The present invention relates generally to filtering systems and in particular to a filtering apparatus that includes multiple filtering elements.
For at least the last 15 years, there have been several configurations of Aunder-sink@ reverse osmosis (RO) systems designed to improve the quality of a relatively small amount of water to be used for drinking and cooking by a homeowner. A few examples of such systems are described in U.S. Pat. Nos. 4,650,586 and 4,629,568 both of which are owned by the assignee of the present invention and incorporated herein by reference.
An objective of typical under sink reverse osmosis systems is to decrease the total dissolved solids (TDS) of the supplied city or well water and thereby improve the taste, odor or chemical makeup of the water. These under the sink reverse osmosis systems can be upgraded to include additional unit processes to pre-treat the incoming water for chlorine or sediment removal prior to the RO unit. This pre-treatment improves the operation and prolongs the life of the RO membrane. In addition pre-treatment further polishes the water produced by the RO membrane to remove both trace organics that might cause taste issues and small molecular weight contaminants that might pass through or be poorly rejected by the RO membrane. Therefore today there are many versions of RO units that effectively remove or reduce specific unwanted ionic contaminants and or organics to improve the quality of the water for the use of the homeowner.
There is increasing concern that some of the water supplies, both from wells, surface waters or even municipalities may, from time to time contain unwanted microbiological contaminants such as pathogens, that may be harmful when ingested by people, especially persons with immune system deficiencies.
While the pore size of the common RO membrane is sufficiently small to prevent the passing of microbiological contaminants, testing over the years has shown that the RO unit alone cannot consistently meet the relatively stringent requirements to be classified a “microbiological purifier” as defined in EPA in the “Guide Standard and Protocol for Testing Microbiological Water Purifiers” (1987 revision). It is believed that the reason for this is the imperfections in the RO membrane itself or in the methods of bonding the membrane together at the ends of the assemblies. While there are several methods available to deal with such concerns, such as boiling the water for several minutes or adding anti-pathogen agents like iodine to the water, most of these are not convenient and/or may make the water less pleasant to drink. Ultraviolet light filters that neutralize contaminants by exposure to certain wavelengths of light are also known in the art. These filters suffer from several practical drawbacks including the fact that they rely on electricity to function and also require relatively complex controls to ensure that water is not overheated due to extended exposure to the light.
By adding multiple barrier filter capabilities to a traditional under sink RO unit, improved removal of microbiological contaminants, unwanted ionic species, and organics can be achieved.
According to the present invention a filter apparatus for treating water containing particulate or microbial contaminants is provided. The filter apparatus includes a first filter element disposed within a first sealed outer housing and in fluid communication with a first inlet port and a first outlet port. The first filter element is capable of treating water at a first flow rate and is adapted to remove contaminants that are larger than a first contaminant size. A second filter element is disposed downstream of the first filter element in fluid communication with a second inlet port and a second outlet port. The second filter element is capable of treating water at a second flow rate higher than the first flow rate and is adapted to remove contaminants that are larger than a second contaminant size. An accumulating vessel is placed in fluid communication with the first outlet port and the second inlet port for storing water that has been treated by the first filter element prior to treatment by the second filter element.
For a preferred embodiment that is directed to removing microbial contaminants, the first filter element is a virus filter membrane capable of removing contaminants larger than 0.01 micron and the second filter element is a bacteria filter membrane capable of removing contaminants larger than 0.1 micron.
In an exemplary embodiment that facilitates under sink mounting, the second filter element is disposed within the first sealed outer housing. According to a feature, at least one of the first and second filter elements is generally cylindrical in shape and has a central void and the water flowing to and from the other of the first and second filter element flows within the central void. According to another feature, the first inlet port, first outlet port, second inlet port, and second outlet port are disposed on a single surface of the sealed outer housing. According to yet another feature, a flow limiting device is place in fluid communication with the first filter element for controlling the flow of water to the first filter element.
According to an embodiment a pre-treatment filter is placed in fluid communication with the first inlet port for removing relatively large contaminants prior to treatment by the first and second filter elements. According to an embodiment, a post filter is placed in fluid communication with the accumulating vessel and adapted to remove contaminants that originate in the accumulating vessel or may have passed through prior filters. In an embodiment, a cross flow membrane filter, such as a reverse osmosis filter, is placed in fluid communication with the first inlet port. In a preferred embodiment, a check valve is placed on a concentrate line of the cross flow membrane filter.
