1. Field of the Invention
This invention relates to the improvements in broadcast antennas and more particularly to a multiple antenna mounting configuration having reduced structural requirements.
2. Description of Related Art
Antennas are used in, for example, television broadcast systems. To provide an antenna with maximized omni-directional coverage, the antenna is typically mounted at the top of a tower or other tall mounting structure. To avoid azimuth pattern degradation due to scattering effects of near metal objects, for example the structural supports and or other antennas, it is preferred that only a single antenna be mounted at a top of each tower or other support structure. However, growth of television, especially digital television, has increased the need for multiple antenna mountings with multiple radiation pattern arrangements on top of antenna towers or other antenna mounting structures.
Prior multiple tower top antenna mounting solutions include offset stack and or in line stacked antenna configurations. Offset stack antenna configurations generally have degraded azimuth patterns due to the proximity of the other, nearby, structure(s) and antenna feed lines. Stacked antennas add a significant structural requirement to the tower and or the individual antennas. An overturning moment that the stacked antenna exerts upon the tower at the antenna mounting point increases as the length of the antennas is increased, in a stacked configuration (each of the antenna structures being, for example 40 to 80 feet in length) the required structural reinforcement of both the antennas and the tower may make the overall cost prohibitive.
Another prior solution is integration of a lower antenna as a portion of the support structure for another antenna mounted above. In this solution, described in detail in U.S. Pat. No. 6,492,959, issued Dec. 10, 2002 to Heatherwick et al and hereby incorporated by reference in the entirety, because the antenna is part of the support structure for the above mounted antenna, the lower antenna cannot demand the same tower real estate lease rates as an antenna located at the highest point of the tower. Also, where more than two antennas are desired, the spacing of the third antenna either on top of the support structure or as another portion of the support structure, below the top mounted antenna(s), from the other antenna(s) is limited by the tower cross section dimensions.
Competition within the broadcast antenna industry has focused attention on signal quality, azimuth patterns, equipment and personnel costs, as well as time requirements for installation and maintenance of broadcast antenna systems.
Therefore, it is an object of the invention to provide an apparatus that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
For purposes of illustration, a two antenna 1 embodiment of the invention is shown in FIG. 1. The antenna(s) 1 may be, for example, UHF or VHF slotted array broadcast antennas, optimized for a desired channel and or frequency which couples the antenna to a transmitter (not shown). The antennas 1 are supported, for example, proximate a midpoint or other location selected for maximum structural and or RF efficiency of each antenna 1 by a support beam 20. Above the support beam 20, an upper section 30 of the antenna projects above the top of the tower structure 40 and a lower section 50 of the antenna extends below the top of the tower structure 40, spaced away from the tower structure 40.
A typical tower structure 40 may have, for example, a triangular configuration with a side dimension “L1”. The antenna(s) 1 are located proximate either end of the support beam 20 at a distance “L2” from each other. In a standardized tower design, L1 may be 12 feet. Sizing the support beam so that “L2” is, for example, 18 feet, center to center of the antenna(s) 1, will space the lower portion 50 of each antenna 1 away from the tower structure 40 and reduce azimuth pattern degradation that may otherwise occur with respect to metallic elements of the tower structure 40 and or the other antenna 1. The selection of the length “L2” is a trade off between the reduction in azimuth pattern degradation as “L2” is increased and the necessary structural and cost considerations which will also increase as “L2” is increased.
The location of the support beam 20 along the antenna(s) 1 is shown in
As shown in
The antenna feed 10, to each antenna 1 may be adapted to be supported by the bottom support beam 80 or may be provided with a limited support structure designed only to support the antenna feed 10. Alternatively, as shown in
In an alternative embodiment, as shown in
In still another embodiment, as shown in
The present invention brings to the art a new and improved antenna mounting that provides multiple antenna mounts on a single tower structure 40 having improved inter-antenna spacing which reduces signal pattern degradation. Further, structural requirements for each antenna 1 and the tower structure 40 are reduced due to a significant decrease in the overturning moment of each antenna 1. Also, because each of the antennas rise above the top surface of the tower structure 40, tower real estate lease rates may be maximized.
Where in the foregoing description reference has been made to ratios, integers, components or modules having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicants general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5200759 | McGinnis | Apr 1993 | A |
| 5291211 | Tropper | Mar 1994 | A |
| 5533304 | Noble | Jul 1996 | A |
| 5954305 | Calabro | Sep 1999 | A |
| 6088002 | Johnson et al. | Jul 2000 | A |
| 6115004 | McGinnis | Sep 2000 | A |
| 6249261 | Solberg et al. | Jun 2001 | B1 |
| 6275197 | Behr | Aug 2001 | B1 |
| 6348899 | Bergstein | Feb 2002 | B1 |
| 6492959 | Heatherwick et al. | Dec 2002 | B1 |
| 6710751 | Ianello et al. | Mar 2004 | B2 |
| 20030201947 | Boucher | Oct 2003 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20050001782 A1 | Jan 2005 | US |