The present invention relates to a device for handling the pipes with flanged connections, which mechanism is a multipartite mechanical press, preferably a bipartite press, in which the multipartite design provides a means for its installation that does not require any destructive processes, removal or addition of material, removal of pipes, or any changes in the process line.
Next, there's a variation to the opening mechanism implemented for the device called “multipartite mechanical press for flanged connections”, patent pending under number MX/a/2009/008629. Said mechanism allows a more compact and efficient design of the multipartite mechanical press for flanged connections, reduced manufacturing costs and complexity of components and ease of installation and use.
There are devices that are used as auxiliaries for the handling and/or modification of pipelines, whose purpose is to adhere materials for treating and/or measurement of the fluid passing through the pipe. These devices often involve the modification of the pipe through destructive processes, or the addition of material, such as cutting or welding, modifying the original design of the line, and the properties thereof.
Some devices similar to that shown in the present patent are mentioned below, as the one entitled “Open flange device” (JP09112768). This patent shows a mechanism for mounting and removing apparatus for water treatment in flanged pipes, exerting a pressure in opposite directions in each of the flanges, thus forming a space which allows mounting or removal of such devices; however for the installation of this mechanism it is necessary to modify the pipes in order that the flanges have a plate with holes to allow mounting said mechanism.
Another similar patent is entitled “Three-wedge double block Isolation chamber” (U.S. Pat. No. 7,469,709). This invention provides a device that is added to a pipeline with flanged connections, which can be configured in three different ways; it can be configured for the flow to freely pass, for a total blocking, or to measure the liquid flow through the pipe. These types of devices can be mounted on a pipe with flanged connections using the invention disclosed in this patent.
Other locking mechanisms in accordance with characteristics of the present patent application can be seen below, the patent entitled “Cut-and-close device for pressure pipes and production and supply installations” (U.S. Pat. No. 5,217,073), which consists of a two-piece press, which is placed on a pipe and allows the introduction of a plate which cuts and seals the pipe, said plate is introduced due to the pressure generated by a propellant load and a piston. This mechanism is destructive and implies serious modifications in the pipes. Other similar locking mechanisms can be found in patents “Line Blind Valve” (U.S. Pat. No. 3,598,154) and “Line blind” (U.S. Pat. No. 4,343,332).
The multipartite mechanical press, preferably bipartite for flanged pipe lines, in accordance with the present invention is intended to provide a means for handling flanged pipes, serving as a tool that allows mounting and dismounting of additional devices on the line, such as filters, plates, flow regulators, measuring elements, orifice plates and valves.
This device offers the following advantages:
The multipartite mechanical press for pipes with flanged connections (
Coupled to the slots in each straight crossbar (4) and crossbar with an inclined plane (6) and with the narrowest faces in front of each other, there are a couple of wedges (7), with a total of four in each system; both faces, the inclined and vertical one, both presenting protrusions in a “T” shape which are used to engage into the slots of each crossbar (4, 6) and can slide, each wedge (7) has a smooth hole which passes from one end to the other starting from the narrow face to the broad face, and an amount of threaded holes in the broad face with a given depth, which are used to mount a clamping blocks (8), which has a threaded hole passing along its length and is concentric to the smooth hole of the wedge (7), said threaded hole allows the coupling of a screw with opposite threads (9), which at a given end a gear (10) is placed, having a total of two gears (10) that are in the same plane and are joined together by means of a chain (11); a gear (10) is accopled to a drive shaft (12) for transmitting the motion generated from a flywheel (14) utilizing a transmission (13), originating a simultaneous movement of both gears (10) by the chain (11); said rotational movement of the gear (10) and chain (11) causes rotation of the screws with opposite threads (9), converting this movement into a linear displacement movement of the clamping blocks (8), which in turn causes linear movement in opposite directions of the wedges (7); said linear displacement in opposite directions causes the distance between the straight crossbar (4) and the crossbar with opposite inclined planes (6) to which the wedges (7) are attached increases or decreases, depending on the direction of movement thereof; this change in distance between the straight crossbar (4) and the crossbar with opposite inclined planes (6) in turn causes the distance between the movable plate (2) and the base plate (1) to vary, thus allowing the introduction or removal of the pipe elements, for example, of a locking plate (23).
