Aspects of the present disclosure generally relate to processes, systems, and apparatus for visible light disinfection.
Bacterial and microorganism inactivation is a crucial practice required in many areas of both personal and environmental hygiene for the benefit of human health. Many methods may be employed for a variety of situations where human health factors may be improved by inactivating bacterial and microorganisms. Sickness and infection are the primary concerns of bacterial or microorganism contamination. The contamination may be caused by the transmission of microorganisms between human beings (e.g., from direct contact) or from a surrounding environment.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosure. The summary is not an extensive overview of the disclosure. It is neither intended to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the description below.
Aspects of this disclosure provide methods, devices, and techniques for generation of disinfecting light. One or more aspects of this disclosure relate to generation of disinfecting light based on Soret band and Q bands.
An example light emitting device that inactivates microorganisms on a surface may comprise a first light source operable to emit a first light having a first wavelength in a Soret band at a first intensity sufficient to initiate inactivation of microorganisms, and a second light source operable to emit a second light having a second wavelength in a Q band at a second intensity sufficient to initiate inactivation of microorganisms, wherein the first light and the second light combine to form a disinfecting light.
An example method of inactivating microorganisms may comprise emitting, from a first light source, a first light having a first wavelength in a Soret band at a first intensity sufficient to initiate inactivation of microorganisms, emitting, from a second light source, a second light having a second wavelength in a Q band at a second intensity sufficient to initiate inactivation of microorganisms, and causing the first light and the second light to combine to form a disinfecting light.
An example light emitting device that inactivates microorganisms on a surface may comprise a light emitter operable to emit a first light having a first wavelength in a Soret band at a first intensity sufficient to initiate inactivation of microorganisms on the surface, and a light-converting material arranged to be in a direct path of the first light and operable to convert a first portion of the first light to a second light having a second wavelength in a Q band at a second intensity sufficient to initiate inactivation of microorganisms on the surface, wherein the first light and the second light combine to form disinfecting light.
In the following description of the various examples, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustrations, various examples of the disclosure that may be practiced. It is to be understood that other examples may be utilized.
Microorganism removal protocols play an important role in protecting human health in environments where transmission of microorganisms may cause a higher rate of infection (e.g., healthcare facilities, schools, prisons, mass transit hubs, etc.) because of population density, health factors, specific activities, or other factors. These procedures may range comprise one or more of hand washing protocols, manual cleaning with disinfectants, air circulation requirements, chemical bombing, light-based disinfection technologies, etc.
In other environments, inactivation of microorganisms is desirable due to effects they may have on processes or goods. Foods, pharmaceuticals, biomaterials, or other products and their processes are susceptible to microorganism proliferation, which may cause contamination or loss of goods or public exposure.
Cleaning requirements and work load may become burdensome and costly in situations where consistent cleaning procedures are required for maintaining standard levels of cleanliness. Manual cleaning is extremely costly in terms of materials and labor costs, is prone to human error, and does not result in complete removal of microorganisms. Other procedures, such as chemical bombing and burst ultraviolet (UV) treatment, may only be used in an environment that is preferably isolated from human exposure. UV light, for example, has well-known negative effects on human health. Systems using UV light may often require complicated control systems to ensure there is no accidental exposure to humans.
Procedures and processes for microorganism removal may be operated at a particular frequency for increased and continued effectiveness. Frequency-based cleaning procedures include set cleaning and/or disinfection tasks performed based on a scheduled or reactionary timeline (e.g., mopping at the beginning of a day, wiping down surfaces in the morning and evening every day, etc.). Frequency-based cleaning procedures may include manual cleaning multiple times per day with disinfectants and shutdown of environments for isolation cleaning processes. While a frequency-based cleaning procedure may cause temporary microorganism removal from an environment, microorganisms may immediately re-enter and re-populate the environment as soon as the cleaning procedure is completed. In between such cleaning procedures, these environments become more and more contaminated because of transmission or microorganism growth. This may pose a higher risk of contamination or infection.
It is advantageous in highly sensitive environments (e.g., hospitals) to remove as much bacteria as often as possible for highest potential reduction in contamination or infection. While frequency-based cleaning procedures remove some bacteria from the environments, such procedures, on their own, cannot maintain a consistently decontaminated environment. For example, current procedures of manual cleaning, chemical bombing, and UV treatments reach a limit of usage simply due to complications of interrupting normal facility operations and/or massive labor and material requirements associated with high frequency cleaning. With this limit in mind, it is advantageous to pursue methods of decontamination that may operate consistently to increase bacterial removal and maintain cleaner environments.
Illumination methods may be used for disinfection. Illumination, in general, may be broadly classified into general illumination and non-general illumination. General illumination may be defined as lighting produced to illuminate at least a portion of an indoor area for areas occupied by users (e.g., for enhancing observability of surroundings) and/or that require illumination to complete tasks (e.g., walking, eating, reading, etc.). General illumination devices may include overhead ceiling fixtures, table lamps, floor lamps, task lighting, etc. General illumination is often required to be white light with certain defining characteristics.
Non-general illumination may be defined as lighting produced to illuminate a limited space or internally illuminate an object. It may be used for, for example, aesthetic purposes or as an indicator. Non-general illumination devices may include indicators in backlit buttons, lights in internally illuminated handles, aquarium lights, etc. Non-general illumination may not be required to be a certain color. Non-white light may be applicable in many applications where non-general illumination can be used. Non-white light may also be applicable in indoor areas when an area is not occupied by users or when illumination is not required to complete tasks. In these cases, non-white light may be integrated into general illumination devices as a second mode along with white light.
Visible light disinfection methods disclosed herein, may fulfill needs for continuous decontamination methods that may be used continuously during normal operations and not interrupt activities over the course of the day. The visible light disinfection comprises activating endogenous molecules inside microorganisms that may initiate inactivation through various methods. The visible light disinfection methods, as described this disclosure, may effectively inactivate microorganisms at light intensity levels that are considered safe for human exposure by many regulatory bodies.
One type of visible light disinfection is called single-band disinfection, which focuses on using a single narrow wavelength range with disinfection properties, e.g., 380 nm-420 nm. Other bands of light may also contain disinfecting properties, e.g., 490 nm-660 nm, as well as several others. Each range of light may contain properties that aid disinfection. When various ranges of light are used, in at least some examples, a combination of the various ranges may be more effective than the various ranges being used alone.
Wavelengths of visible light in the violet range, e.g., 380 nm-420 nm, have a lethal effect on microorganisms such as bacteria, yeast, mold, fungi, etc. Examples of bacteria inactivated by this wavelength range are Escherichia coli (E. coli), Salmonella, Methicillin-resistant Staphylococcus Aureus (MRSA), and Clostridium difficile. These wavelengths of light initiate a photoreaction with porphyrin molecules or porphyrin derivatives found in microorganisms. These porphyrin molecules are photoactivated and react with other cellular components to produce Reactive Oxygen Species (ROS). The ROS causes irreparable cell damage and eventually results in cell death. This same kill mechanism does not work on humans, plants, or animals, because these organisms do not contain the same porphyrin molecules, making this technique completely safe for human exposure. While photosensitive molecules other than porphyrins and porphyrin derivatives exist in microorganisms, current understanding in the field focuses on porphyrin activation due to its relatively high effectiveness at light levels acceptable for human exposure.
Inactivation, in relation to microorganism death, is defined by noted reduction in microorganism colonies or individual cells when exposed to disinfecting light for a certain duration as compared to the same organism, in an identical setup and measured over the same duration, that is not exposed significant amounts of light. The setups shall be identical to an extent realistically practicable by someone skilled in the art with minimally required equipment.
A wavelength range of 380 nm-420 nm is perceived by humans as a dim violet color. A wavelength range of 490 nm-660 nm light may be perceived by humans as a bright green color. Colored lighting may be appropriate for uses other than general illumination (e.g., non-general illumination) or when illumination in a room is not required. A band of light (e.g., a wavelength range of 380 nm-420 nm light) may be combined with another range of light to produce a disinfecting light. Such disinfecting light may have a hue of white light. This method may result in light that may be more acceptable (e.g., than a narrow wavelength, or a single-band light) in at least some circumstances. This type of visible light disinfection may be appropriate for uses other than general illumination or when illumination in a room is not required.
White light that comprises one or more wavelength ranges of visible light, and further comprises wavelength ranges of visible light that have disinfecting properties, may be advantageous, in at least some circumstances, because the complete spectrum may be used as a general illumination source while also resulting in consistent bacterial inactivation. Non-white light that comprises one or more wavelength ranges of visible light, and further comprises wavelength ranges of visible light that have disinfecting properties, may provide an element of customization and aesthetic quality to the light while concurrently providing consistent bacterial inactivation.
Example methods, systems, or devices disclosed herein result in lighting quality improvements in addition to enhanced disinfecting characteristics. Examples disclosed herein relate to the use of different ranges of visible light that correlate to the inactivation of bacteria and other microorganisms. One or more disinfecting wavelength ranges may be combined, for example, to produce high-quality white light, while meeting current standards in lighting quality and offering improved bacterial inactivation rates. The high-quality white light may be used for bacterial inactivation in general illumination systems. One or more disinfecting wavelength ranges may be combined, for example, to produce a non-white light or a hue of white light. The hue of white light or the non-white light may be used for bacterial inactivation in non-general illumination systems.
