1. Technical Field
The present invention relates to end mills in general, and to single piece toroidal end mills in particular.
2. Background Information
There is a need for an effective alternative to current products that can utilize the rotational speeds and feed rates of modern machine tools in a production environment. Every machine shop is looking for ways to maximize its productivity within the operating parameters of its machine tools. Many cutting tool companies are bringing tools to market that, though very productive in theory, are often not practical in all applications and environments given the horsepower, torque, or rigidity restrictions required to properly utilize their geometries. Many of the machine tools currently in use, do not have the horsepower or torque capabilities required by these milling tools.
There is also a need for a tool that can help the domestic mold making industry. That tool must be able to machine small mold cavities in a productive manner.
It is known to use a toroidal end mill to rough pockets, cavities and cores at accelerated speeds and feeds over those typically used with a conventional style end mill. Another great use for a toroidal end mill is the finishing of a flat surface. A toroidal end mill used in circle interpolation with constant tool pressure in a “Z” axis can move at aggressive feed rate. Aggressive feed rates are also possible with a single axis movement. These movements permit the machining of hardened material, thereby creating an additional benefit.
Prior art toroidal end mills typically use carbide inserts. End mills with carbide inserts have several drawbacks, including: 1) increased tool cost; 2) potential for relative movement between an insert and the tool holder during the machining process, which can degrade the ability of the tool to hold specifications; 3) they typically have a negative rake angle that can undesirably plow work piece material during the machining process; 4) they typically have a shock value in machining that is less than a solid tool, and are therefore more susceptible to damage (e.g., inserts often break and dislodge from the tool holder, thereby possibly destroying the tool holder and damaging the part); 5) increased undesirable tolerance build-up; and 6) practical limitations regarding how small the diameter can be using inserts.
Where inserts are not used, manufacturers will often use a solid, ball nosed end mills. These ball nosed end mills have disadvantages as well. A ball nose end mill has a zero surface feet per minute (SFM) in the center of the end mill. In addition, when a ball mill is cutting material in a side movement the center drags, or when operating in a plugging or inward movement, the center of the ball mill comes under extreme force. Ball mills also often leave a less than desirable surface finish.
According to the present invention, a one-piece toroidal end mill having an axis of rotation is provided. The end mill includes a shank section and a fluted section. The shank section extends along the axis of rotation. The fluted section extends along the axis of rotation, and has a first end, a second end opposite the first end, an outer surface, and a plurality of teeth. The first end is integrally attached to the shank section. Each of the plurality of teeth has a cutting surface and a shoulder surface. The cutting surface includes a cutting edge, and extends from the tip toward the shank section, between and contiguous with the shoulder surface and the outer surface. The shoulder surfaces intersect with one another to form a center void disposed between the cutting surfaces.
The present invention provides several advantages over prior art end mills with or without inserts. First, it is our experience that the present invention end mill increases the effective machining of machines with lower horsepower and torque capabilities. Such machines can achieve typically higher cubic inch removal rate per minute of operation with the present invention than they could achieve using a conventional end mill or insert standard tool. The higher cubic inch removal rates are achieved with light depth of cut (e.g., 80% of radius on toroidal end mill, for depth of cut) at high feeds rates per tooth or flute.
It is our further experience that accelerated speeds and feeds greater than that conventionally used for a given material, with shallow depth of cut, are possible with the present invention end mill. With the present invention solid design end mill, material specific end mills can be produced and remanufactured to meet the manufacturing needs without costly retooling. Such material specific end mills can be used to mill soft pre-hard and hardened die/steels, cast steels, cast iron, all stainless steels, nickel and titanium alloys, graphite and more. The present invention end mills can also be readily manufactured in forms having more than two flutes, thereby further increasing the feed rates possible with the tool.
The present invention toroidal end mill provides the following additional advantages: 1) increased insert shock value; 2) improved tolerance build-up relative to end mills utilizing inserts; 3) a more uniform end mill, that facilitates operator control in the machining of a part; 4) no inserts to lose and damage the tool holder and the machined part; 5) an end mill that can be resharpened; 6) an end mill that does not have a location along the cutting edge, center or side, where the velocity is zero during any cutting process; 7) an end mill that produces a desirable surface finish; 8) an end mill that can perform in a helical interpolation (cutting in three axes X, Y and Z at the same time) with no zero surface feet-per-minute causing toll failure; 9) an end mill with a cutting surface that creates a positive shear action in cutting of materials; 10) an end mill that can be manufactured with a cutting diameter that is so small that it is not practically attainable by an end mill utilizing inserts; 11) an end mill that can be indexed from flute to flute to decrease harmonic responses; and 12) an end mill that can be readily shaped to a variety of different configurations, including geometries not practically possible with inserts.
These and other features and advantages of the present invention will become apparent in light of the drawings and detailed description of the present invention provided below.
Referring to
The cutting surface 36 extends from the tip 30 toward the shank section 24, between and contiguous with the shoulder surface 38 and the outer surface 32. In some embodiments, the cutting surface is disposed in one plane. For example,
The cutting surface 36 includes a cutting edge 46 that extends radially outward from the shoulder surface 38 toward the outer surface 32 of the tooth 34. In the embodiments shown in
In addition, the arcuately shaped portion 48 may occupy less than the entire portion of the tooth 34 extending between the shoulder surface 38 and the outer surface 32. For example, each tooth 34 in the embodiment shown in
In some embodiments, a portion of the fluted section 26 is tapered radially inwardly. For example, the embodiment shown in
The shoulder surfaces 38 intersect with one another to form a center void 52 disposed between the cutting surfaces 36. The orientation of the center void 52 relative to the oppositely directed cutting surfaces 36 on the sides of the center void 52 facilitates chip removal and helps minimize undesirable machining marks.
The shoulder surface 38 of each tooth 34 extends from the tip 30 toward the shank section 24, between and contiguous with the cutting surface 36 and the outer surface 32. In some embodiments, the shoulder surface 38 is disposed within a single plane.
The end mill 20 embodiments shown in
It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the present invention and that the invention is not to be considered limited to what is described and exemplified in the specification.
This application claims the benefit of and incorporates by reference essential subject matter disclosed in U.S. Provisional Patent Application No. 60/606,316 filed on Sep. 1, 2004.
Number | Date | Country | |
---|---|---|---|
60606316 | Sep 2004 | US |