements. Angel Orthodontist, vol. 65 (5) pp. 373-377, 1995.
Brown, The Dissolution Procedure: Development and Validation, heading “Study Design”, “Time Points” US Pharmacopoeia (USP), vol. 31(5), General Chapter 1092, pp. 1 -15, 2006.
Caraballo, Journal of Controlled Release, vol. 69, pp. 345-355, 2000.
Carbopol 71G, retrieved Mar. 10, 2014 from http://www.lubrizol.com/LifeScience/Products/Carbopol71G-NF.html.
Cawello, “Parameters for Compartment-free Pharmacokinetics—Standardization of Study Design, Data Analysis and Reporting” 1999, pp. XI-XIII (table of contents).
Committee for Proprietary Medicinal Products. Note for Guidance on the Investigation of Bioavailability and Bioequivalence. 2001. pp. 1-18.
Coppens et al., “Hypromellose, Ethylcellulose, and Polyethylene Oxide Use in Hot Melt Extrusion”; Pharmaceutical Technology, 62-70, Jan. 2005.
Cornish, P. “Avoid the Crush”: hazards of medication administration in patients with dysphagia or a feeding tube, CMA Media Inc., CMAJ. 172(7), pp. 871-872, 2005.
Costa et al. “Modeling and comparison of dissolution profiles”; European Journal of Pharmaceutical Sciences 13 (2001) 123-33.
Crowley M.M. et al., “Stability of polyethylene oxide in matrix tablets prepared by hot-metl extrusion,” Biomaterials 23, 2002, pp. 4241-4248.
Crowley MM, Drug Dev Ind Pharm. Sep. 2007; 33(9);909-26. (Abstract only).
Dachille et al., “High-pressure Phase Transformations in Laboratory Mechanical Mixers and Mortars”, Nature, vol. 186, Apr. 2, 1960, pp. 34 and 71.
Dachille, F. et al., “High-Pressure Phase Transformation in Laboratory Mechanical Mixers and Mortars”, 1960., Nature, vol. 186, pp. 1-2 (abstract).
Davies, et al; European Journal of Pharmaceutics and Biopharmaceutics, 67, 2007, pp. 268-276.
Dean, D.A., E.R. Evans, I.H. Hall, Pharmaceutical Packaging Technology, Taylor & Francis, 1st Edition, Nov. 30, 2000 (Publisher description dated Oct. 22, 2010).
Deighan, C.J. et al.. Rhabdomyolysis and acute renal failure resulting from alcohol and drug abuse, Q.J. Med, vol. 93, 2000, pp. 29-33.
Dejong (Pharmaceutisch Weekblad Scientific Edition) 1987, p. 24-28.
Dexheimer, Terahertz Spectroscopy: Principles and Applications (Optical Science and Engineering Series), CRC; 1 edition 2007. (Table of content only)
Dierickx et al., “Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices,” European Journal of Pharmaceutics and Biopharmaceutics 81 (2012), 683-689.
Disanto, Anthony. Bioavailability and Bioequivalency Testing. Chapter 77. In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Dow Chemical Company, “Using Dow Excipients for Controlled Release of Drugs in Hydrophilic Matrix Systems”, Sep. 2006, pp. 1-36.
Dow Excipients Chem. of Poly. Water Soluble-Resin 2004, pp. 1-2.
Dow Technical Data, Polyox WSR Solid Dosage Formulation via Melt Extrusion, Feb. 2003, pp. 1-3.
Efentakis M et al. “Evaluation of High Molecular Weight Poly(Oxyethylene) (Polyox) Polymer: Studies of Flow Properties and Release Rates of Furosemide and Captopril from controlled-Release hard Gelatin Capsules”, Pharmaceutical Development and Technology, 5 (3), pp. 339-346, 2000.
Eggleston, “The seat of the emetic action of various drugs,” J. Pharmacol. Exp. Ther. 7, 225-253 (1915).
El-Egakey, Adel et al, “Hot extruded dosage forms Part I Technology and dissolution kinetics of polymeric matrices” Pharmacerutica Acta Helvetiae, vol. 46, pp. 31-53,Mar. 19, 1970.
El-Sherbiny I.M. et al “Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interplymeric pH and thermally-resposive hydrogels”, European Polymer Journal, vol. 41, pp. 2584-2591, 2005.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 1, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 2, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 3 edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 4, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 5, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 6, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmacological Technology, Informa Healthcare, 1st Ed., 1996, vol. 14 (Table of Content only).
Erskine, Jr., Clyde. Quality Assurance and Control. Chapter 83 pp. 1487-1491 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Eudragit NE4OD web page from Evonik website; downloaded Feb. 24, 2015.
Eudragit RS PO web page from Evonik website; downloaded Feb. 24, 2015.
European Pharmacopoeia 2.9.40 “Uniformity of Dosage Units”, 2006, pp. 3370-3373.
European Pharmacopoeia 5.0, 2.9.8 “Resistance to Crushing of Tablets”, 2005, p. 235.
European Pharmacopoeia, Third Edition Supplement 2000, Council of Europe, Strasbourg, 2000 pp. 85-107.
European Pharmacopoeia, Third Edition, Council of Europe, Strasbourg, 1997, pp. 127-152.
European Search Report and Opinion Application No. 12002708.1-1219, Sep. 24, 2012.
European Search Report and Opinion Application No. 14176277.3-1460, dated Dec. 15, 2014.
European Search Report and Opinion, Application No. 11006253.6-2112, dated Dec. 16, 2011.
European Search Report and Opinion, Application No. 11006254.4-2112, dated Dec. 16, 2011.
European Search Report and Opinion, Application No. 11008131.2-1219, dated Feb. 24, 2012.
European Search Report and Opinion, Application No. 11009129.5-2112, dated Apr. 10, 2012.
European Search Report and Opinion, Application No. 12001296.8-1219, dated Jun. 26, 2012.
European Search Report and Opinion, Application No. 12001301.6-1219, dated Jun. 26, 2012.
European Search Report and Opinion, Application No. 12003743.7-1219, dated Sep. 24, 2012.
European Search Report and Written Opinion for EP Application No. 13169658.5, dated Aug. 6, 2013.
European Search Report and Written Opinion for EP Application No. 13169659.3, dated Aug. 6, 2013.
European Search Report and Written Opinion for EP Application No. 13176309.9-1460, dated Oct. 9, 2013.
European Search Report and Written Opinion for EP Application No. 13197503.9-1460, dated Feb. 18, 2014.