Example methods, systems, or devices disclosed herein use different regions of the visible light spectrum to initiate microorganism inactivation, including regions of the spectrum different from the 380 nm-420 nm wavelength range. These regions may also, for example, provide methods of bacterial inactivation independently in the same manner as other light-based disinfection methods. These bands may also be mixed with another wavelength to produce a white, a hue of white light, or non-white light, as described in this application. This combination could include, for example, one or more wavelength bands other than the 380 nm-420 nm wavelength band.
It may be advantageous to combine two or more of different ranges of visible light from one or more a light sources. In some examples, a total amount of lumens required may be reduced to offer same or additional decontamination effectiveness by combining two or more different ranges of visible light.
An example lighting device uses at least two different ranges of light, noted to cause microorganism inactivation, combined with possible addition of one or more other ranges of light for light quality to produce white light or a hue of white light. An example lighting device uses at least two different ranges of light, noted to cause microorganism inactivation, combined with possible addition of other ranges of light for color aesthetic to produce a desired non-white light emitted from the light source or light fixture. Example light sources disclosed herein may emit light, in addition to providing visible light disinfection that may be improved by combination methods as described in various examples provided in this disclosure, to cause inactivation of microorganisms on surfaces, air, water, fluids, and gases.
Examples of light sources may include light emitting diodes (LED), organic LEDs (OLEDs), lasers, semiconductor dies, light converting materials, light converting layers, LEDs with light converting material(s)/layer(s), electroluminescent wires, electroluminescent sheets, flexible LEDs, etc. A light source may comprise of a single LED package that may include one or more semiconductor emitter dies within the LED package.
An example device may comprise of a single light source that generates light in multiple wavelength ranges. The single light source may be for example, a light emitter or a light converting material. An example device may comprise two light sources, each light source corresponding to respective one or more wavelength ranges. In some examples, the two light sources may each be emitters generating light in corresponding wavelength ranges. In some examples, one light source may be an emitter corresponding to a first wavelength, and the other light source may be a light converting material. The light converting material may, for example, convert at least a portion of light from the first light source to the second wavelength range.
Examples disclosed herein include lighting devices comprising one or more light sources emitting light within the visible region of light (380 nm-750 nm). The one or more light sources combine to provide sufficient energy in both the Soret band and Q band absorption regions of a porphyrin molecule, or porphyrin derivative, such that microorganisms containing these molecules will become inactivated.
Some examples disclosed herein comprise one range of emitted light in the Soret band region and an additional range of light in the Q band region or Q band peaks IV-I. By emitting light in both of these regions, microorganism inactivation may be achieved and be more effective than using any single peak to cause the inactivation.
White light is perceived in the human eye by the S, M, and L (short, medium, and long) cones, which react to wavelengths most commonly described as blue, green, and red, respectively. The human eye may perceive white light (or a hue of white light) when the S, M, and L cones are activated using blue, green, and red lights and if the lights are received at appropriate intensities.
Through proper selection of light sources, light sources with peaks at or near the respective peaks at the Soret band and Q bands of the porphyrin may be combined, at proper intensities, to produce a color, for example, that may be perceived by humans as “white.” The addition of other wavelengths of light may improve the color rendering index (CRI) (a rating of quality associated with white light) and help aid in the balancing of intensities and wavelength selection required to produce an overall white light. In some examples, the white light may be used to activate the Soret band and at least one of the Q bands.
In various examples described herein, a white light or a non-white light is generated, using both the Soret band and at least one of the Q bands, that may inactivate microorganisms. In various examples, described herein, the light is generated in a manner such that the intensity of the light, at a location (e.g., on a surface, in air, in water, in fluid, or in gas), is sufficient to inactivate microorganisms at the location. The intensity of the light that is sufficient to inactivate microorganisms at the location may depend on a distance of the location from a source of the light. This method creates a light that is more effective in microorganism inactivation than any one wavelength that activates just one of a Soret band or Q band that is mixed with other non-related wavelengths to generate light that may inactivate microorganisms.
In various examples disclosed herein, a combination of light is not chosen to create white light, but instead to produce another color of light with minimum amounts of each band (e.g., the Soret band and at least one of the Q bands) contained within a spectrum corresponding to the non-white light.
Examples disclosed herein comprise a lighting device or fixture emitting sufficient intensity in the 380 nm-420 nm band of light to initiate microorganism cell death and at least one other wavelength band in an alternative range of 490 nm-660 nm at a sufficient intensity to initiate microorganism cell death. Where when these wavelengths are combined with the possible addition of other wavelengths, an overall output of the light emitting device may be perceived as white or a hue of white light by the human eye. LEDs and phosphor conversion technologies serve as suitable methods of light generation as described.
Examples disclosed herein comprise a light-emitting device or fixture emitting sufficient intensity in the 380 nm-420 nm band of light to initiate microorganism cell death and at least one other wavelength band in an alternative range of 490 nm to 660 nm at a sufficient intensity to initiate microorganism cell death. Where when these wavelengths are combined with the possible addition of other wavelengths, an overall output of the light emitting device may be perceived as a non-white color by the human eye. LEDs and phosphor conversion technologies serve as suitable methods of light generation as described.
Efficiencies of various example devices in inactivating bacteria may be a function of radiometric energy content for each of the Soret band and Q band regions as compared to the overall lumens of white light or non-white light produced by the devices. A unit to express this measure may be radiometric watts (of region(s) in question) per lumen. Various example devices in this disclosure provide more radiometric energy per lumen in the Soret and the Q regions combined than a comparable light source using only energy in one of the Q bands and the Soret band for the inactivation of bacteria.
While the Q band region may cause microorganism inactivation, it may have much less efficacy than the Soret band, as may be seen in example porphyrin absorption spectra in
While a device using common light emitting diode (LED) lighting methods (e.g., RGB, phosphor conversion, etc.) may have a high lumens per watt for electrical efficiency, the heavy reliance on blue diodes to sensitize the S cones of the eye is very effective in illumination due to luminous sensitivity characteristics of light and the human eye. But blue diodes are not very effective in causing microorganism inactivation.
A CRI corresponding to a lighting system may depend on colors used to implement the system.
In some examples, generating disinfecting white light may comprise combining a first light source emitting in the Soret with another light source that operates on the opposite side of the black body curve as seen on a chromaticity diagram (e.g., a CIE 1931 chromaticity diagram). A color coordinate corresponding to the another source, on the other side of the black body curve may, for example, fall on at any point on a line joining a color coordinate corresponding to the first light source to a point, on the black body curve, corresponding to a target color temperature. The target color temperature of white light in this arrangement may be changed by changing the color coordinate of one of the light sources.
To cause a change in color temperature, the color coordinate for the combined output may be shifted along the black body curve 416, denoting the color temperature. Color temperature may be changed, for example, with a change in diode selection corresponding to one or both of the first and the second light sources causing a shift in the line 412. For modulation of color temperature in this arrangement, it may be advantageous to change the second light source operating on the other side of the black body curve 416. The second light source may be selected to operate at any point in a region 424 based on a desired color temperature. Changing the second light source may be advantageous because a change corresponding to color coordinate shifts of the second light source may have a more noticeable effect on color temperature than the first light source operating in the Soret band. This characteristic may be seen on the CIE chromaticity diagram 400 as wavelengths in the Soret band are very closely packed in the bottom portion of the diagram, yet the Q band region (e.g., in the region 424) has wavelengths that are relatively spread out.
In the above arrangement, light emitted by the first and the second light sources may correspond to narrow band emission of wavelengths. The first and the second light sources may be semiconductor-based LEDs that maintain a narrow band emission. Lasers could also be used to narrow the band width (sometimes called full width half max, FWHM).
Three light sources may be used, in some examples, for generation of disinfecting light, such as a disinfecting white light or non-white light. Red, green, blue (RGB) color mixing may be used, for example, to generate disinfecting light. In one example, red, green, and violet (RGV) may serve to match the Q band I, Q band II, and the Soret band, respectively, to match peaks and colors.
In some examples, it is advantageous to combine a plurality of light sources that are directly matched to each Soret band peak and Q band peak such that, when combined and individually modulated in intensity by a computer or microcontroller source, or an analog circuit, would produce white light or a hue of white. In one example, light sources emitting peaks in the 380 nm-420 nm, 480 nm-520 nm, 510 nm-550 nm, 550 nm-590 nm, and 600 nm-640 nm regions may be combined.
By combining multiple light sources, the spectrum of the generated white light may be much more complete in the sense that many more wavelengths of light are being emitted at appropriate intensities to provide a higher quality CRI for general illumination. The generated white light may also have a larger color gamut. Using multiple sources may also allow for much greater modulation of color temperature to generate a desired color temperature output. This method may also be used to provide ideal narrow band emissions at each of the peaks (e.g., Soret and Q band peaks).