In an exemplary embodiment, a flow monitor is placed in fluid communication with the first outlet port to monitor an amount of water that has been treated by the filter apparatus. According to a feature, the flow monitor is operable to discontinue the flow of water through the filter apparatus when a predetermined amount of water has been treated by the filter apparatus. In one embodiment, the flow monitor is part of the post filter.
In a preferred embodiment, the filter apparatus includes an anti-contamination device in fluid communication with the second outlet port and downstream of the second filter element for preventing backflow of contaminated water into the filter apparatus. According to one embodiment of this feature of the invention, a check valve (i.e. a duck bill check valve) is installed in a treated water dispensing faucet in fluid communication with the second outlet port and through which treated water flows out of the filter apparatus. According to another feature the check valve is made of an antimicrobial material.
According to another embodiment, contamination due to the migration or backflow of bacteria from the faucet tip is inhibited by an anti-contamination device mounted at the tip of the faucet. In one embodiment of this feature of the invention, an electro-chemical device is mounted to the tip of the faucet and generates a small amount of an antimicrobial or antiseptic gas (or fluid) that dissolves into the retained fluid (i.e. water) at the discharge end of the device and thus inhibits bacteria from migrating up the faucet conduit and into the treatment system. In the disclosed embodiment, the electro-chemical device is a peroxide cell that serves as a discharge nozzle for the faucet through which treated water is delivered. It includes a power supply, preferably in the form of a battery. The battery, together with other components of the cell is used to generate peroxide which resides in the faucet tip when the faucet is not discharging treated water. Other electrochemical devices for mounting at the end of the faucet which may generate other types of antimicrobial/antiseptic fluids/gases/solutions for inhibiting the migration of bacteria up the faucet, are contemplated by the present invention.
Another exemplary embodiment of the inventive filter apparatus is adapted to treating water containing microbial contaminants. A viral membrane filter is disposed within a first sealed outer housing and in fluid communication with a first set of inlet and outlet ports. The viral membrane filter is adapted to remove viral contaminants. A bacterial filter membrane is disposed downstream of the viral membrane and in fluid communication with a second set of inlet and outlet ports, the bacterial filter membrane adapted to remove contaminants.
In an embodiment that facilitates under sink mounting, the bacterial filter element is disposed within the first sealed outer housing. According to a feature, at least one of the viral and bacterial filter membranes is generally cylindrical in shape and has a central void such that water flowing to and from the other of the viral and bacterial filter membrane flows within the central void. According to another feature, the first inlet port, first outlet port, second inlet port, and second outlet port are disposed on a single surface of the sealed outer housing.
According to an embodiment a pre-treatment filter is placed in fluid communication with the first inlet port for removing relatively large contaminants prior to treatment by the first and second filter elements. According to an embodiment, an accumulating vessel is placed in fluid communication with the first outlet port to store water that has been treated by the viral filter membrane prior to being treated by the bacterial filter membrane. According to a feature a post filter is placed in fluid communication with the accumulating vessel and adapted to remove contaminants that originate in the accumulating vessel or pass through prior filters. In an embodiment, a cross flow membrane filter is placed in fluid communication with the first inlet port.
In an exemplary embodiment, a flow monitor is placed in fluid communication with the first outlet port to monitor an amount of water that has been treated by the filter apparatus. According to a feature, the flow monitor is operable to discontinue the flow of water through the filter apparatus when a predetermined amount of water has been treated by the filter apparatus. In one embodiment, the flow monitor is part of the post filter.
In a preferred embodiment, the filter apparatus includes a check valve in fluid communication with the second outlet port and downstream of the second filter element for preventing backflow of contaminated water into the filter apparatus. According to a feature of the invention, the check valve is a duck bill check valve installed in a treated water dispensing faucet in fluid communication with the second outlet port and through which treated water flows out of the filter apparatus. According to another feature the check is made of an antimicrobial material.
