The present invention relates to a fin-type (fin) heat transfer device, in particular for vehicle applications.
Heat transfer devices serve for transferring thermal energy from one fluid to another fluid. During the heat transfer, in particular heat is thus exchanged, i.e. the temperatures of the fluids are equalized. Thus, the first warm fluid is cooled down by the colder second fluid via the heat transfer device, wherein the second fluid is heated up or the first fluid is the colder one and is heated up through the second warmer fluid, wherein the second fluid is cooled down. Heat transfer devices are therefore employed in numerous applications. In vehicles for example, as charge air cooler, they serve for cooling down the charge air to be fed to an internal combustion engine, or as exhaust gas heat transfer device or as heating transfer device for extracting heat generated by the internal combustion engine for further use.
The present invention therefore deals with the problem of stating an improved or at least alternative embodiment for a heat transfer device of the type mentioned at the outset, which is characterized in particular by a simplified production.
The present invention is based on the general idea of forming a heat transfer device as a fin-type (fin) heat transfer device. To this end, the fin-type heat transfer device comprises a plurality of fins stacked onto one another in a stack direction, which form a fin stack. In this case, the respective fins have openings which are surrounded by collars, wherein the collars of adjacent fins are coupled to one another so that in the region of the coupled collars a channel each of a channel system for a first flow path of a first fluid is formed. Stacking the fins and thus the collars thus forms these channels of the channel system, which runs through the openings of the respective fins and the associated collar. Furthermore, a second flow path of a second fluid is formed between adjacent fins through the stacking of the fins. The second flow path is thus created through the fins being stacked spaced from one another. The fin-type heat transfer device furthermore comprises end plates on ends of the fin stack which in the stacking direction are distant from one another. The end plates are thus arranged with respect to the stack direction on opposite ends of the fin-type heat transfer device. The end plates are furthermore formed or equipped in such a manner that the channels within the end plates are fluidically connected to one another. Such a heat transfer device is characterized in particular in that the deflections of the first fluid between the respective channels run within the fin-type heat transfer device and in that the fin-type heat transfer device is configured tubeless in its interior.
In an advantageous embodiment, the rims of the respective fins are formed on at least one side of the fin-type heat transfer device, i.e. the rims in a direction that is perpendicular to the stack direction, in such a manner that they form a closed side wall of the fin stack on this side. To this end, the corresponding rims of the fins have a shape angled off the fin plane, wherein adjacent rims of the fins contact one another. The rims forming the side wall are thus angled off the associated fin by the same angle and in the same direction. In this case, two sides of the fin-type heat transfer device located opposite one another, in a preferred embodiment, each form a closed side wall through the forming of the corresponding rims of the fins.
Embodiments are also conceivable, in which adjacent sides of the fin-type heat transfer device through the corresponding forming of the rims of the associated fins each form a closed side wall of the fin stack, wherein in the case the common corner of the adjacent side walls optionally allow a circulation from one of the side walls to the adjacent side wall through a corresponding shape of the respective fins or rims in this region. The side walls, which are created through a forming of the rims of the fins as described here, have the advantage in particular that the use or assembly of further components can be omitted.
Alternatively, by contrast, an embodiment is preferred in which a housing of the fin-type heat transfer device in its transverse direction orientated transversely to the stack direction is limited through the two side walls located opposite one another and in the stack direction through the end plates of the second flow path and thus tunnel-like encloses the latter in the circumferential direction, while in its longitudinal direction it is penetrated by the second flow path and comprises two open longitudinal ends, so that the one longitudinal end forms an inlet for the second fluid, while the other longitudinal end then forms an outlet for the second fluid.
Practically, the channels are arranged within the second flow path, as a result of which the channels are circulated by the second fluid on all sides, which leads to a particularly intensive heat exchange between the fluids of the two flow paths through the walls of the channels and through the fins. In a preferred further embodiment, it can be provided that the channels extend transversely to the longitudinal direction of the fin-type heat transfer device through the second flow path and are arranged parallel next to one another both in the longitudinal direction as well as also in the transverse direction of the fin-type heat transfer device. Because of this, a compact construction can be realized.
In a further advantageous embodiment, the individual fins are stacked in such a manner that the respective coupled collars abut one another. Thus, the directly adjacent and coupled collars in particular are in contact. The coupling of the respective collars abutting one another in this case is optionally realized by way of joints, for example welded joints and soldered joints.
The collars of the respective fins can be formed in any shape and size. Advantageous however are collars which are formed conical in shape. These lead in particular to a simplified stacking of the respective fins, to a simple coupling of the adjacent collars or the associated openings and additionally ensure the spacing between the individual fins. As a further example for the shape of the collars, cylindrical, ellipsoid, hyperboloid and paraboloid collars are mentioned here. Embodiments are also conceivable, in which different shapes of collars are used. In this case, not all collars of the fin-type heat transfer device have the same orientation. In particular, not all collars of a fin thus project from the associated fin in the same direction. In particular, the collars can also be formed in such a manner that they project from the fin in the flow direction of the first fluid or against this flow direction or along the stack direction of the fins or against the stack direction. To this end, adjacent collars of the fins, which form adjacent channels of the channel system, are for example formed in opposite directions. Such a forming of the collars serves in particular the purpose of reducing or intensifying a braking of the flow generated for example through the rims of the collars. Thus, a certain influence over a flow speed of the first fluid flowing through the channels is possible, by means of which the time of the heat exchange within the fin-type heat transfer device is variable.
It is pointed out that the individual collars need not necessarily comprise an individual opening of the associated fin. Collars are also conceivable, which simultaneously comprise a plurality of openings of the associated fin.