In examples disclosed herein, it may be advantageous to use commonly available diodes and add a wavelength source in a blue region of light to improve quality of combined light. Diodes in the 380 nm-420 nm region of light may be readily available, but it may be difficult to identify peak matches for other colors. Because a Soret light source (e.g., a Soret match) may be effective in relation to absorption that causes inactivation, it may be advantageous to include a direct light source match across the black body curve from the Soret region to ease factors of color shift. In this case, the Soret match may also serve as an approximate match for the peak of Q band II. For other colors, it is advantageous to use red, green, and/or blue diodes, which are very commonly available. A red diode may be specified to match or approximate to the Q band I peak. A green diode could be specified to match or approximate the Q band III (or Q band IV), and a blue diode could be specified in the 440 nm-480 nm region to improve the quality of the spectrum of light for color rendering. A method that uses a green diode may sacrifice some output for either Q band III or IV peak matches and may serve as an imperfect approximation spectra, but combining the green diode with a violet diode and a blue diode may provide high quality light in terms of color rendering. This method also offers excellent variability in color temperature when tuning of intensities may be completed.
In some examples, such as those described in relation to
In some examples, the use of phosphor conversion methods in LED devices is advantageous as an effective arrangement in both lighting quality and multiple Soret and Q band activation. Phosphor conversion may comprise generating light through a photochemical absorption/emission. In some examples, a single-light emitting semiconductor source may be used to activate a chemical or combination of chemicals that may be considered a phosphor. The light used to activate the phosphor may be absorbed and emitted from the phosphor at a different wavelength. Phosphor emission may be a broad-band emission in the cyan-red region. This conversion method may be an efficient method for generating light in almost any region of visible light spectrum at efficiencies comparable to semiconductor diodes.
Light-converting materials may comprise a broad category of materials, substances, or structures that have the capability of absorbing a wavelength of light and re-emitting it as another wavelength of light. In some examples, a light-converting material may be a phosphor, an optical brightener, a combination of phosphors, a combination of optical brighteners, or a combination of phosphor(s) and optical brightener(s). In some examples, the light-converting material may be quantum dots, a phosphorescent material, a fluorophore, a fluorescent dye, a conductive polymer, an organometallic phosphor or a combination of any one or more types of light-converting materials.
Light-converting materials, light-converting mediums, light-converting filters, phosphors, and any other terms regarding the conversion of light are meant to be examples of the light-converting material disclosed. A light converting material may be deposited directly on a light source or may be remote or further removed from the light source. Light-converting materials may be deposited, for example, as conformal coatings, doped encapsulants or binder materials, and remote phosphors. In some examples, such as those described in relation to
Light-converting layer(s) may comprise multiple light-converting materials and may include any now known or later developed layer(s) for converting all or certain portion(s) of light to different wavelengths. Light-converting layer(s) may tune light to, for example, alter a color tint of exterior surface or the color tint of the material directly surrounding each of light emitters. In any event, the exiting light may be customized to provide disinfection and a desired color.
Because the Soret band is still the largest source of activation in question, an example method comprises using a Soret band light source and a phosphor converted light source as a color match across the black body curve, for white light cases. A color match across the black body curve is not necessarily required for all non-white colors.
Additionally, due to broad band emission of the phosphor conversion method, multiple Q band peaks in the Q band region may be activated by a single light source (e.g., a phosphor converted light source). The broad band emission may also be effective in creating a light spectrum with a high CRI.
In some examples, using a source emitting in the Soret region and a matched phosphor converted diode with appropriate color coordinates, an arrangement may be created that uses only two light sources that may be controlled in their intensity to create a combined output with a color coordinate on the black body curve. The phosphor conversion diode may be powered by a semiconductor chip of any acceptable wavelength as long as the phosphor output matches proper color coordinates. Due to the broad band nature of the phosphor diode, multiple Q band peaks may also be activated.
Different phosphor conversion diodes could be used to cause a matching vector between two light sources to intersect at a desired color temperature on the black body curve. Due to the broad band nature of phosphor, adjustment of color temperature would change intensities matched to each Q band peak, but would not reach a point where no Q band peak would be activated. As Q band peaks may be susceptible to shift due to the organism and the solution they are observed in, it may be desirable to cover the range of the Q band peaks broadly to be able to still have inactivation effectiveness when dealing with Q band peak shifts.
In some examples, it may be desirable to have control of color temperature without changing a phosphor diode. This may be accomplished through the incorporation of red, green, and blue sources in the design. By incorporation of these additional sources, the intensity of all sources could be modulated appropriately by computer or microcontroller methods to cause the color coordinate of the combined output to shift along the black body curve. The red and green diodes used could also be specified to match properly with Q band peaks I and III, respectively, to allow for additional Q band activation.
In some examples, it may be cumbersome and costly to source an exact phosphor diode desired due to readily available supply or upfront engineering costs. An alternative to using an exact phosphor match for the Soret band would be to use commonly available phosphor converted amber diodes.
While a phosphor converted amber diode may not be a direct match for the Soret band as desired, addition of red, green, and blue diodes may offer sufficient modulation of combined output color coordinate through control of intensities using a computer or microcontroller system. The additions of red and green diodes would also allow for additional peak matching with the Q band peaks I and III. While a blue diode may not be required for additional effectiveness in inactivation or the ability to modulate color, it may be desirable, in at least some examples, to include a portion of blue in the spectrum to increase CRI for white light applications.
Some examples use a single light source for generation of inactivating light due to costs and control complexity associated with color mixing and color control in devices that use multiple different light sources. To this end, in some examples, a single component fulfilling the specifications of activating the Soret and at least some Q bands may be used with a phosphor conversion method.
In some examples, the lighting device 900 may produce white light or non-white light with disinfecting wavelengths in both the Soret and Q bands. In some examples, the sources 904 are in a Red, Green, Blue, Violet (RGBV) tunable LED. In some examples, the sources 904 comprise of sources 904-1, 904-2, 904-3 and 904-4. In some examples, source 904-1 is a green source, source 904-2 is a red source, source 904-3 is a phosphor-converted white source, and source 904-4 is a source that emits light in the Soret band (e.g., 380 nm-420 nm). In some examples, power to each of the separate color light sources 904 may be controlled to alter the overall combined output of the lighting device 900. In some examples, the sources 904 may comprise of different LEDs, different light converting materials, and/or respective different light converting materials deposited on one or more LEDs, etc.
The lighting device 920 comprises sources 924. In some examples, the lighting device 924 may comprise of two sources 924-1 and 924-2. In some examples, the source 924-1 may be a source that emits light in the Soret band (e.g., 380 nm-420 nm), and the source 924-2 may be a source that emits light in one or more of the Q bands. In some examples, the sources 924 may comprise of different LEDs, different light converting materials, respective different light converting materials deposited on one or more LEDs, etc.
Phosphor converted diodes may emit just the light from the phosphor emission, or they may be designed to let some of the light from the source activating the phosphor escape the light source and be perceived. In some examples, a single LED component may be a semiconductor chip emitting light in the 380 nm-420 nm region that activates a phosphor encasing or encompassing the semiconductor, or incorporated into the light fixture or device (a method that may be be described as a remote phosphor). In some examples, the source 1034 may comprise of a single emitter that comprises a semiconductor chip (e.g., a diode junction) emitting light in the 380 nm-420 nm region and further comprises a phosphor encasing that is used to absorb light in the 380 nm-420 nm region and emit light in one or more Q bands.
A single non-tunable LED with at least one semiconductor die emitting light within the Soret band 380 nm-420 nm may also be a method for making a non-white multiple band spectrum. This LED may contain at least one light converting material to convert at least a portion of the light from the at least one semiconductor die to a different wavelength. The combined output of the LED forms a non-white color with sufficient energy in the Soret and Q bands to inactivate microorganisms. A single LED package may include one or more semiconductor dies that are each emitters within an LED package. There may be more than one emitter within the LED package, so long as one of them emits a peak wavelength in the range of 380 nm-420 nm.
In some examples, the lighting devices 900, 920, and/or 930 may interface with a control system that allows a minimum intensity of a corresponding wavelength range to be set either by a user or to a predetermined value. A proportion of spectral energy is defined as an amount of spectral energy within a specified wavelength range, e.g., the 380 nm-420 nm wavelength range, divided by a total amount of spectral energy. Proportion of spectral energy is often presented as the spectral energy within the specified wavelength range as a percentage of the total amount of spectral energy.
In some examples, if a minimum proportion of spectral energy of light within the range of 380 nm-420 nm out of a total energy in the 380 nm-750 nm range of visible light, measured as a percentage, is set to be 75%, it may limit a number of colors that may be created but may ensure that disinfecting energy content is high enough to provide a high rate of microbial inactivation. In one specific non-limiting example, minimum energy within the range of 380 nm-420 nm may be set to 40%, which may allow one of possible color options to be a warm hue of white for use at night time or when high quality white light is not needed. In some cases, a maximum proportion of spectral energy of 30% within the range of 380 nm-420 nm is desired to create more white light options. This white light may also be color temperature tunable ranging from 1,000 Kelvin to 6,000 Kelvin, an example of a warm color temperature being 2700K and an example of a cool color temperature being 4100K. These examples are focusing specifically on controlling the proportion of spectral energy in the Soret range, but proportions of spectral energies in other ranges of light (e.g., the Q bands) may also be similarly controlled for various application scenarios.