According to a preferred embodiment, a filter apparatus for removing contaminants from water containing microbial contaminants includes a cross flow membrane filter for removing a significant amount of relatively large contaminants from the water. A viral membrane filter is disposed within a first sealed outer housing and in fluid communication with cross flow membrane filter that is adapted to remove viral contaminants and a bacterial membrane filter is in fluid communication with the viral membrane filter that is adapted to remove bacterial contaminants. According to a feature of this embodiment, the cross flow membrane filter is a reverse osmosis filter. An additional feature is an accumulating vessel disposed between and in fluid communication with the viral membrane filter and the bacterial membrane filter for storing water that has been treated by the viral membrane. Preferably, the bacterial membrane filter is disposed in the first sealed outer housing and at least one of the viral and bacterial filter membranes is generally cylindrical in shape and has a central void and such that water flowing to and from the other of the viral and bacterial filter membrane flows within the central void.
According to an embodiment of the invention, a treated water dispensing faucet for dispensing water that has been treated to remove contaminants includes a conduit for directing the flow of treated water from a filtration system to a dispensing station. The conduit has a first end connected to the filtration system and a second end that includes an orifice that opens to the dispensing station. A check valve is mounted to the second end for preventing the back flow of contaminants to the filtration system. According to a feature, the check valve is a duck bill check valve that includes antimicrobial material. According to yet another feature, a valve shield member substantially encloses the check valve for preventing contact between foreign objects and the check valve.
According to another feature of the invention, a filter cartridge is disclosed that includes a housing that defines first and second isolated regions within the housing. The first region includes a first filter and a flow path extending from a first inlet to a first outlet. The second region defines a flow path extending between a second inlet port and a second outlet port. The ports are arranged in a substantially linear, side-by-side relationship and are adapted to establish fluid connections between the filter cartridge and a manifold forming part of a water treatment system as the filter cartridge is installed into its operative position. In the preferred embodiment, the first region includes a viral filter and the second region includes a bacterial filter.
Although the construction illustrated in the preferred embodiment includes a viral filter and a bacterial filter located in the same replaceable housing, it should be understood that aspects of this invention can be applied to systems in which separate viral and bacterial filter units are utilized, as opposed to having both filters in one housing.
These and other objects, advantages, and features of the invention will be better understood from the accompanying detailed description of preferred embodiments of the invention when reviewed in conjunction with the accompanying drawings.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:
A multiple barrier microbial filtration unit 40 that includes a viral filter membrane 40a and a bacterial membrane 40b polishes the water that exits the reverse osmosis filter 40 to remove microbial pathogens from the water. The RO filter 30 removes a large percentage of the contaminants that remain in the water after treatment by the pre-filter 20 to prevent clogging of the relatively fine pores found in the viral and bacterial membrane filters 40a, 40b. In addition, the RO filter serves as a flow limiting device that controls the flow to the viral membrane filter 40a thereby facilitating operation of the viral filter membrane at a sufficiently slow flow rate that optimizes contaminant removal based on a relatively small filter membrane size.
A storage tank 50 such as is placed in fluid communication with an outlet of the viral membrane 40a to store water that has been treated by the viral membrane. The placement of the storage tank 50 after the viral membrane 40a, but before the bacterial membrane 40b, improves the flow capacity of the overall system. This is because the flow capacity of the viral filter membrane 40a is significantly lower than the desired flow rate for the faucet 70. The flow capacity of the bacterial membrane 40b is higher than that of the viral membrane and as such, water can be pulled from the storage tank 50 on demand by the faucet and be treated by the bacterial membrane 40b to filter out contaminants originating from the storage tank or have passed through prior filters at a flow rate that is acceptable in terms of providing flow at the faucet. The bacterial membrane 40b also serves as a protection against bacterial contamination that may enter the system at the faucet 70. A post filter 60, such as the one disclosed in U.S. Pat. No. 4,698,164 assigned to the assignee of the present invention and incorporated herein by reference, is positioned between the viral membrane 40a and the bacterial membrane 40b to provide an additional filter to protect against contaminants that originate in the storage tank or have passed through prior filters. In addition, the post filter 60 serves as a fluid monitor by monitoring the amount of water flowing to the anti-bacteria membrane 40b and shutting off flow via an internal flow control mechanism (not shown) once a predetermined amount of water has been treated. This shut off feature prevents system usage once the filter element performance has degraded to an unacceptable level.
Referring now to
Referring now to
As seen in
Multiple Barrier Microbial Filtration Unit
The manifold 15 provides a fluid path from the first outlet port to both the storage tank 50 (
The post filter 60 (
Referring again to
As can be seen from the foregoing description, by providing multiple barrier microbial filtering capabilities in conjunction with a cross flow membrane filter, a filtration system capable of significantly reducing microbial contaminants from water can be provided in a unit sized to fit beneath a residential sink.
