a-5e illustrate cross-sections of exemplary antenna arrangements in accordance with the present invention.
The following table illustrates various unlicensed frequency bands that can be used for antennas of the present invention:
The 24.0 to 24.250 GHz portion of the 24 GHz band is a recent addition to the unlicensed spectrum resource that is available. In accordance with exemplary embodiments of the present invention, this frequency band can be employed for point-to-point backhaul applications. The 24 GHz frequency band allows the use of relatively small antennas (i.e., 1 and 2 foot) which can simultaneously provide very high spatial filtering of interference. Additional rejection of interference is achieved because 24 GHz signals do not pass through building materials or foliage. The combination of these attributes allows highly robust, dependable operation. The 24 GHz band transmitters are relatively low power, thereby limiting operating ranges to typically 2 to 4 miles and provides higher data rates, however, low power functionality also tends to facilitate lower cost products.
The following table is the FCC Common Carrier Spectrum for point-to-point (PTP) link systems that can be employed by the antennas of the present invention:
The following table summarizes the LMDS & DEMS frequency bands that can be employed by the antennas of the present invention:
The E-Band is another frequency band that can be employed by the antennas of the present invention. This frequency band includes 71-76 GHz, 81-86 GHz and 92 to 95 GHz, and generally systems that operate in the 70/80 GHz range are referred to as E-Band systems.
a-5e illustrate cross-sections of exemplary antenna arrangements in accordance with the present invention. These antenna arrangements are similar to those described above in connection with
The antenna arrangement of
b illustrates an alternate arrangement to that of
c-5e illustrate exemplary arrangements for adjust the downtilt of antennas in an antenna arrangement in accordance with exemplary embodiments of the present invention. In the arrangement of
Although the features of
In the antenna arrangement of the present invention very high impedance feeder cables can be employed to provide high port isolation. When minimization of the size of the antenna elements is desired moderate line width feeder cables can be employed. In order to maximize antenna gain, impedance matching, and losses within and outside the antenna should be accounted for.
The antenna elements should be arranged inside of the enclosure to minimize the interaction between the antenna array elements and its surroundings inside the enclosure. By limiting interactions between an antenna element and its surroundings, antenna isolation is achieved which provides good performance and efficiency. In particular, integrated multi-band antenna radiating elements should be highly isolated to limit such interactions. By shaping an antenna element's near field pattern away from absorbers, a good radiation pattern of an isolated antenna can be achieved and efficiency can be improved. Coupling between the different antennas in the same enclosure should account for the overall radiation pattern requirements. By employing side lobe suppression optimum beamwidth side lobe performance can be achieved.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.