In some examples, a combined light (e.g., as generated by lighting devices 900, 920, and/or 930) is white and has one or more of the following properties: (a) a correlated color temperature (CCT) value of 1000K to 8000K, (b) a CRI value of 55 to 100, (c) a color fidelity (Rf) value of 60 to 100, and/or (d) a color gamut (Rg) value of 60 to 140.
In one non-limiting example a combined light (e.g., as generated by lighting devices 900, 920, and/or 930) may be white and have a CRI value of at least 70, a CCT between approximately 2,500 K and 5,000 K and/or a proportion of spectral energy measured in the 380 nm to 420 nm wavelength range between 10% and 44%.
There may be a minimum amount of irradiance required in order to disinfect a surface disposed a certain distance away from one or more light sources. For the Soret band wavelength range alone, for example, there may be a minimum irradiance required to hit the surface to cause microbial inactivation. A minimum irradiance of light (e.g., in the 380 nm-420 nm wavelength) on a surface may cause microbial inactivation. For example, a minimum irradiance of 0.02 milliwatts per square centimeter (mW/cm2) may cause microbial inactivation on a surface over time. In some examples, an irradiance of 0.05 mW/cm2 may inactivate microorganisms on a surface, but higher values such as 0.1 mW/cm2, 0.5 mW/cm2, 1 mW/cm2, or 2 mW/cm2 may be used for quicker microorganism inactivation. In some examples, even higher irradiances may be used over shorter periods of time, e.g., 3 to 10 mW/cm2.
For the Soret band wavelength range, in some examples, light for microbial inactivation may include radiometric energy sufficient to inactive at least one bacterial population, or in some examples, a plurality of bacterial populations. One or more light sources may have some minimum amount of radiometric energy (e.g., 20 mW) measured in the 380 nm-420 nm wavelength range.
Dosage (measured in Joules/cm2) may be another metric for determining an appropriate irradiance for microbial inactivation over a period of time. Table 1 below shows example correlations between irradiance in mW/cm2 and Joules/cm2 based on different exposure times for the Soret band. These values are examples and many others may be possible.
Table 2 shows the different dosages recommended for the inactivation of different bacterial species using narrow spectrum 405 nm light. Inactivation is not limited to these bacteria. Recommended dosage is measured by a dosage required for a 1-Log reduction in bacteria.
Staphylococcus aureus
Pseudomonas aeruginosa
Escherichia coli
Enterococcus faecalis
Equation 1 may be used in order to determine irradiance, dosage, or time using one or more data points from Table 1 and Table 2:
Irradiance may be determined based on dosage and time. For example, if a dosage of 30 Joules/cm2 is required and the object desired to be disinfected is exposed to light overnight for 8 hours, the irradiance may be approximately 1 mW/cm2. If a dosage of 50 Joules/cm2 is required and the object desired to be disinfected is exposed to light for 48 hours, a smaller irradiance of only approximately 0.3 mW/cm2 may be sufficient. These calculations are done assuming the use of light in the Soret band range of 380 nm-420 nm.
Time may be determined based on irradiance and dosage. In some examples, a device may be configured to emit an irradiance of disinfecting energy (e.g., 0.05 mW/cm2) and a target bacteria may require a dosage of 20 Joules/cm2 to kill the target bacteria. Disinfecting light at 0.05 mW/cm2 may have a minimum exposure time of approximately 4.6 days to achieve the dosage of 20 Joules/cm2. Dosage values may be determined by a target reduction in bacteria. Once the bacteria count is reduced to a desired amount, disinfecting light may be continuously applied to keep the bacteria counts down. These calculations are done assuming the use of light in the Soret band range of 380 nm-420 nm.
Table 3 shows one interpretation of the different disinfecting ranges of light including the Soret band and four Q bands. Different porphyrins have different peak absorption wavelengths within each of the ranges which emphasizes the need for wide band light sources.
In various examples, an approximate ratio may be used to compare portions of different wavelength ranges within a spectrum of light. In one specific non-limiting example corresponding to white light, there may be a 3:1:1 ratio of spectral energy measured within wavelength ranges 380 nm-420 nm, 490 nm-530 nm, and 530 nm-660 nm, respectively, wherein the minimum irradiance of the 380 nm-420 nm range is at least 0.02 mW/cm2.
In some examples for white light, a proportion of spectral energy, in total spectral energy of a light source, within the Soret band wavelength range of 380 nm-420 nm is at least 20% and a remaining proportion of spectral energy is within the Q Band range of 490 nm-660 nm. In some examples, there may be one peak wavelength within the 380 nm-420 nm range and one or more peak wavelengths within the 490 nm-660 nm range. In some examples, a minimum irradiance within the range of 380 nm-420 nm is 0.02 mW/cm2. In some examples, there may be an additional peak within a wavelength range of 440 nm-480 nm to improve color rendering. In some examples, a proportion of spectral energy within a wavelength range 440 nm-480 nm is less than 15%.
In various examples for non-white light, an approximate ratio may be used to compare portions of different wavelength ranges within a spectrum of the non-white light. In some examples, there may be a 1:3:3 ratio of spectral energy measured within wavelength ranges of 380 nm-420 nm, 490 nm-530 nm, and 530 nm-660 nm, respectively, wherein a minimum irradiance of the 380 nm-420 nm range is at least 0.02 mW/cm2. In this example scenario, the light may be perceived as a bright blue-green color.
In some examples, non-white light corresponds to a 5:1:1 ratio of spectral energy measured within wavelength ranges 380 nm-420 nm, 490 nm-530 nm, and 530 nm-660 nm, respectively, wherein a minimum irradiance of the wavelength range in the 380 nm-420 nm range is at least 0.02 mW/cm2. In this example scenario, the light may be perceived as a violet color.
In some examples, a highest proportion of spectral energy from a total spectral energy of the light source is within the Soret band wavelength range of 380 nm-420 nm (e.g., 70%), and a remaining proportion of the spectral energy is within the Q band range of 490 nm-660 nm. In some examples, there may be one peak wavelength within the 380 nm-420 nm range and one or more peak wavelengths within the 490 nm-660 nm range. In some examples, a minimum irradiance within the range of 380 nm-420 nm is 0.02 mW/cm2.
Various examples of white light or non-white light as described above may be generated using a lighting device, such the lighting device 900, the lighting device 920, or the lighting device 930. Various examples of white light or non-white light as described above may be generated using a combination of lighting devices, such as two or more of the lighting devices 900, 920, or 930.
Table 4 provides example of non-white color spectrums that may be created using methods, devices, and/or systems disclosed herein. In some examples, a 405 nm pump LED is used in conjunction with one or more phosphors. The phosphors are described by their peak wavelength (Wp) and FWHM value. The ratio column is the ratio of radiometric energy emitted by the 405 nm pump LED to radiometric energy emitted by phosphor 1 to radiometric energy emitted by phosphor 2 (where applicable). Violet % is defined as the percentage of energy in the range of 380 nm-420 nm out of total energy emitted. The RGB Color is a set of 8-bit color values from the RGB color space that represent a color, encoded in the order of: Red, Green, Blue.
Certain examples of various methods, devices, and/or systems disclosed herein may also include a control system. The control system may be operatively coupled to a device and may be operative to control operational features of the device such as but not limited to: a duration of illumination, exiting light color, light intensity, and/or light irradiance. The control system may include any now known or later developed microcontroller. The device may also include one or more sensors coupled to control system to provide feedback to control system. The sensor(s) may sense any parameter of a control environment of the device, including but not limited to: touch of the device, heat of a user's hand on the device, motion of a user, motion of a structure to which device is coupled, temperature, light reception, and/or presence of microorganisms on an exterior surface, etc. The sensor(s) may include any now known or later developed sensing devices for the desired parameter(s). The control system with the sensor(s) (and without) may control operation to be continuous or intermittent based on an external stimulus, and depending on the application.
In some examples, the first light source and the second light source may be light converting materials the emit light based on incident light. In some examples, the first light source may be a light emitter and the second light source may be a light converting material that converts a portion of the first light from the first light source to emit the second light having the second wavelength. In some examples, the lighting device may be configured with a controller that may be used to vary the first intensity of the first light and the second intensity of the second light to control at least one of (i) color of the disinfecting light, (ii) color temperature of the disinfecting light, and/or (iii) an intensity of the disinfecting light.
Modifications may be made as desired, to the above discussed examples, for different implementations. For example, steps and/or components may be subdivided, combined, rearranged, removed, and/or augmented; performed on a single device or a plurality of devices; performed in parallel, in series; or any combination thereof. Additional features may be added.