The system has four threaded bars (16) whose function is to support the mechanism and also as a guide for the movable plate (2); these are fixed to the plates (1, 3) by nuts (25) at the outer ends of the base plate (1) and the support plate (3) and with locknuts (17) and the inner faces of said plates, allowing the movable plate (2) free to move into the holes of this plate, there are four bushings (26), which help to prevent wear of the threaded bars (16), also with guide rollers (18), which serve as auxiliaries for the introduction/extraction of the elements that are added to the pipes.
Besides these elements, the multipartite mechanical press uses and takes advantage of the existing elements in the pipelines with flanged connections for its operation, which are a pair of flanges, called for the application presented here as fixed flange (19) and a movable flange (20) and metal washers between the faces of these, to be known for this particular case as metallic seals (21) since this is their function in the system. On the other hand, there are elements that are added to the pipeline; in the figures there is a diagram of a locking plate (23), which has two fasteners (24) for easier handling.
In the multipartite mechanical press for pipelines with flanged connections (
The mechanical press mechanism of the multipartite mechanical press for pipelines with flanged connections is based on the conversion of the rotary motion induced by a flywheel (14) toward the gears (10) whose movement, also rotating, causes the rotation of the screws with opposite threads (9) to provoke a vertical linear displacement in opposite directions of the pairs of wedges (7), so that it becomes a horizontal displacement (approaching/pulling apart) between the movable plate (2) and the support plate (3). It is due to the pressure exerted by the inclined planes of the wedges (7) on the bars (4) and (6) that the invention is called “multipartite mechanical press for flanged connections with movement mechanism actuated by wedges”. Once the movable flange (20) has moved sufficiently, the element to be introduced in the flanged connection of the pipeline in question can easily be placed using guide rollers (18); in
The design of the mechanical press can have fewer joints where leakage may exist, thus increasing the safety in the pipeline and decreasing the generation of waste in the process.
The elements of the multipartite mechanical press for pipelines with flanged connections are designed based on the standards of ANSI b16.5 corresponding to pipe flanges and flanged connections, ASME Section 2 and ANSI b 16.34. API 598. The standard ANSI b16.5 is characterized by the selection criteria of the thickness of the flange, the number of studs and the diameters thereof; based on this, the force of opening and closing of the multipartite mechanical press was calculated which reaches the same torque exerted by the number of studs according to the diameter of each flange; in the case of a pipeline of 2 inches, 600 pounds of pressure, Class ANSI and 8 studs, these exert a closing force of 27.552 pounds, which is equal to that exerted by the mechanism presented herein.
Using the ASME standard, the building materials of the multipartite mechanical press were as follows: Steel 10/45, 41/40, OI 86/20 stainless 3/16 and bronze. Ansi standard b 16.34 API 598 allowed carrying out satisfactorily the pressure and leakage tests.
Number | Date | Country | Kind |
---|---|---|---|
MX/A/2009/012178 | Nov 2009 | MX | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MX2010/000005 | 1/21/2010 | WO | 00 | 7/25/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/059303 | 5/19/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2083582 | Taylor et al. | Jun 1937 | A |
2954960 | Dunbar et al. | Oct 1960 | A |
3598154 | Brundage | Aug 1971 | A |
3743244 | Dickenson et al. | Jul 1973 | A |
3929316 | Guthrie | Dec 1975 | A |
4343332 | Williams et al. | Aug 1982 | A |
4408636 | Karpenko | Oct 1983 | A |
5083582 | Lawson | Jan 1992 | A |
5217073 | Bruns | Jun 1993 | A |
5232199 | Thrasher | Aug 1993 | A |
5488902 | Dorenkamp | Feb 1996 | A |
7469709 | Bridgeford et al. | Dec 2008 | B2 |
7654287 | Metzger et al. | Feb 2010 | B1 |
Number | Date | Country | |
---|---|---|---|
20120279598 A1 | Nov 2012 | US |