European Search Report and Written Opinion for EP Application No. 13425151.1-1460, dated Mar. 11, 2014.
European Search Report and Written Opinion for EP Application No. 14169801.9-1455 dated Oct. 20, 2014.
Evaluation of Verapamil HCL (240 mg) Extended Release Matrix Formulation Using USP Apparatus III in Biorelevant Dissolution Media, Jul. 2009.
Evonik Industries, Eudragit Application Guidelines, 10th Edition, 2008, (Table of Contents only).
Evonik Rohm GmbH product brochure: EUDRAGIT acrylic polymers for solid oral dosage forms.
Fell J.T., et al, “Determinination of Tablet Strength by the Diametral-Compression Test” Journal of Pharmaceutical Sciences, vol. 59, No. 5, May 1970, pp. 688-691.
Follonier N. et al., “Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs,” Drug Development and Industrial Pharmacy, 20(8), pp. 1323-1339, 1994.
Follonier, N. et al., “Various ways of modulating the release of ditiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials” Journal of Controlled Release 36, pp. 243-250, 1995.
Formulation of Polyox ER Matrices for a Highly Soluble Active, Colorcon Jul. 2009.
Foye, W., Principles of Medicinal Chemistry; Analgesics pp. 241-242, at 241 (1989).
Foye, W., Principles of Medicinal Chemistry; Structural Features and Pharmacologic Activity, pp. 63-66 at 65 (1989).
Freed et al., “pH Control of Nucleophilic/electrophilic oxidation”, International Journal of Pharmaceutics, vol. 357, pp. 180-188 (2008).
Giles R. et al. Plastic Packaging Materials. Chapter 81. pp. 1473-1477 in Remington's Pharmaceutical Sciences. 17th Ed. 1985.
Glyceryl behenate monograph; European Pharmacopeia 5.0; dated Jan. 2005; downloaded Feb. 24, 2015.
Goodman and Gilman, “The Pharmacological Basis of Therapeutics, Seventh Edition”, MacMillan Publishing Company, Table of Contents. 1985.
Goodman and Gilman, 1985, 7th edition, chapter 22, 491-530.
Goodman and Gilman, 1985, 7th edition, chapter 23, 533-579.
Graham N.B., Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, p. 263-291 Chapter 17, 1992.
Griffin W, “Classification of Surface-Active Agents by HLB” Journal of the Society of Cosmetic Chemists, Atlas Powder Company, 1949, pp. 311-326,.
Griffith, et al. “Tablet Crushing and the Law: The Implications for Nursing” Professional Nurse 19(1), pp. 41-42, 2003.
Gryczke et al. “Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion”, Colloids and surfaces., B, Biointerfaces, Elsevier, Amsteram, NL, vol. 86, No. 2, Apr. 5, 2011, pp. 275-284.
Guidance for industry—Bioavailability and Bioequivalence—Studies for Orally Administered Drug Products—General Considerations, FDA, BP, Announced in the Federal Register: vol. 68, No. 53/Mar. 19, 2003.
Guidance for industry—Statistical Approaches to Establishing Bioequivalence, FDA, BP, Jan. 2001.
Handbook of Pharmaceutical Excipients, 1935, American Pharmaceutical Association, Washington, DC and London (Table of Content Only).
Handbuch der Kunststoff-Extrusionstechnik 1, “Grundlagen” in Chapter 1.2 “Klassifizierung von Extrudern”, pp. 3-7. 1989. (Full english translation attached).
Hanning C.D.et al. “The Morphone Hydrogel Suppository. A New Sustained release Rectal Preparation”, British Journal of Anaesthesia, 61, pp. 221-227, 1988.
Hartauer, Kerry J. “Influence of Peroxide Impurities in Povidone and Crospovidone on the Stability of Raloxife” Pharma. Dev. & Tech, 5 (3) 303-310 (2000).
Henriest D. et al. In vitro and in vivo evaluation of starch-based hot stage extruded double matrix systems. Journal of Controlled Release. 2001, vol. 75, pp. 391-400.
Hoepfner et al. Fiedler Encyclopedia of Excipients. Sixth Edition, 2007, Aulendorf, Germany; Table of Contents only.
Hong S. et al. Dissolution kinetics and physical characterization of three-layered tablet with poly(ethylene oxide) core matrix capped by Carbopol. Int .J. Pharmacol. 2008, vol. 356, pp. 121-129.
Inert gas—Wikipedia, Dec. 2009, pp. 1-3.
Investigation of a Directly Compressible Metformin HCI 500mg Extended Release Formulation Based on Hypromellose, Colorcon Jul. 2009.
James, A. “The legal and clinical implications of crushing tablet medication”, Nurse Times 100(50), 28-33, 2004.
Janicki S. et al. “Slow-Release Microballs: Method of Preparation” Acta Pharm. Technol. 33(3) 154-155, 1987.
Jannetto, P. et al, “Oxycodone: Recognition and Pharmacogenomics,” Toxicology News, Mar. 2003, 1-7.
Kalant H. et al., Death in Amphetamine Users: Caues and Rates, CMA Journal, vol. 112 (Feb. 8, 1975): 299-304.
Katz N. et al. “Challenges in the development of prescription opioid abuse-deterrent formulations”, Clin. J. Pain, 23(8): 648-660 (Oct. 2007).
Kim C.-J. “Drug Release from Compressed Hydrophilic Polyox-WSR Tablets” J Pharm. Sciences 1995, 84(3): pp. 303-306.
Kim N et al. “Preparation and Evaluation of Eudragit Gels. V. Rectal Gel Preparations for Sustained Release and Avoidance of First-Pass Metabolism of Lidocaine”, Chem. Pharm Bull. 1992 40(10), 2800-2804.
King et al. Oral Solid Dosage Forms. Chapter 90. pp. 163-1632 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
King, R, “Tablets, Capsules, and Pills” Remington's Pharmaceutical Sciences, pp. 1553-1593, Ch. 89, 1980, 16th Edition.
King, Remington's Pharmaceutical Sciences 17th ed., Chapter 78, p. 1418 (1985).
Knevel, Adelbert. Separation. Chapter 78. pp. 1432-1442 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Kolter, K., “Compression Behaviour of Kollidon SR,” APV/ APGI 2002, Florence, Apr. 11, 2002.
Kondrat, T. , “Technology dosage forms” Moscow 1991, p. 96.
Lee, Y.-S. et al., Principles of Terahertz Science and Technology (Lecture Notes in Physics), Springer; 1 edition 2008. (Table of Contents Only).