Number | Name | Date | Kind |
---|---|---|---|
1493820 | Miller et al. | May 1924 | A |
2622409 | Stimkorb | Dec 1952 | A |
2773715 | Lindner | Dec 1956 | A |
3314746 | Millar | Apr 1967 | A |
3670193 | Thorington et al. | Jun 1972 | A |
3791864 | Steingroever | Feb 1974 | A |
3926556 | Boucher | Dec 1975 | A |
3992646 | Corth | Nov 1976 | A |
4121107 | Bachmann | Oct 1978 | A |
4461977 | Pierpoint et al. | Jul 1984 | A |
4576436 | Daniel | Mar 1986 | A |
4867052 | Cipelletti | Sep 1989 | A |
4892712 | Robertson et al. | Jan 1990 | A |
4910942 | Dunn et al. | Mar 1990 | A |
5231472 | Marcus et al. | Jul 1993 | A |
5489827 | Xia | Feb 1996 | A |
5530322 | Ference et al. | Jun 1996 | A |
5559681 | Duarte | Sep 1996 | A |
5668446 | Baker | Sep 1997 | A |
5721471 | Begemann et al. | Feb 1998 | A |
5725148 | Hartman | Mar 1998 | A |
5800479 | Thiberg | Sep 1998 | A |
5901564 | Comeau, II | May 1999 | A |
5962989 | Baker | Oct 1999 | A |
6031958 | McGaffigan | Feb 2000 | A |
6166496 | Lys et al. | Dec 2000 | A |
6183500 | Kohler | Feb 2001 | B1 |
6242752 | Soma et al. | Jun 2001 | B1 |
6246169 | Pruvot | Jun 2001 | B1 |
6251127 | Biel | Jun 2001 | B1 |
6379022 | Amerson et al. | Apr 2002 | B1 |
6477853 | Khorram | Nov 2002 | B1 |
6524529 | Horton, III | Feb 2003 | B1 |
6551346 | Crossley | Apr 2003 | B2 |
6554439 | Teicher et al. | Apr 2003 | B1 |
6627730 | Burnie | Sep 2003 | B1 |
6676655 | McDaniel | Jan 2004 | B2 |
6791259 | Stokes et al. | Sep 2004 | B1 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
7015636 | Bolta | Mar 2006 | B2 |
7175807 | Jones | Feb 2007 | B1 |
7190126 | Paton | Mar 2007 | B1 |
7198634 | Harth et al. | Apr 2007 | B2 |
7201767 | Bhullar | Apr 2007 | B2 |
7213941 | Sloan et al. | May 2007 | B2 |
7438719 | Chung et al. | Oct 2008 | B2 |
7503675 | Demarest et al. | Mar 2009 | B2 |
7516572 | Yang et al. | Apr 2009 | B2 |
7521875 | Maxik | Apr 2009 | B2 |
7611156 | Dunser | Nov 2009 | B2 |
7612492 | Lestician | Nov 2009 | B2 |
7658891 | Barnes | Feb 2010 | B1 |
7955695 | Argoitia | Jun 2011 | B2 |
8035320 | Sibert | Oct 2011 | B2 |
8214084 | Ivey et al. | Jul 2012 | B2 |
8232745 | Chemel et al. | Jul 2012 | B2 |
8357914 | Caldwell | Jan 2013 | B1 |
8398264 | Anderson et al. | Mar 2013 | B2 |
8476844 | Hancock et al. | Jul 2013 | B2 |
8481970 | Cooper et al. | Jul 2013 | B2 |
8506612 | Ashdown | Aug 2013 | B2 |
8508204 | Deurenberg et al. | Aug 2013 | B2 |
8761565 | Coleman et al. | Jun 2014 | B1 |
8886361 | Harmon et al. | Nov 2014 | B1 |
8895940 | Moskowitz et al. | Nov 2014 | B2 |
8999237 | Tumanov | Apr 2015 | B2 |
9024276 | Pugh et al. | May 2015 | B2 |
9027479 | Raksha et al. | May 2015 | B2 |
9028084 | Maeng et al. | May 2015 | B2 |
9039966 | Anderson et al. | May 2015 | B2 |
9046227 | David et al. | Jun 2015 | B2 |
9078306 | Mans et al. | Jul 2015 | B2 |
9119240 | Nagazoe | Aug 2015 | B2 |
9173276 | Van Der Veen et al. | Oct 2015 | B2 |
9257059 | Raksha et al. | Feb 2016 | B2 |
9283292 | Kretschmann | Mar 2016 | B2 |
9313860 | Wingren | Apr 2016 | B2 |
9323894 | Kiani | Apr 2016 | B2 |
9333274 | Peterson et al. | May 2016 | B2 |
9368695 | David et al. | Jun 2016 | B2 |
9410664 | Krames et al. | Aug 2016 | B2 |
9420671 | Sugimoto et al. | Aug 2016 | B1 |
9433051 | Snijder et al. | Aug 2016 | B2 |
9439271 | Ku et al. | Sep 2016 | B2 |
9439989 | Lalicki et al. | Sep 2016 | B2 |
9492576 | Cudak et al. | Nov 2016 | B1 |
9581310 | Wu et al. | Feb 2017 | B2 |
9623138 | Pagan et al. | Apr 2017 | B2 |
9625137 | Li et al. | Apr 2017 | B2 |
9681510 | van de Ven | Jun 2017 | B2 |
10806812 | Barron et al. | Oct 2020 | B2 |
20020074559 | Dowling et al. | Jun 2002 | A1 |
20020122743 | Huang | Sep 2002 | A1 |
20030009158 | Perricone | Jan 2003 | A1 |
20030019222 | Takahashi et al. | Jan 2003 | A1 |
20030023284 | Gartstein et al. | Jan 2003 | A1 |
20030124023 | Burgess et al. | Jul 2003 | A1 |
20030178632 | Hohn et al. | Sep 2003 | A1 |
20030231485 | Chien | Dec 2003 | A1 |
20040008523 | Butler | Jan 2004 | A1 |
20040010299 | Tolkoff et al. | Jan 2004 | A1 |
20040024431 | Carlet | Feb 2004 | A1 |
20040039242 | Tolkoff et al. | Feb 2004 | A1 |
20040047142 | Goslee | Mar 2004 | A1 |
20040147984 | Altshuler et al. | Jul 2004 | A1 |
20040147986 | Baumgardner et al. | Jul 2004 | A1 |
20040158541 | Notarianni et al. | Aug 2004 | A1 |
20040159039 | Yates et al. | Aug 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040230259 | Di Matteo | Nov 2004 | A1 |
20040262595 | Mears et al. | Dec 2004 | A1 |
20040266546 | Huang | Dec 2004 | A1 |
20050055070 | Jones et al. | Mar 2005 | A1 |
20050104059 | Friedman et al. | May 2005 | A1 |
20050107849 | Altshuler et al. | May 2005 | A1 |
20050107853 | Krespi et al. | May 2005 | A1 |
20050159795 | Savage et al. | Jul 2005 | A1 |
20050207159 | Maxik | Sep 2005 | A1 |
20050212397 | Murazaki et al. | Sep 2005 | A1 |
20050253533 | Lys et al. | Nov 2005 | A1 |
20050267233 | Joshi | Dec 2005 | A1 |
20060006678 | Herron | Jan 2006 | A1 |
20060009822 | Savage et al. | Jan 2006 | A1 |
20060022582 | Radkov | Feb 2006 | A1 |
20060071589 | Radkov | Apr 2006 | A1 |
20060085052 | Feuerstein et al. | Apr 2006 | A1 |
20060138435 | Tarsa et al. | Jun 2006 | A1 |
20060186377 | Takahashi et al. | Aug 2006 | A1 |
20060230576 | Meine | Oct 2006 | A1 |
20060247741 | Hsu et al. | Nov 2006 | A1 |
20060262545 | Piepgras et al. | Nov 2006 | A1 |
20070023710 | Tom et al. | Feb 2007 | A1 |
20070061050 | Hoffknecht | Mar 2007 | A1 |
20070115665 | Mueller et al. | May 2007 | A1 |
20070164232 | Rolleri et al. | Jul 2007 | A1 |
20070258851 | Fogg et al. | Nov 2007 | A1 |
20080008620 | Alexiadis | Jan 2008 | A1 |
20080015560 | Gowda et al. | Jan 2008 | A1 |
20080091250 | Powell | Apr 2008 | A1 |
20080278927 | Li et al. | Nov 2008 | A1 |
20080305004 | Anderson et al. | Dec 2008 | A1 |
20090018621 | Vogler et al. | Jan 2009 | A1 |
20090034236 | Reuben | Feb 2009 | A1 |
20090076115 | Wharton et al. | Mar 2009 | A1 |
20090154167 | Lin | Jun 2009 | A1 |
20090231832 | Zukauskas et al. | Sep 2009 | A1 |
20090262515 | Lee et al. | Oct 2009 | A1 |
20090285727 | Levy | Nov 2009 | A1 |
20100001648 | De Clercq et al. | Jan 2010 | A1 |
20100027259 | Simon et al. | Feb 2010 | A1 |
20100071257 | Tsai | Mar 2010 | A1 |
20100090935 | Tseng et al. | Apr 2010 | A1 |
20100107991 | Elrod et al. | May 2010 | A1 |
20100121420 | Fiset et al. | May 2010 | A1 |
20100148083 | Brown et al. | Jun 2010 | A1 |
20100179469 | Hammond et al. | Jul 2010 | A1 |
20100232135 | Munehiro et al. | Sep 2010 | A1 |
20100246169 | Anderson et al. | Sep 2010 | A1 |
20110063835 | Rivas et al. | Mar 2011 | A1 |
20110084614 | Eisele et al. | Apr 2011 | A1 |
20110256019 | Gruen et al. | Oct 2011 | A1 |
20110316025 | Kuzuhara et al. | Dec 2011 | A1 |
20120025717 | Klusmann et al. | Feb 2012 | A1 |
20120043552 | David et al. | Feb 2012 | A1 |
20120161170 | Dubuc et al. | Jun 2012 | A1 |
20120199005 | Koji et al. | Aug 2012 | A1 |
20120273340 | Felix | Nov 2012 | A1 |
20120280147 | Douglas | Nov 2012 | A1 |