In a further embodiment, the end plates each have one or a plurality of openings, which each serve for feeding or discharging the first or second fluid to the fin-type heat transfer device. Such a feed or discharge of the first fluid is arranged for example in a region of the associated end plate, in which two channels of the channel system are fluidically connected to one another. In this case, the feed is preferentially located on one of the end plates and the discharge on the other end plate located opposite. Other embodiments, in which the feed and the discharge take place on the same end plate, however are likewise conceivable, as are embodiments in which the end plates comprise a plurality of feeds and/or discharges.
According to a further embodiment, the end plates of the fin-type heat transfer device are formed in such a manner that they each contact the directly adjacent fins outside the openings or collars of these fins. In this case, these contacts are linear or areal and optionally serve for connecting the end plates to the respective directly adjacent fin. In this case, this connection is realized for example through a joining method. The contacts between the end plates and the adjacent fins now establish a fluidic connection between the channels and ensure a separation between the two flow paths of the first and of the second fluid. To this end, the end plates comprise for example plate hollow spaces, wherein the individual plate hollow spaces at their respective ends touch and thus contact the adjacent fin in a region outside the openings of these fins. The hollow spaces of the end plates in this case preferentially have an orderly, in particular periodical arrangement.
In an advantageous embodiment, the plate hollow spaces of at least one of the end plates are formed in such a manner that they each connect an outlet end of a single channel with an inlet end of a single other channel. The plate hollow spaces thus form connecting channels, which connect the respective channels of the first fluid with one another. The respective outlet ends or inlet ends of the channels in this case are defined with respect to the first flow path of the first fluid, which is also determined through the connecting channels of the end plates and thus the plate hollow spaces. Alternatively, the plate hollow spaces are formed in such a manner that they each connect outlet ends of a plurality of channels with inlet ends of a plurality of other channels. The plate hollow spaces thus form connecting chambers, which influence the flow path and thus the mentioned outlet ends and inlet ends. Furthermore, other embodiments are also conceivable in which the end plates comprise both one or a plurality of connecting channels as well as one or a plurality of connecting chambers as well as any combination of connecting channels and connecting chambers.
In a further advantageous embodiment, the collars or openings of the individual fins are formed in such a manner that the channels of the channel system run parallel to one another. To this end, the collars of the fins of the fin-type heat transfer device for example face in the same direction or in opposite directions. Additionally or alternatively, the channels run in lines which run next to one another transversely to the flow direction of the second fluid. In this case, these lines can have a parallel arrangement. However, arrangements of the lines are also conceivable, in which the lines follow one another in the flow direction of the second fluid, are in alignment with one another or arranged offset transversely to the flow direction of the second fluid.
According to a further advantageous embodiment, at least one sleeve runs through at least one of the channels formed through the collars. The sleeve now in particular serves the purpose of making possible a connection of the individual fins, for example through soldering. Furthermore, the sleeve increases in particular the stability of the fin-type heat transfer device through a supporting function.
The fins of the fin-type heat transfer device and the end plates are preferentially produced of thermo-resistant materials with suitable heat transfer because of the thermal conditions during the operation of the fin-type heat transfer device and the required heat conductivity capabilities. Reference is made in particular to metals and metal alloys, such as for example aluminium, sheet metal and nickel-based alloy as well as aluminum alloys. A particularly simple and thus cost-effective production of the individual fins and of the fin-type heat transfer device as well as the associated collars and openings in this case is possible in particular through punching-out or internal high-pressure forming (hydro-forming). Such a production method is preferred in particular with the individual fins from a continuous material, in particular metal or metal alloys. However, further forms of openings, for example elliptical or oval as well as angular shapes are also conceivable.
It is pointed out, furthermore, that the fin-type heat transfer device permits a simple assembly and an easy variation of the size. Thus, for changing the size of the fin-type heat transfer device merely the number of fins of the fin-type heat transfer device has to be varied. Producing other components, for example tubes, in different sizes, is thus omitted. Consequently, fin-type heat transfer devices are employable in numerous applications. Possible examples for this are exhaust gas heat transfer devices, evaporators, exhaust gas recirculation coolers, charge air coolers, condensers, heating transfer devices, air-conditioning devices and waste heat utilization devices.
It is to be understood that the features mentioned above and still to be explained in the following cannot only be used in the respective combination stated but also in other combinations or by themselves without leaving the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the following description, wherein same reference characters relate to same or similar or functionally same components.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
According to
In the embodiment shown in
In the fin-type heat transfer device 1 shown in
The fin-type heat transfer devices 1 shown in
The upper end plate 10 of the fin-type heat transfer device 1 shown in
The hollow spaces 15 of the upper end plate 10 of the embodiment shown in
According to
The fin-type heat transfer device 1 is additionally configured so that the channels 6 are arranged within the housing 25 and within the second flow path 9. It is provided, furthermore, that the channels 6 extend transversely to the longitudinal direction 21 of the fin-type heat transfer device 1 or the housing 25 through the second flow path 9 and both in the longitudinal direction 21 as well as in the transverse direction 20 of the fin-type heat transfer device 1 or of the housing 25 are arranged parallel next to one another.
Although in
In the detail of a fin stack of a fin-type heat transfer device 1 shown in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 076 172.1 | May 2011 | DE | national |
This application is a United States National Phase Application of International Application PCT/EP2012/059144 filed May 16, 2012 and claims the benefit of priority under 35 U.S.C. §119 of German Patent Application DE 10 2011 076 172.1 filed May 20, 2011, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/059144 | 5/16/2012 | WO | 00 | 12/31/2013 |