Lenindzer, A., “The molecular basis of the structure and functions of cells” Moscow 1974, p. 68.
Levina et al., “The Effect of Ultrasonic Vibration on the Compaction Characteristics of Ibuprofen” Drug Development and Industrial Pharmacy, vol. 28, No. 5, pp. 495-514, 2002.
Levina M. et al “The Effect of Ultrasonic Vibration on the Compaction Characteristics of Paracetamol”, Journal of Pharmaceutical Sciences, vol. 89, No. 6, pp. 705-723, Jun. 2000.
Li et al, “Characterization of Poly(Ethylene Oxide) as a Drug Carrier in Hot-Melt Extrusion”, Drug Development and Industrial Pharmacy, vol. 32, No. 8, Jan. 1, 2006, pp. 991-1002.
Lieberman, Herbert A., Pharmaceutical Dosage Forms, Tablets, Second Edition, Revised and Expanded, 1990. vol. 2 (Cover and Table of Content only).
Lintner, Carl. Stability of Pharmaceuticai Products. Chapter 82. pp. 1478-1486 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Liu J. et al., “Properties of Lipophilic Matrix Tables Containing Phenylpropanolamine Hydrochloride Prepared by Hot-Melt Extrusion”, EJPB, 52 (2001), pp. 181-190.
Lockhart H. et al, “Packaging of Pharnaceuticals and Health Care Products”; Blackie & Professional; First Edition 1996. (Table of contents only).
Longer et al, Sustained-Release Drug Delivery Systems. Chapter 92. pp. 1611-1661 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Madorsky S.L. “Thermal degradation of Polyethylene Oxide and Polypropylene Oxide”, Journal of Polymer Science, pp. 183-194 vol. 36, No. 3, Mar. 1959.
Maggi et al., “Dissolution behavior of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study” Biomaterials, 2002, 23, 1113-1119.
Maggi L.etal, “High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage form”, 2000, International Journal of Pharmaceutics, 195 pp. 229-238.
Maggi, C., Therapeutic Potential of Capsaicin-like Molecules. Life Sciences, vol. 51, pp. 1777-1781, 1992.
Mank R. et al., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 1: Untersuchung zur Wirkstoffliberation” Pharmazie 44, H. 11, pp. 773-776, 1989. English language translation of relevant paragraph provided.
Mank R., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 2: Unersuchungen zur Optimierung der Wirkstofffreigabe” Pharmazie 45, H. 8, pp. 592-593 1990. English language translation of relevant paragraph provided.
Marques, Tablet breaking force, 2008.
Matos, Dr. Rick, Ph.D—Letter Jan. 6, 2011.
McGary, C.W., Jr. “Degradation of Poly(ethylene Oxide)”, Journal of Polymer Science vol. XLVI 1960, pp. 51-57.
McGinity et al., Hot-Melt Extrusion as a Pharmaceutical Process, American Pharmaceutical Review, vol. 4 (2), pp. 25-36, 2001.
McGinity, J.W.—Letter of Jan. 26, 2009, pp. 1-4.
McNeill M. et al. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels. 4. Extended constant rate release from partly-coated spheres. Journal Biomet. Sci. Polymer. Ed. 1996, vol. 7, pp. 953-963.
Mesiha M.S. et al “A Screening Study of Lubricants in Wet Powder Passes Suitable for extrusio-spheronization”, Drug Development and Industrial Pharmacy. 19(8), pp. 943-959, 1993.
Metformin Hydrochloride 1000 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Nov. 20, 2009, Previous Edition Dec. 19, 2008.
Metformin Hydrochloride 750 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010.
Miles, R.E. et al., Terahertz Frequency Detection and Identification of Materials and Objects (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer; 1 edition 2007. (Table of contents).
Miller “To crush or not to crush? What to consider before giving medications to a patent with a tube or who has trouble swallowing”, Nursing, pp. 50-52, Feb. 2000.
Mises à jour cumulatives, Vidal, Jan./Oct. 2002 (full translation attached).
Mitchell, “Oral Dosage Forms That Should Not Be Crushed: 2000 Update” Hospital Pharmacy 35(5), 553-557, 2000.
Moorman-Li, R. et al, “A Review of Abuse-Deterrent Opioids for Chronic Nonmalignant Pain.” Pharmacy and Therapeutics, vol. 37 No. 7, Jul. 2012, pp. 412-421.
Morissette et al. Advanced Drug Delivery Review 26 (2004), 275-300.
Moroni A. et al, “Application of Poly(Oxyethylene) Homopolymers in Sustained release Solid formulations” Drug Development and Industrial Pharmacy, 21(12) pp. 1411-1428, 1995.
Mullins, John. Ophthalmic Preparations, Chapter 87. pp. 1553-1563; In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Munjal M. et al., “Polymeric Systems for Amorphous DeltaΛ9—Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability” Journal of Pharmaceutical Sciences vol. 95 No. 11, Wiley InterScience, 2006, pp. 2473-2485.
Munsell Color Company, “The Munsell Book of Color: Glossy Collection”, X-Rite, Originally published in 1966, pp. 1-7.
Nairn, J.G., Solutions, Emulsion, Suspensions and Extractives. Chapter 84. pp. 1492-1517, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Note for Guidance on Stability Testing, EMEA, Aug. 2003, pp. 1-20.
Note for Guidance on the Investigation of Bioavailability and Bioequivalence, EMEA, London, Jul. 26, 2001 (CPMP/EWP/QWP/1401/98).
Ohnishi N. et al., Effect of the Molecular Weight of Polyethylene Glycol on the Bioavailability of Indomethacin Sustained-Release suppoositories Prepared with Solid Dispersion, Chem. Pharm. Bull, 35(8), pp. 3511-3515, 1987.
Oliveira et al., “Production and characterization of laminar coextrudates at room temperature in the absence of solvents,” AAPS Annual Meeting and Exposition, Oct. 14-18, 2012, Chicago, USA.
Oxicotin: Balancing Risks and Benefits, United States Senate, Hearing, Feb. 12, 2002.
Oxycodon (Oxygenic): Missbrauch, Abhaengigkeit und toedliche Folgen durch Injection zerstossener Retardtabletten, Deutsches Ärzteblatt, vol. 36, A2326-A2326, Sep. 5, 2003.
Ozeki T. et al. “Control of Medicine Release From Solid Dispersion Through Poly(ethylene oxide)-Carboxyvinylpolymer Interaction”, International Journal of Pharmaceutics, 165, 1998, pp. 239-244.