20120281408 | Owen et al. | Nov 2012 | A1 |
20120315626 | Nishikawa et al. | Dec 2012 | A1 |
20120320607 | Kinomoto et al. | Dec 2012 | A1 |
20130010460 | Peil et al. | Jan 2013 | A1 |
20130045132 | Tumanov | Feb 2013 | A1 |
20130077299 | Hussell et al. | Mar 2013 | A1 |
20130200279 | Chuang | Aug 2013 | A1 |
20130298445 | Aoki et al. | Nov 2013 | A1 |
20130313516 | David et al. | Nov 2013 | A1 |
20130313546 | Yu | Nov 2013 | A1 |
20140043810 | Jo et al. | Feb 2014 | A1 |
20140061509 | Shur et al. | Mar 2014 | A1 |
20140209944 | Kim et al. | Jul 2014 | A1 |
20140225137 | Krames et al. | Aug 2014 | A1 |
20140254131 | Osinski et al. | Sep 2014 | A1 |
20140301062 | David et al. | Oct 2014 | A1 |
20140328046 | Aanegola et al. | Nov 2014 | A1 |
20140334137 | Hasenoehrl et al. | Nov 2014 | A1 |
20140362523 | Degner et al. | Dec 2014 | A1 |
20150049459 | Peeters et al. | Feb 2015 | A1 |
20150062892 | Krames et al. | Mar 2015 | A1 |
20150068292 | Su et al. | Mar 2015 | A1 |
20150086420 | Trapani | Mar 2015 | A1 |
20150129781 | Kretschmann | May 2015 | A1 |
20150148734 | Fewkes et al. | May 2015 | A1 |
20150150233 | Dykstra | Jun 2015 | A1 |
20150182646 | Anderson et al. | Jul 2015 | A1 |
20150219308 | Dross et al. | Aug 2015 | A1 |
20150233536 | Krames et al. | Aug 2015 | A1 |
20150273093 | Holub et al. | Oct 2015 | A1 |
20160000950 | Won | Jan 2016 | A1 |
20160015840 | Gordon | Jan 2016 | A1 |
20160030610 | Peterson et al. | Feb 2016 | A1 |
20160091172 | Wu et al. | Mar 2016 | A1 |
20160114067 | Dobrinsky et al. | Apr 2016 | A1 |
20160249436 | Inskeep | Aug 2016 | A1 |
20160271280 | Liao et al. | Sep 2016 | A1 |
20160271281 | Clynne et al. | Sep 2016 | A1 |
20160273717 | Krames et al. | Sep 2016 | A1 |
20160276550 | David et al. | Sep 2016 | A1 |
20160324996 | Bilenko et al. | Nov 2016 | A1 |
20160345569 | Freudenberg et al. | Dec 2016 | A1 |
20160346565 | Rhodes et al. | Dec 2016 | A1 |
20160354502 | Simmons et al. | Dec 2016 | A1 |
20160375161 | Hawkins et al. | Dec 2016 | A1 |
20160375162 | Marry et al. | Dec 2016 | A1 |
20160375163 | Hawkins et al. | Dec 2016 | A1 |
20170014538 | Rantala | Jan 2017 | A1 |
20170030555 | Lalicki et al. | Feb 2017 | A1 |
20170081874 | Daniels | Mar 2017 | A1 |
20170094960 | Sasaki et al. | Apr 2017 | A1 |
20170100494 | Dobrinsky et al. | Apr 2017 | A1 |
20170100607 | Pan et al. | Apr 2017 | A1 |
20170281812 | Dobrinsky et al. | Oct 2017 | A1 |
20170368210 | David et al. | Dec 2017 | A1 |
20180043044 | Hachiya et al. | Feb 2018 | A1 |
20180113066 | Freitag et al. | Apr 2018 | A1 |
20180117189 | Yadav et al. | May 2018 | A1 |
20180117190 | Bailey | May 2018 | A1 |
20180117193 | Yadav et al. | May 2018 | A1 |
20180124883 | Bailey | May 2018 | A1 |
20180139817 | Yamakawa et al. | May 2018 | A1 |
20180180226 | Van Bommel et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
201396611 | Feb 2010 | CN |
201423033 | Mar 2010 | CN |
102213382 | Oct 2011 | CN |
105304801 | Feb 2016 | CN |
105339094 | Feb 2016 | CN |
205360038 | Jul 2016 | CN |
106937461 | Jul 2017 | CN |
102011001097 | Sep 2012 | DE |
102015207999 | Nov 2016 | DE |
102016009175 | Feb 2017 | DE |
0306301 | Mar 1989 | EP |
1693016 | Aug 2006 | EP |
1887298 | Feb 2008 | EP |
1943880 | Apr 2013 | EP |
2773715 | Jul 1999 | FR |
2003-332620 | Nov 2003 | JP |
2003339845 | Dec 2003 | JP |
2004261595 | Sep 2004 | JP |
2004275927 | Oct 2004 | JP |
2007511279 | May 2007 | JP |
2009-004351 | Jan 2009 | JP |
2011-513996 | Apr 2011 | JP |
2013-045896 | Mar 2013 | JP |
2013-093311 | May 2013 | JP |
2015-015106 | Jan 2015 | JP |
2015-035373 | Feb 2015 | JP |
20130096965 | Sep 2013 | KR |
101526261 | Jun 2015 | KR |
101648216 | Aug 2016 | KR |
20160127469 | Nov 2016 | KR |
101799538 | Nov 2017 | KR |
M268106 | Jun 2005 | TW |
201412240 | Apr 2014 | TW |
M530654 | Oct 2016 | TW |
201831977 | Sep 2018 | TW |
0114012 | Mar 2001 | WO |
03037504 | May 2003 | WO |
2003035118 | May 2003 | WO |
03063902 | Aug 2003 | WO |
03084601 | Oct 2003 | WO |
03089063 | Oct 2003 | WO |
2004033028 | Apr 2004 | WO |
2005048811 | Jun 2005 | WO |
2005049138 | Jun 2005 | WO |
2006023100 | Mar 2006 | WO |
2006100303 | Sep 2006 | WO |
2006126482 | Nov 2006 | WO |
2007012875 | Feb 2007 | WO |
2007035907 | Mar 2007 | WO |
2008071206 | Jun 2008 | WO |
2009056838 | May 2009 | WO |
2010110652 | Sep 2010 | WO |
2015066099 | May 2015 | WO |
2015189112 | Dec 2015 | WO |
2016019029 | Feb 2016 | WO |
2016068285 | May 2016 | WO |
2016209632 | Dec 2016 | WO |
2017009534 | Jan 2017 | WO |
2017205578 | Nov 2017 | WO |
2019108432 | Jun 2019 | WO |
Entry |
---|
Jul. 23, 2020—(TW) Office Action w/TR—TW 108148627. |
Jul. 6, 2020—(WO) ISR & WO—App PCT/US2019/068799. |
Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin, article, 2005, 11 pp., Atomic, Molecular and Supramolecular Studies. |
Dayer, et al., Band Assignment in Hemoglobin Porphyrin Ring Spectrum: Using Four-Orbital Model of Gouterman, article, Sep. 8, 2009, 7 pp., Protein & Peptide Letters, 2010, vol. 17, No. 4, Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Tehran, Iran. |
Ayat M. Ali, Effect of MRSA Irradiation by 632, 532, and 405 nm (Red, Blue, and Green) Diode Lasers on Antibiotic Susceptibility Tests, Article, Jun. 2007, 7 pp, vol. 59, No. 2, 2017, J Fac Med Baghdad. |
Nussbaum, et al., Effects of 630-, 660-, 810-, and 905-nm Laser Irradiation, Delivering Radiant Exposure of 1-50 J/cm2 on Three Species of Bacteria in Vitro, journal, 2002, 9 pp., vol. 20, No. 6, 2002, Journal of Clinical LaserMedicine & Surgery, Canada. |
Kim, et al., In Vitro Bactericidal Effects of 625, 525, and 425nm Wavelength (Red, Green, and Blue) Light-Emitting Diode Irradiation, article, 2013, 9 pp., vol. 31, No. 11, 2013, Department of Oral Pathology Medical Research Center for Biomineralization Disorders School of Dentistry Dental Science Research Institute, Korea. |
Rita Giovannetti, The Use of Spectrophotometry UV-Vis for the Study of Porphyrins, article, 2012, 23 pp., InTech Europe, Croatia. |
Josefsen, et al., Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics, article, Oct. 4, 2012, 51 pp., 2012; 2(9):916-966. doi: 10.7150/thno.4571, Ivyspring International Publisher, Department of Chemistry, The University of Hull, Kingston-Upon-Hull, HU6 7RX, U. K. |
Jun. 29, 2018—(DE) Office Action—App 112016003453.9. |
Nov. 27, 2018—(JP) Office Action—JP 2018-525520. |
Jan. 4, 2019—(TW) Office Action—App 104124977. |
Apr. 15, 2019—(CA) Examiner's Report—App 2,993,825. |
Nov. 5, 2019—(JP) Final Office Action—JP 2018-525520. |
Oct. 9, 2019—(CN) Office Action—CN 201680048598.9. |
Oct. 1, 2019—(KR) Office Action—App 10-2018-7005077—Eng Tran. |
Apr. 15, 2019—(CA) Office Action—App 2,993,825. |
Nov. 20, 2019—(CA) Examiner's Report—App 2,993,825. |
Dec. 26, 2019—(TW) Office Action and Search Report—App 107143161. |
Dec. 27, 2019—(TW) Office Action and Search Report—App 108111242. |
Sep. 6, 2019—(TW) Office Action—App 107143162. |
Sep. 20, 2019—(TW) Office Action—App 107143577. |