Referring to
As described above, the bottom of the viral filter 40b sits on the connector 44. The connector includes an upstanding, integrally molded pipe assembly 220a that defines the fluid passages 112, 116 (see also
The bottom of the viral filter 40a sits on a filter spacer 234 which, in turn, fits within and sealingly engages the bottom cover 43 of the filter housing. Turning now to
The housing 45 also includes integrally molded upstanding, retaining lugs 270, as well as a pair of stabilizing standoffs 272. The standoffs 272 include reduced diameter portions 272a at their upper ends. To install the cartridge, the cartridge is positioned beneath the supporting bracket 12 and attached manifold 15. By raising the cartridge upwardly, towards the bracket, the four depending nipples 250, 252, 254, 254 of the manifold 15 enter the associated sockets 250a, 252a, 254a, 256a while concurrently, the upwardly extending lugs 270 enter and extend through complementally shaped holes 270a formed in the bracket 12. In addition, the standoffs 272 engage the underside of the bracket 12 with the reduced diameter portions 272a extending into complementally shaped holes 273 formed in the bracket 12 (see
To secure the filter unit 40 to the bracket 12, a molded retainer clip 280 is removably secured to the lugs 270. The detailed construction of the retainer clip 280 is shown in
As the manifold nipples 250, 252, 254, 256 enter the cartridge sockets 250a, 252a, 254a, 256a, they are sealingly engaged by the associated O-rings 260 located within the sockets and, thus, fluid leakage between the nipples and the sockets is inhibited while still providing a releasable, fluid connection.
Referring to
As seen best in
The nipple 250, which serves as an input to the bacterial filter 40b, is connected to the socket 302 by a passage defined by the manifold and illustrated schematically by the dashed line 330.
The nipple 256, which communicates the output from the viral filter 40a with the storage tank 50 and with the input to the post filter 60 is connected to the conduit connector 310 and the conduit segment 300 by communicating internal passages 332a, 332b. With this configuration, a significant amount of water can be stored by the tank 50, rather than only processing water as it is dispensed by the faucet 70.
The nipple 254, which communicates filtered water from the RO unit 30 to the input side of the viral filter 40a, is connected to the socket 304 by an internal passage 336. The nipple 252, which is connected to the output side of the bacterial filter 40b, communicates with the conduit connector 312 by an internal passage 338. As noted above, the conduit connector 312 is connected to a feed conduit 314 for the faucet 70.
In the preferred embodiment, the retaining lugs 270 are disposed in a parallel relationship and are rectangular in cross-section. The standoffs 280 are located in a spaced apart relationship and are disposed at a 12:00 and 6:00 position with respect to the lugs 270 which are located at a 9:00 and 3:00 position. In the preferred and illustrated embodiment, the sockets 250a, 252a, 254a, 256a formed in the housing 45 which receive the nipples 250, 252, 254, 256 are located in a juxtaposed positions and have mutually parallel axes. It should be understood, however, that the positioning of the lugs 270, standoffs 272 and sockets 250a, 252a, 254a, 256a may be changed without substantially changing their functional purposes. The sockets 250a, 252a, 254a, 256a may, for example, be spatially oriented on the top of the cartridge housing 45 and be adapted to engage similarly spaced manifold nipples.
It should also be noted that the water treatment system illustrated in the drawings is sized for residential use. It should be understood, however, that the principles of this invention can be applied to much larger water treatment systems that could be put to commercial uses. Those skilled in the art would recognize that larger filter units and conduits would be needed in order to sustain the types of flow rates that would be required for commercial applications.
Although the present invention has been described with a degree of particularity, it is the intent that the invention include all modifications and alterations from the disclosed design falling within the spirit or scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US03/06419 | Mar 2003 | US | national |
This application is a continuation-in-part of U.S. patent application Ser. No. 10/433,495, which was filed on May 30, 2002 and entitled MULTIPLE BARRIER FILTER APPARATUS, which claims the benefit of U.S. Provisional Patent Application Nos. 60/361,454, which was filed Mar. 4, 2002 and 60/374,870, which was filed Apr. 23, 2002 both entitled MULTIPLE BARRIER FILTER APPARATUS.
Number | Date | Country | |
---|---|---|---|
Parent | 10433495 | May 2003 | US |
Child | 11639826 | Dec 2006 | US |