Ozeki T. et al. “Controlled Release From Solid Dispersion Composed of Poly(ethylene oxide)—Carbopol lnterpolymer Complex With Various Cross-Linking Degrees of Carbopol”, Journal of Controlled Release. 63, 2000. pp. 287-295.
Ozeki T. et al., “Control of medicine release from solid dispersion composed of the poly(ethylene oxide)-carboxyviyipolymer interpolymer complex by varying molecular wight of polyethylene oxide)”Journal of Controlled Release 58, pp, 87-95, 1999.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2010/004459 dated Dec. 1, 2010.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2009/003290 dated Jul. 9, 2009.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/053894 dated Mar. 22, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/057851 dated Jun. 12, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/059728 dated Aug. 6, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/064830 dated Aug. 6, 2014.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/075618 dated Feb. 11, 2015.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/0777748 dated Feb. 12, 2015.
PCT Second Written Opinion for PCT Application No. PCT/EP2013/053893 dated Feb. 21, 2014.
PCT Second Written Opinion for PCT Application No. PCT/EP2013/057851 dated Apr. 15, 2014.
Pentoxifylline 400 mg Extended Release Tablets, Lubrizol Advanced Materials Inc., Mar. 3, 2011, Previous Edition Nov. 19, 2009.
Perez-Marcos, B., Usefulness of certain varieties of Carbomer in the formulation of hydrophilic furosemide matrices, International Journal of Pharmaceutics, 67 (1991) 113-121.
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Sep. 1989, 6(9), S-98.
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Oct. 1991. 8(10), S-192.
Phillips, G. Briggs. Sterilization. Chapter 79. pp. 1443-1454, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Physico-mechanical Characterization of Polyox for Table Manufacture, Colorcon Jul. 2009.
Pillay V. et al. A novel approach for constant rate delivery of highly soluble bioactives from a simple monolithic system. Journal of Controlled Release. 2000, vol. 67, pp. 67-78.
Pinto, Joao F. et al.,“Evaluation of the Potential Use of Poly(ethylene oxide) as Tablet- and Extrudate-Forming Material,” AAPS PharmSci, 2004; 6 (2), Article 15, pp. 1-10, (http://www.aapspharmsci.org).
Piringer, O.G.and A.L. Baner, Plastic Packaging: Interactions with Food and Pharmaceuticals, Wiley VCH, 2nd Completely Revised Edition, Feb. 13, 2008. (Table of Contents only).
Polyox water soluble resins 2003. http://www.dow.com/webapps/lit/litorder.asp?filepath=polyox/pdfs/noreg/326-00002.pdf
Polyox water-soluble resins (DOW Mar. 2002); see http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh—0031/0901b80380031a4a.pdf?filepath=/326-00001.pdf&fromPage=GetDoc).
Polyox WSR-303, retrieved Mar. 10, 2014 from URL http://www.dow.com/dowwolff/en/industrial—solutions/polymers/polyethylene.
Polyox, Colorcon, Application Data (Apr. 2009) downloaded from http://www.colorcon.com/literature/marketing/mr/Extended%20Release/POLYOX/English/ads—PEO—Antioxidant.pdf.
Pontier, C. et al, “Use of cycles of compression to characterize the behavior of apatitic phosphate powders,” Journal of the European Ceramic Society 22 (2002), 1205-1216.
Porter, S. Coating of Pharmaceutical Dosage Forms. Chapter 91. pp. 1633-1643 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Prapaitrakul W. et al, “Release of Chlorpheniramine Maleate from Fatty Acid Ester Matrix disks Prepared by Melt-extrusion” J. Pharm. Pharmacol. 43, pp. 377-381, 1991.
Proeschel, P.A. et al., “Task-dependence of activity / bite-force Relations and its impact on estimation of chewing force from EMG”; J. Dent. Res., vol. 81, No. 7, pp. 464-468, 2002.
Purdue News, “Purdue Pharma Provides Update on Development of New Abuse-Resistant Pain Medications; FDA Cites Patient Needs As First Priority; New Drug Application Delayed,” www.headaches.about.com, Jun. 18, 2002, pp. 1-6.
Quintavalle et al., “Preparation of sustained release co-extrudates by hot-melt extrusion and mathematical modelling of in vitro/in vivo drug release profiles,” European Journal of Pharmaceutical Sciences 33 (2008), 282-293.
Radko S.et al., Applied ad Theoretical Electrophoresis 5, pp. 79-88, 1995.
Ravin, L. Preformulation. Chapter 76, pp. 1409-1423, In Remington's Pharmaceutical Sciences 17th Ed, 1985.
Remington, The Science and Practice of Pharmacy, 19th ed., vol. II, p. 1457 (1995) (providing a table of DFA-approved commercially marketed salts).
Repka M. et al., Bioadhesive Properties of Hydroxypropylcellulose Topical Films Produced by Hot-Melt Extrusion, Journal of Controlled Release, 70 (2001), pp. 341-351.
Repka MA, Drug Day Ind Pharm, Oct. 2007; 33(10):1043. (Abstract).
Riippi M. et al., The effect of compression force on surface structure, crushing strength, friability and disintegration time of erythromycin acistrate tablets, Eur J Pharm Biopharm, vol. 46, 1998, pp. 339-345.
Rippie E.G. et al, “Regulation of Dissolution Rate by Pellet Geometry” Journal of Pharmaceutical Sciences, Vo. 58, No. 4, pp. 428-431, Apr. 1969.
Rippe, E. Powders. Chapter 89, pp. 1585-1602, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung 2nd Edition, 2002, Ch 6, pp. 515-519. (Full English translation attached).
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung, 2nd Edition, 2002, Ch 6, pp. 69-82 and 115-136.
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung and Qualitatssicherung. 2nd Edition, 2002, Table of content.
Rosiaux et al. “Ethanol-resistant ethylcellulose/guar gum coatings—Importance for formulation parameters” European Journal of Pharmaceutics and Bioharmaceutics, vol. 85, No. 3, (Jul. 25, 2013). pp. 1250-1258.
Rowe C et al. Handbook of Pharmaceutical Excipients. Sixth Edition. 2009, Edition Cantor Verlag Aulendorf, pp. V-IX, Table of Contents.
Rowe C et al., Handbook of Pharmaceutical Excipients, 7th Edition, 2012, Table of Contents.
Salomies et al., “Determination of Oxycodone Hydrochloride in Oral Solutions by High-Performance Thin-Layer Chromatography/Densitometry,” Journal of AOAC International, 83: 1497-1501 (2000).