Jun. 1, 2020—(GB) Examiner's Report—App GB1802648.4. |
Apr. 14, 2020—(TW) 2nd Office Action—App 107143577 (w/translation). |
May 12, 2020—(JP) Final Office Action—JP 2018-525520. |
NuTone, “NuTone Bath and Ventilation Fans”, Dec. 11, 2018, pp. 1-2, http://www.nutone.com/products/filter/qt-series-fanlights-25a05450-d47b-4ab8-9992-f8c2cd3f7b90. |
NuTone, “QTNLEDB LunAura Collection 110 CFM Fan,Light,LED Nightlight, with Tinted Light Panel, Energy Star® Certified Ventilation Fans”, Dec. 11, 2018, p. 1, http://www.nutone.com/products/product/a6da75af-8449-4d4d-8195-7011ce977809. |
NuTone, “Ultra Pro™ Series Single-Speed Fans and Fan/Lights”, Dec. 11, 2018, p. 1, http://www.nutone.com/products/filter/ultra-pro-series-fanlights-eb590f89-dca2-40e7-af39-06e4cccb96ca. |
Papageorgiou, P. et al., “Phototherapy with Blue (415 nm) and Red (660 nm) Light in the Treatment of Acne Vulgaris,” British Journal of Dermatology, 2000, pp. 973-978. |
Pelz, A. et al., “Structure and biosynthesis of staphyloxanthin production of methicillin-resistant Staphylococcus aureus,” Bioi. Pharm. Bull., 2012, val. 35, No. 1, 9 pages. |
Pochi, P.E., “Acne: Androgens and microbiology,” Drug Dev, Res., 1988, val. 13, 4 pages, abstract only provided. |
R.S. McDonald et al., “405 nm Light Exposure of Osteoblasts and Inactivation of Bacterial Isolates From Arthroplasty Patients: Potential for New Disinfection Applications?,” European Cells and Materials vol. 25, (2013), pp. 204-214. |
Reed, “The History of Ultraviolet Germicidal Irradiation for Air Disinfection,” Public Health Reports, Jan.-Feb. 2010, vol. 125, 13 pages. |
Sakai, K., et al., “Search for inhibitors of staphyloxanthin production by methicillin-resistant Staphylococcus aureus,” Biol. Pharm. Bull., 2012, val. 35, No. 1, pp. 48-53. |
Sarah Ward, “LED Retrofit Health ROI? See VitalVio”, Poplar Network website, published on Aug. 13, 2014 and retrieved from website: https://www.poplarnetwork.com/news/led-retrofit-health-roi-see-vitalvio. 3 pages. |
Sikora, A. et al., “Lethality of visable light for Escherichia colihemH 1 mutants influence of defects in DNA repair,” DNA Repair, 2, pp. 61-71. |
Sofia Pitt and Andy Rothman, “Bright idea aims to minimize hospital-acquired infections”, CNBC News website, published on Dec. 9, 2014 and retrieved from website: https://www.cnbc.com/2014/12/09/bright-idea-aims-to-minimize-hospital-acquired-infections.html. 6 pages. |
Soraa, “PAR30L 18.5W,” retrieved from the Internet on Apr. 20, 2017 at: http://www.soraa.com/products, 5 pages. |
Soraa, “PAR30L,” retrieved from the Internet on Apr. 20, 2017 at: http://www_soraa.com/products/22-PAR30L, 6 pages. |
Tomb et al., “Inactivation of Streptomyces phage C31 by 405 nm light,” Bacteriophage, 4:3, Jul. 2014, retrieved from: http://dx.doi.org/10.4161/bact.32129, 7 pages. |
Tong, Y. et al., “Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere,” Photochemistry and Photobiology, 1997, val. 65, No. 1, pp. 103-106. |
Tong, Y., et al. “Population study of atmospheric bacteria at the Fengtai district of Beijing on two representative days,” Aerobiologica, 1993, vol. 9, 1 page, Abstract only provided. |
Tsukada et al., “Bactericidal Action of Photo-Irradiated Aqueous Extracts from the Residue of Crushed Grapes from Winemaking,” Biocontrol Science, vol. 21, No. 2, (2016), pp. 113-121, retrieved from: https:/lwww.researchgate.net/publication/304628914. |
Turner et al., “Comparative Mutagenesis and Interaction Between Near-Ultraviolet {313- to 405-nm) and Far-Ultraviolet 254-nm) Radiation in Escherichia coli Strains with Differeing Repair Capabilities,” Journal of Bacteriology, Aug. 1981 , pp. 410-417. |
Wainwright, “Photobacterial activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus,” Oxford University Press Journals, retrieved from: http://dx.doi.org/10.1111/j.1574-6968.1998.tb12908.x on Jul. 23, 2015, 8 pages. |
Wang, Shun-Chung, et al.; “High-Power-Factor Electronic Ballast With Intelligent Energy-Saving Control for Ultraviolet Drinking-Waler Treatment Systems”; IEEE Transactions on Industrial Electronics; vol. 55; Issue 1; Dale of Publication Jan. 4, 2008; Publisher IEEE. |
Ward, “Experiments on the Action of Light on Bacillus anthracis,” 10 pages. |
Wilson et al., “Killing of methicillin-resistant Staphylococcus aureus by low-power laser light,” J. Med, Microbial., vol. 42 (1995), pp. 62-66. |
Yi, Notice of Allowance and Fee(s) due for U.S. Appl. No. 14/501,931 dated Jan. 20, 2016, 8 pages. |
Yoshimura et al., “Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro,” British Journal of Dermatology, 1996, 135: 528-532. |
Yu, J. et al., “Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania,” Environ. Sic. Technol., 39, 2005, pp. 1175-1179. |
Oct. 31, 2008—(WO) ISR & WO—App PCT/GB2008/003679. |
May 4, 2010—(WO) IPRP—App PCT/GB2008/003679. |
Nov. 2, 2015—(WO) WO & ISR—App PCT/US2015/042678. |
Dec. 8, 2016—(WO) ISR & WO—App PCT/US2016/036704. |
Oct. 20, 2016—(WO) ISR & WO—App PCT/US2016/44634. |
Apr. 16, 2018—(WO) ISR & WO—App PCT/US2017/068755. |
Mar. 6, 2018—(WO) ISR & WO—App PCT/US2017/068749. |
Feb. 11, 2019—(WO) ISR—App PCT/US2018/061859. |
Feb. 28, 2019—(WO) ISR—App PCT/US2018/061843. |
Feb. 28, 2019—(WO) ISR—App PCT/US2018/061856. |
Jul. 8, 2019—(WO) ISR & WO—App PCT/US2019/024593. |
Ashkenazi, H. et al., “Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light,” FEMS Immunology and Medical Microbiology, 35, pp. 17-24. |
Bache et al., “Clinical studies of the High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings,” Bums 38 (2012), pp. 69-76. |
Bek-Thomsen, M., “Acne is Not Associated with Yet-Uncultured Bacteria,” J. Clinical Microbial., 2008, 46{10), 9 pages. |
Berezow Alex, How to Kill Insects With Visible Light, Real Clear Science, Jan. 11, 2015, pp. 1-4, <https://www.realclearscience.com/journal_club/2015/01/12/how_to_kill_insects_with_visible_light_109021.html>. |
Burchard, R. et al., “Action Spectrum for Carotenogenesis in Myxococcus xanthus,” Journal of Bateriology, 97(3), 1969, pp. 1165-1168. |
Burkhart, C. G. et al., “Acne: a review of immunologic and microbiologic factors,” Postgraduate Medical Journal, 1999, vol. 75, pp. 328-331. |
Burkhart, C. N. et al., “Assesment of etiologic agents in acne pathogenesis,” Skinmed, 2003, vol. 2, No. 4, pp. 222-228. |
Chukuka et al., Visible 405 nm SLD light photo-destroys metchicillin-resistant Staphylococcus aureus {MRSA) in vitro, Lasers in Surgery and Medicine, vol. 40, Issue 10, Dec. 8, 2008, retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1002/lsm.20724 on Mar. 23, 2018, 4 pages, abstract only provided. |
Clauditz, A. et al., “Staphyloxanthin plays a role in the fitness of Staphylococcus aureusand its ability to cope with oxidative stress,” Infection and Immunity, 2006, vol. 74, No. 8, 7 pages. |
Color Phenomena, “CIE-1931 Chromaticity Diagram,” last updated Aug. 22, 2013, retrieved from www.color-theory-phenomena.nl/10.02.htm on Jan. 20, 2016, 3 pages. |