Sax et al., Hawley's Condensed Chemical Dictionary, 11th ed., 1987, p. 1233, definition of “wax”.
Scheirs J., et al. “Characterizing the Solid-State Thermal Oxidation of Poly (ethylene oxide) Powder”, pp. 2014-2019. Polymer, vol. 32, No. 11, 1991.
Schier et al. “Fatality from Administration of Labetalol and Crushed Extended-Release Nifedipine” The Annals of Pharmacotherapy vol. 37, 1420-1423 Oct. 2003.
Schroeder J., et al. Granulierung hydrophober Wirkstoffe im Planetwalzenextruder, Pharm. Ind. 2003, vol. 65, No. 4, 367-372. (Full English translation attached).
Sciarra et al. Aerosols. Chapter 93., pp. 1662-1677, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Search result conducted on http://www.unitconversion.org/force/newtons-to-kiloponds-convresion.html, on Jul. 5, 2011 (Conversion of 18.8 kiloponds to newtons).
Shivanand P et al., “Factors Affecting Release of KCl From Melt extruded Polyethylene Disks”, Pharmaceutical Research, Oct. 1991, vol. 8, No. 10, p. S-192.
Siegel, P. Tonicity, Osmoticity, Osmolality, and Osmolarity. Chapter 80. pp. 1454-1472 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Silver, J. “Painkiller OxyContin most commonly abused prescription drug on the streets of Western Pennsylvania”, Pittsburg Post-Gazette, Apr. 8, 2001.
Spassov et al., Stereochemistry of Diastereomeric 3-Dialkylaminopropanols and O-Derivatives, J.f. prakt. Chemie, 323:5, 793-800 (1981).
Sprockel O.L et al. “Permeability of Cellulose Polymers: Water Vapour Transmission Rates” J. Pharma. Pharmacol. 42, pp. 152-157, 1990.
Sreenivasa, B. et al, Design and Evaluation of Ethylene Vinyl Acetate Sintered Matrix Tablets, Indian Journal of Pharmaceutical Sciences, Sep.-Oct. 2003, 65(5): 496-502.
Stafford J., Qberzogene feste Formen, 1991, 347-68. (English translation attached).
Strang, Abuse of buprenorphie (Terngesic) by snorting, Letter to the editor, British Med. J., 302: 969 (1991).
Stringer J.L., et al “Diffusion of small molecular weight drugs in radiation-crosslinkeci poly(ethylene oxide) hydrogels”, Journal of Controlled Release 42, pp. 195-202, 1996.
Summers et al; “Influence of Crystal Form on Tensile Strength of Compacts of Pharmaceutical Materials” Journal of Pharmaceutical Sciences, vol. 66, No. 8, Aug. 1977, pp. 1172-1175.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 1, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 10, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition vol. 11, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 12, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 13, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, lnforma Healthcare, 1988, 1st dition, vol. 14, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 15, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, lnforma Healthcare, 1988, 1st edition, vol. 16, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 18, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 19, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 2, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, lnforma Healthcare, 1988, 1st edition, vol. 20, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 3, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 4, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 5, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 6, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 7, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 8, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 9, table of contents.
Tablet, www.docstoc.com (2011).
Third Party Observations filed with EPO for Patent EP658055B1, Feb. 2, 2009, pp. 1-8.
Thoma V.K. et al. “Bestimmung der In-vitro-Freigabe von schwach basischen Wirkstoffen aus Ratardarzneiformen”, pp. 299-301, Pharm. Ind. 51. Nr. 3, 1989.
Tikhonov, A. et al, Biopharmacy. The Manual for Student of Pharmaceutical Universities and Departments, 2003, pp. 40-41, Kharkov, Ukraine (Full English translation attached).
Tipler, et al, Physics for Scientists and Engineers, vol. I, 6th Edition, pp. 234-235, 2003.
Tompkins et al., “Human abuse liability assessment of oxycodone combined with ultra-low-dose natrexone,” Psychopharma., 210: 471-480 (2010).
Tramadol Hydrochloride 100 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010.
Tranquilan-Aranilla et al., “Kappa-carrageenan-polyethylene oxide hydrogel blends prepared by gamma irradiation,” Radiation Physics and Chemistry vol. 55, pp. 127-131, 1999.
Turco et al. Intravenous Admixtures. Chapter 86. pp. 1542-1552, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
US Pharmacopoeia, Chapter 1217, Aug. 12, 2008.
Varma et al, Factors Affecting Mechanism and Kinetics of Drug Release from Matrix-Based Oral Controlled Drug. Delivery Systems, Am. J. Drug Deliv, 2004: 2 (1): 43-57.
Vippagunta et al. Advanced Drug Delivery Review 48 (2001), 3-26.
Wade and Weller, “Handbook of Pharmaceutical Excipients: 2nd Edition”, The American Pharmaceutical Association and The Pharmaceutical Press, Washington and London, Table of Contents pp. v-vi, 1994.
Wagner, Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe—Scharfstoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, pp. 82-92 (Full English Translation attached).
Wagner, Pharmazeutische Biologie—Drogen and ihre Inhaltsstoffe—Scharfstoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, Table of Content.
Waltimo, et al, “A novel bite force recorder and maximal isometric bite force values for healthy young adults”, Scandinavian Journal of Dental Research 1993; 101: 171-175.
Waltimo, et al, “Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients”, ACTA Odontol Scand 53 (1995): 254-258.
Waterman et al., “Stabilization of Pharmaceuticals to Oxidative Degradation”, Pharmaceutical Development and Technology, vol. 7(1), pp. 1-32, (2002).
Waters et al., “Intravenous Quetiapine-Cocaine Use (“Q-Ball”)”, Letter to the Editor, Am. J. Psychiatry, 164(1) pp. 173-174 (2007).
Weiss, U., “Derivatives of Morphine. I 14-Dihydroxydihydromorphinone,” J. Am. Chem. Soc. 77, pp. 5891-5892, Nov. 20, 1955.
Wikipedia-Dextromethorphan Aug. 12, 2013 (and attached related English-language entry dated Dec. 11, 2013).
Woodburn, K.R. et al., Vascular complications of injecting drug misuse, Br. J. of Surgery, vol. 83, 1996, pp. 1329-1334.
Wu N, et al. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights, J Control Release, Feb. 16, 2005;102(3):569-581.
Yang et al., “Zero-Order Release Kinetics from a Self-Correcting Floatable Asymmetric Configuration Drug Delivery System”, Journal of Pharmaceutical Sciences, vol. 85, No. 2, Feb. 1996, pp. 170-173.
Yang, et al; “Characterization of Compressibility and Compactibility of Poly(ethylene oxide) Polymers for Modified Release Application by Compaction Simulator”; Journal of Pharmaceutical Sciences, vol. 85, No. 10, pp. 1085-1090, Oct. 1996.
Yarbrough et al, Letters to Nature “Extraordinary effects of mortar- and -pestle grinding on microstructure of sintered alumina gel”, Nature 322, pp. 347-349 (Abstract only) (Jul. 24, 1986).
Yeh et al., Stability of Morphine in Aqueous Solution Ill: Kinetics of Morphine Degradation in Aqueous Solution, Wiley Subscription Services, Inc., Journal of Pharmaceutical Sciences, 50(1): 35-42 (1961).
Zeeshan, F and N. Bukhari, “Development and Evaluation of a Novel Modified-Release Pellet-Based Tablet System for the Delivery of Loratadine and Pseudophedrine Hydrochloride as Model Drugs,” AAPS PharmaSciTech 11(2); 910-916 (available on-line May 22, 2010).
Zhang et al., “Properties of Sustained-Release Tablets Prepared by Hot-Melt Extrusion” Pharmaceutical Development and Technology, 1999, 4(2), 241-250.
Bingwen et al, 2008, p. 367.
Bruce et al, Properties of hot-melt extuded tablet formulations for the colonic delivery of 5-aminosalicylic acid, European Journal of Pharmaceutics and Biopharmaceutics, 59 (2005) 85-97.
Monolithic: retrieved from internet: http:/merriam-webster.com/dictionary/monolithic. Retrieved on Sep. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165067.8-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165065.2-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165069.4-1455, dated Nov. 2, 2015
Extended European Search Report and Opinion for Application No. EP 15165064.5-1455, dated Oct. 16, 2015.
Extended European Search Report and Opinion for Application No. EP 15165070.2-1455, dated Nov. 2, 2015.
Cuesov, 1999, pp. 351-352.
Sidhu et al., “Watch for nonpsychotropics causing psychiatric side effects,” Current Psychiatry, vol. 7, No. 4, 2008, 61-74.
Verhoeven et al., “Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in vitro and in vivo evaluations,” European Journal of Pharmaceutics and Biopharmaceutics 72 (2009) 463-470.
Vynckier et al.,“Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core,” International Journal of Pharmaceutics 464 (2014), 65-74.
Extended European Search Report and Opinion for Application No. EP 15153679.4-1455, dated Jun. 30, 2015.
West, Anthony R., Solid state chemistry and its applications, Wiley, New York, 1988, pp. 358 and 365.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/060377 dated Jul. 23, 2015.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/061343 dated Jul. 21, 2015.
Bingwen et al, 2008, p. 367. (full translation attached).
Alekseeva et al, Chemical-Pharmaceutical Journal, vol. 41, No. 9, 2007, 49-52. (Full translation attached.).
Cuesov, Drug Production Technology, Khar'kov, 1999, pp. 351-352.
Borquist et al., “Simulation of the release from a multiparticulate system validated by single pellet and dose release experiements,” J. Controlled Release, 97: 453-465 (2004).
Tennant, “Simultaneous Use of Stimulants and Opioids,” 2011 [online] retrieved on Jul. 7, 2016 from: http://www.practicalpainmanagement.com/treatments/pharmacological/opioids/simultaneous-use-stimulants-opioids; 7 pages.
The Merck Index, 14th Ed. (2006) No. 0006360 Nalefene.
The Merck Index, 14th Ed. (2006) No. 0006362 Naloxone.
The Merck Index, 14th Ed. (2006) No. 0006363 Naltrexone.
The Merck Index, 14th Ed. (2006) No. 0006959 Oxycodone.
Efentakis et al, Effects of Excipients on Swellin and Drug Release from Compressed Matrices, in Drug Development and Industrial Pharmacy 23(1):107-112, Jan. 1997, Abstract.
Linz et al. “Cebranopadol: A Novel Potent Analgesic Nociception/Orphanin FQ Peptide and Opioid Receptor Agonist,” J Pharmacol. Exp. Ther. 2014; 349: 535-548; available online Apr. 8, 2014.
Alekseeva et al, Chemical-Pharmaceutical Journal, vol. 41, No. 9, 2007, 49-52. (English abstract included.).
Saleem et al. “Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories,” Indian J. Pharm Sci. Sep.-Oct. 2008; 70(5), 640-644.
Extended European Search Report and Opinion for Application No. EP 15184634.2-1455, dated Mar. 3, 2016.
Baxter, J.L. et al., “Hydrodynamics-induced variability in the USP apparatus II dissolution test,” International Journal of Pharmaceutics 292 (2005) 17-28.
Bellmann et al., “Development of an advanced in vitro model of the stomach and its evaluation versus human gastric psychology.” Food Research International 88 (2016) 191-198.
Extended European Search Report for Application No. EP 16183922.0-1460, dated Oct. 31, 2016.
Fathima, N. et al. “Drug-excipient interaction and its importance in dosage form development,” Journal of Applied Pharmaceutical Science 01 (06); 2011, pp. 66-71.
Koziolek, M. et al., “Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach,” European Journal of Pharmaceutical Sciences 57 (2014) 250-256.
Meyer et al., “Awareness Topic: Mitigating the Risks of Ethanol Induced Dose Dumping from Oral Sustained/Controlled Release Dosage Forms,” FDA ACPS Meeting, Oct. 2005, p. 1-4.
Remington, Chapter 45, pp. 996-1035. (Full Translation Attached).
Schilling, et al., “Novel application of hot-melt extrusion for the preparation of monolithic matrices containing enteric-coated particles.” International Journal of Pharmaceutics 400 (2010) 34-31.
Starch 1500, Partially Pregelatinized Maize Starch, technical data from Colorcon, Feb. 2016, 6 pages.
Dabbagh, et al. “Release of Propranolol Hydrochloride from Matrix Tablets Containing Sodium Carboxymethylcellulose and Hydropropylmethylcellulose”; 1999; Pharmaceutical Development and Technology, 4(3), 313-324.
Extended European Search Report for Application No. EP 16182124.4-1455, dated Jan. 17, 2017.
M. Xu et al., “Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology,” Int. J. Pharm. 478 (2015) 318-327.
USP Expert Council, US Pharmacopoeia, Chapter 1092, 2007, 1-15.