Dai et al., “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?,” Drug Resist Update, 15(4): 223-236 {Aug. 2012). |
Dai et al., “Blue Light Rescues Mice from Potentially Fatal Pseudomonas aeruginosa Burn Infection: Efficacy, Safety, and Mechanism of Action,” Antimicrobial Agents and Chemotherapy, Mar. 2013, vol. 57{3), pp. 1238-1245. |
Demidova, T. et al., “Photodynamic Therapy Targeted to Pathogens,” International Journal of Immunipathology and Pharmacology, 17(3), pp. 245-254. |
Dornob, “Healthy Handle: Self-Sanitizing UV Dorr Knob Kils Germs”, Dornob.com, Dec. 5, 2018, pp. 1-3, https://dornob.com/healthy-handle-self-sanitizing-uv-door-knob-kills-germs/. |
Drew Prindle, “This UV-Emitting Door Handle Neutralizes Bacteria, Helps Fight the Spread of Disease”, Digital Trends, Jun. 19, 2015, https://www.digitaltrends.com/cool-tech/uv-door-handle-kills-germs/. |
Elman, M. et al., “The Effective Treatment of Acne Vulgaris by a High-intensity, Narrow Band 405-420 nm Light Source,” Cosmetic & Laser Ther, 5, pp. 111-116. |
Feng-Chyi Duh et al., “Innovative Design of an Anti-bacterial Shopping Cart Attachment”, Journal of Multidisciplinary Engineering Science and Technology (JMEST), Oct. 10, 2015, vol. 2 Issue 10, http://www.jmest.org/wp-content/uploads/JMESTN42351112.pdf. |
Feuerstein et al., “Phototoxic Effect of Visible Light on Porphyromonas gingivalis and Fusobacterium nucleatum: An In Vitro Study,” Photochemistry and Photobiology, vol. 80, Issue 3, Apr. 30, 2007, retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.2004.tb00106.x on Mar. 23, 2018, abstract only. |
Guffey et al., “In Vitro Bactericidal Effects of 405-nm and 470-nm Blue Light,” Photomedicine and Laser Surgery, vol. 24, No. 6, retrieved from: https:/lwww.liebertpub.com/doi/abs/10.1089/pho.2006.24.684 on Mar. 23, 2018, 2 pages, abstract only provided. |
Halstead et al., “The antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms,” Appl. Environ, Microbial., Apr. 2016, 38 pages, retrieved from: http://aem.asm.org/. |
Hamblin et al., “Helicobacter pylori Accumulates Photoactive Porphyrins and is Killed by Visable Light,” Antimicrobial Agents and Chemotherapy, Jul. 2005, pp. 2822-2827. |
Harrison, A.P., “Survival of Bacteria,” Annu. Rev. Microbial, 1967, p. 143, vol. 21. |
Holzman, “405-nm Light Proves Potent at Decontaminating Bacterial Pathogens,” retrieved from: http://forms.asm.org/microbe/index.asp?bid=64254 on Aug. 6, 2015, 34 pages. |
Hori Masatoshi et al., Lethal Effects of Short-Wavelength Visible Light on Insects, Scientific Reports, Dec. 9, 2014, pp. 1-6, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan. <https://www.semanticscholar.org/paper/Lethal-effects-of-short-wavelength-visible-light-o-Hori-Shibuya/2c11cb3f70a059a051d8ed02fff0e8a9b7a4c4d4>. |
Huffman, D. et al., “Inactivation of Bacteria, Virus and Cryptospordium by a Point-of-use Device Using Pulsed Broad Spectrum White Light,” Wat. Res. 34(9), pp. 2491-2498. |
Jagger, “Photoreactivation and Photoprotection,” Photochemistry and Photobiology, vol. 3, Issue 4, Dec. 1964, retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1964.tb08166.x on Mar. 23, 2018, 4 pages, abstract only provided. |
Jappe, U., “Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy,” Acta Dermato-Venereologica, 2003, vol. 83, pp. 241-248. |
Kawada et al., “Acne Phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation,” Journal of Dermatological Science 30 (2002) pp. 129-135. |
Kickstarter, “Orb, The World's First Germ-Killing BLue/UV Light Ball”, Dec. 10, 2018, pp. 1-10,<https://www.kickstarter.com/projects/572050089078660/orbtm-the-worlds-first-germ-killing-uv-light-ball>. |
Knowles et al., “Near-Ultraviolet Mutagenesis in Superoxide Dismutase-deficient Strains of Escherichia coli,” Environmental Health Perspectives, vol. 102{1), Jan. 1994, pp. 88-94. |
Kristoff et al., “Loss of photoreversibility for UV mutation in E. coli using 405 nm or near-US challenge,” Mutat Res., May 1983, 109{2): 143-153, 2 pages, abstract only provided. |
Kundrapu et al. “Daily disinfection of high touch surfaces in isolation rooms to reduce contamination of healthcare workers' hands”. Journal of Infection Control and Hospital Epidemiology; vol. 33, No. 10, pp. 1039-1042, published Oct. 2012. |
LEDs Magazine, “ANSI continues advancements on SSL chromaticity standard,” retrieved from the Internet on Apr. 20, 2017 at: http:/lwww.ledsmagazine.com/articles/print/volume-12/issue-11/features/standards/ansi-continues-advancements-on-ssl-chromaticity-standard.html, Published Dec. 8, 2015, 6 pages. |
LEDs Magazine, “ANSI evaluates revisions to SSL chromaticity standard,” retrieved from the Internet on Apr. 20, 2017 at: http://www .ledsmagazine.com/articles/2011/07/ansi-evaluates-revisions-to-ssl-chromaticity-standard-magazine.html, Published Jul. 18, 2011, 4 pages. |
LEDs Magazine, “ANSI works to update the solid-state lighting standard for chromaticity,” retrieved from the Internet on Apr. 20, 2017 at: http://www.ledsmagazine.com/articles/print/volume-12/issue-2/features/standards/ansi-works-to-update-the-ssl-chromaticity-standard.html, Published Feb. 23, 2015, 5 pages. |
LEDs Magazine, “Lumination Vio LED combines 405 nm chip with new phosphors,” retrieved from the Internet on Apr. 20, 2017 at: http://www.leds.magazine.com/articles/2007/06/lumination-vio-led-combines-405-nm-chip-with-new-phosphors.html. Published Jun. 14, 2007, 2 pages. |
Maclean et al., “High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus auresu,” FEMS Microbial. Lett., vol. 285 (2008) pp. 227-232. |
Marshall, J. H., et al., “Pigments of Staphylococcus au reus, a series of triterpenoid carotenoids,” J. Bacteriology, 1981, vol. 147, No. 3, pp. 900-913. |
Master Blaster, Tohoku University Team Discovers Blue Light is Effect at Killing Insects, Sora News 24, Dec. 12, 2014, pp. 1-5, Japan, <https://en.rocketnews24.com/2014/12/12/tohoku-university-team-discovers-blue-light-is-effective-at-killing-insects/>. |
Nov. 30, 2020—(GB) Intent to Grant—GB 1802648.4. |
Nov. 6, 2020—(TW) Office Action w/Tr.—TW 108146777. |
Dec. 2, 2020—(TW) Rejection Decision—App 108111242 (Eng Trans). |
Sep. 29, 2020—(WO) ISR & WO—App PCT/US2020/046504. |
Nov. 23, 2020—(WO) ISR & WO—App PCT/US2020/051254. |
Maclean et al., “Inactivation of Bacterial Pathogens following Exposure to Light from a 405-Nanometer Light-Emitting Diode Array,” Applied and Environmental Microbiology, vol. 75, No. 7, Apr. 2009, pp. 1932-1937, 6 pages. |
Gillespie et al., “Development of an antimicrobial blended white LED system containing pulsed 405nm LEDs for decontamination applications,” Progress in Biomedical Optics and Imaging, SPIE—International Society for Optical Engineering, Bellingham, WA, vol. 10056, Mar. 14, 2017, pp. 100560Y-100560Y, XP060084045, whole document. |
Jul. 21, 2021—(TW) Office Action—TW 108148627. |
Aug. 31, 2021—(CN) Office Action—CN 201980033309.1. |
Number | Date | Country | |
---|---|---|---|
20200405893 A1 | Dec 2020 | US |