COMPAP 90 technical data sheet Mar. 2014; 1 page.
U.S. Court of Appeals, Federal Circuit, Purdue Pharma L.P. v. Epic Pharma, LLC, 117 USPQ2D 1733 (Fed. Cir. 2016).
Decision of the United States District Court for the Southern District of New York, in In re Endo Pharmaceuticals Inc. and Grünenthal GmbH v. Amneal Pharmaceuticals, LLC et al., Findings of Fact and Conclusions of Law, District Judge Thomas P. Griesa, New York, New York Jan. 14, 2015.
Decision of the United States District Court for the Southern District of New York, in In re Oxycontin Antitrust Litigation, Purdue Pharma LP v. Teva Pharmaceuticals, Findings of Fact and Conclusions of Law, District Judge Sidney H. Stein, New York, New York, Jan. 14, 2014.
Al-Angari, A. et al. “The compaction properties of polyethylene glycols,” J Pharm. Pharmacol. (1985) 37:151-153.
Al-Nasassrah et al. , “The effect of an increase in chain length on the mechanical properties of polyethylene glycols,” European Journal of Pharmaceutics and Biopharmaceutics 46 (1998) 31-38.
Anderson, S.L. et al., “A Model for Antiplasticization in Polystyrene,” Macromolecules 28:2944-54 (1995).
Back, D.M.et al., “Ethylene Oxide Polymers”, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc., vol. 10, 673-696.
Bailey, F.E., et al., “High Molecular Weight Polymers of Ethylene Oxide” Solution Properties Industrial and Engineering Chemistry, 1958. 50(1): 8-11.
Balogh, E., “Tastes in and Tastes of Paprika,” in Taste: Proceedings of the Oxford Symposium on Food and Cookery 28 (Tom Jaine Ed.) 1988, pp. 25-40.
Baumann, T., “Pain Management,” Pharmacotherapy: A Pathophysiologic Approach (J.T. DiPiro et al., eds., McGraw-Hill 4th ed. 1999), Ch. 56, 1014-1026.
Baumrucker, S.J., “OxyContin, the Media, and Law Enforcement”, American Journal of Hospice & Palliative Care, 18:3 (May/Jun. 2001), 154-156.
Choi, S., et al., “Development of a Directly Compressible Poly(Ethylene Oxide for the Sustained-Release of Dihydrocodeine Bitartrate”, Drug Development and Industrial Pharmacy, vol. 29, No. 10, pp. 1045-1052, 2003.
Choi, S., et al., “Hydrophilic Matrix Formulations of Dihydrocodeine Bitartrate with Polyethylene Oxide by Direct Compression,” Proceedings of the 29th Annual Meeting of the Controlled Release Society, in collaboration with the Korea Society for Biomaterials, Minneapolis, 1st Edition, 2002, 984-985.
Ciccone, P. E., “Attempted Abuse of Concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry, 41:7 (Jul. 2002).
Controversies in ADHD: A Breakfast Symposium—Concerta.
Crowley, M. et al., Pharmaceutical Applications of Hot-Melt Extrusion: Part I: Drug Dev. & Idus. Pharmacy (2007) 33:909-926.
Crowley, M. et al., “Properties of Hot-Melt Extruded CPM Tablets Using Hydrophilic Polymers,” poster presentation, (2000).
Crowley, M., “Physicochemical and Mechanical Characterization of Hot-Melt Extruded Dosage Forms.” Dissertation presented to the Faculty of the Graduate School of the University of Texas at Austin. (May 2003).
Crowley, M., et al., “Evaluation of a Hot Melt Extrusion Technique using a Hydrophilic Thermal Polymer and Retardant for the Preparation of Extended Release Chlorpheniramine Maleate Tablets,” in American Association of Pharmaceutical Scientists: Indianapolis, IN (2000).
Crowley0000001—Crowley0000127.
Davies, N. Sustained Release and Enteric Coated NSAIDs: Are They Really GI Safe?J. Pharm. & Pharmaceut. Sci., 2(1):5-14, 1999.
Declaration of Dr. James W. McGinty, dated Oct. 28, 2009; online, retrieved from: http://www.accessdata.fda.gov/dmgsatfda—docs/labeV2013/021121s032lbl.pdf.
Dimitrov, M, et al., “Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets.” Int'l Pharmaceutics (1999) 189:105-111.
Dittmer, D.K., et al., “Glue-Sniffing Neuropathies,” Canadian Family Physician 39:1965-1971 (1993).
Donnelly, C.L., “ADHD Medications: Past and Future,” Behavioral Health Management, May/Jun. 2002, 28 & 30.
Dow, “Material Safety Data Sheet: POLYOX(TM) WSR 30” (effective date: Sep. 18, 2001).
Dow, “POLYOX Water-Soluble Resins: Degradation of Water-Soluble Resins,” Technical Data (Oct. 2002).
Drug Bank “Oxymorphone,” 2015; online, available at: www.dmgbank.ca/chugs/db01192 printed Jul. 1, 2015.
Endo Pharmaceutical Inc. v. Teva Pharmaceutical USA, Inc. (S.D.N.Y 2015)—Redacted Version.
FDA News Release, “FDA approves abuse-deterrent labeling for reformulated OxyContin,” Apr. 16, 2013, available at http://www.fda.gov/NewsEvents/Newsroom/Press.Announcements/ucm348252.htm.
FDA, “Notice of Determination the OxyContin Drug Products Covered by NDA 20-553 Were Withdrawn From Sale for Reasons of Safety or Effectiveness.” Federal Register, vol. 78, No. 75, Apr. 18, 2013, 23273-23274.
Final Draft Labeling for Concerta Extended-Release Tablets Attachment to Approval Letter (2000); available at: http://www.accessdata.fda.gov/drugsatfda—docs/label.2000/21121lbl.pdf.
Greenhill, L.L., et al., “Practice Parameter for the Use of Stimulant Medications in the Treatment of Children, Adolescents, and Adults,” J. Am. Acad. Child Adolesc. Psychiatry, 41:2 Supplement, 26S-49S (Feb. 2002).
Griffith, D., “Potential new ADHD drug creating lots of big hopes,” Sacramento Bee (California), Oct. 30, 2002.
Huang, H. et al., “Preparation of Controlled Release Oral Dosage Forms by Low Temperature Melt Extrusion,” AAPS PharmSci. 2000 2(S1).
Jaffe, S.L., “Failed Attempts at Intranasal Abuse of Concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry, 41:1 (Jan. 2002).
Jannsen Pharmaeuticals, Inc. Concerta Labeling Revisioins, Dec. 12, 2013; online, retrieved from http://www.accessdata.fda.gov/dmgsatfda—docs/labeV2013/021121s032lbl.pdf.
Joint Claim Construction and Prehearing Statement, dated Jul. 11, 2014. Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Actavis Elizabeth LLC and Alkem Laboratories Limited, Civil Action No. 2:13-cv-04507 CCC-MF (D.N.J.), Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Roxane Laboratories, Inc., Civil Action No. 2:13-cv-06929 CCC-MF (D.N.J.), and Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Alkem Laboratories Limited, Civil Action No. 2:13-cv-07803 CCC-MF (D.N.J.).
Kibbe, Coloring Agents, in Handbook of Pharmaceuticals Excipients (3d ed. 2000).
Kidokoro, M. et al. ,“Properties of Tablets Containing Granulations of Ibuprofen and Acrylic Copolymers Prepared by Thermal Processes,” Pharm Dev. and Tech. , 6:263-275 (2001).
Kinjo, N. et al, “Antiplasticization in the Slightly Plasticized Poly(vinyl chloride),” Polymer Journal 4(2):143-153 (1973).
Larhib, H. et al., “Compressing polyethyelene glycols: the effect of compression pressure and speed,” Int'l J Pharmaceutics (1997) 147: 199-205.
Lieberman, H., et al., Pharmaceutical Dosage Forms: Tablets, vol. 2, Ch. 5: Granulation Technology and Tablet Characterization (1990), Table of contents and 245-348.
Lyons et al., “Twitch Interpolation in the Assessment of the Maximum Force-Generating Capacity of the Jaw-Closing Muscles in Man,” Arch. Oral. Biol. 41:12, 1161-1168.
Makki, A, et. Al., Eds., A Dictionary of American Idioms, 4th Ed. Barron's, New York (2004), 342-343.
Markovitz, H., et al. “Calculations of Entanglement Coupling Spacings in Linear Polymers.” Journal of Physical Chemistry, 1962. 66(8): 1567-1568.
McCrum, N., et al., Principles of Polymer Engineering. 2nd ed., New York: Oxford University Press. 447(1997), Chapter 7, 296-351.
McGinity, J.W. et al., “Melt-Extruded Controlled-Release Dosage Forms” in Pharmaceutical Extrusion Technology, Ghebre-Sellassie, I. and Martin, C., Eds., Marcel Dekker, Inc., New York, 2003, Chapter 10, 183-208.
McQuay, H. et a. “Methods of Therapeutic Trials,” Textbook of Pain 1125-1138 (P.D. Wall & R. Melzack eds., Elsevier 4th ed. 1999), Table of Contents and 1125-1138.
Miura et al., “Comparison of Maximum Bite Force and Dentate Status Between Healthy and Frail Elderly Persons,” J. Oral Rehabilitation, vol. 28 (2001), pp. 592-595.
Miyagawa, Y. et al., “Controlled-release of diclofenac sodium from wax matrix granulate,” Int'l J. Pharmaceutics (1996) 138:215-224.
National Drug Intelligence Center Information Bulletin “OxyContin Diversion and Abuse” Jan. 2001.
Payne, H. et al., Denatonium Benzoate as a Bitter Aversive Additive in Ethylene Glycol and Methanol-Based Automotive Products, SAE Technical Paper 930589, Abstract (1993).
Pilpel, N., et al. “The effect of temperature on the tensile strength and disintegration of paracetamol and oxytetracylcine tablets,” J Pharm Pharmac., 29:389-392 (1977).
POLYOX Water-Soluble Resins NF in Pharmaceutical Applications, Dow Chemical Company, Aug. 2002.
Purdue Pharma LP Materials Safety Data Sheet, OxyContin Tablets, 10mg, 15 mg, 20 mg, 30 mg, 40 mg, 60 mg, Version 16—Sep. 10; available at www.purduephruma.com/msdss/oxycontin—msds.pdf.
Rauwendaal, Chris, PHD, Responsive Expert Report of Chris Rauwendaal, Ph.D. Regarding Expert Report of Michael M. Crowley, Ph.D., dated Jul. 17, 2015.
Repka, M. et al. Pharmaceutical Applications of Hot-Melt Extrusion: Part II. Drug Dev. & Indus. Pharmacy (2007) 33:1043-1057.
Saravanan, M. et al., “The Effect of Tablet Formulation and Hardness on in Vitro Release of Cephalexin from Eudragit L100 Based Extended Release Tablets,” Biol. Pharm. Bull. (2002) 25(4):541-545.
Seitz, J.A.; et al., “Evaluation of the Physical Properties of Compressed Tablets 1: Tablet Hardness and Friability,” J. of Pharm. Sci. , 54:1353-1357 (1965).
Shah, et al., “Some Effects of Humidity and Heat on the Tableting Properties of Microcrystalline Cellulose Formulations 1,” J. of Pharm. Sci., 57:181-182 (1967).
Singhal, et al., Handbook of Indices of Food Quality and Authenticity (1997), “Capsicum” p. 398-299.
Smith, K.L. et al. “High Molecular Weight Polymers of Ethylene Oxide—Plastic Properties.” Industrial and Engineering Chemistry, 1958. 50(1): 12-16.
Tapentadol Pre-Review Report, Expert Committee on Drug Dependency Thirty-Fifth Meeting Hammamet, Tunisia, Jun. 4-8, 2012, available at http://www.who.int/medicines/areas/quality—safety/5.2Tapentadolpre-review.pdf.
Tiwari, D., et al., “Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations.” AAPS Pharmsci, 1999. 1(3): Article 13.
Wilkins, J.N., “Pharmacotherapy of Schizophrenia Patients with Comorbid Sunstance Abuse,” Schizophrenia Bulletin, 23:215-228 (1997).
World Health Org., Cancer Pain Relief With a Guide to Opioid Availability (2d ed. 1996).
Yin, T.P., et al., “Viscoelastic Properties of Polyethylene Oxide in Rubber-Like State.” Journal of Physical Chemistry, 1961. 65(3): 534-538.
Zacny, J. et al. Drug & Alcohol Dependence (2003) 69:215-232.
Zhang, F., “Hot-Melt Extrusion as a Novel Technology to Prepare Sustained-Release Dosage Forms,” Dissertation University of Texas at Austin, Dec. 1999.
Related Publications (1)
Number Date Country
20150335592 A1 Nov 2015 US