Claims
- 1. A method of producing a concentrated product gas from a supply gas mixture in a pressure swing adsorption apparatus comprising multiple adsorber beds, not exceeding three beds, to adsorb at least one constituent gas from the supply gas mixture and in which usable product gas is produced by feeding the supply gas mixture sequentially in a co-current direction through each of the adsorber beds to adsorb at least a substantial portion of the constituent gas, the improvement comprising the step of purging each bed of its adsorbed constituent gas by using pressurized gas from a source other than the adsorber bed then producing the usable product gas.
- 2. The method according to claim 1, in which the apparatus comprises three adsorber beds, and other source is another of the adsorber beds not then producing the usable product gas.
- 3. The method according to claim 2, in which an oxygen concentrated product gas is produced by the adsorption of nitrogen from ambient air, and each adsorber cycles through steps in a sequence substantially as shown in FIG. 2.
- 4. The method according to claim 2, in which the improvement comprises sequentially cycling each adsorber bed through steps of repressurizing the adsorber from a minimum to a maximum pressure first by introducing gas from another adsorber bed and then by feeding the supply gas through the adsorber bed to produce the product gas, commencing delivery of the product gas when the one adsorber bed is pressurized to a level intermediate that of the minimum and maximum pressures, terminating both the feeding of supply gas to the one adsorber bed and the delivery of the usable product gas from the one adsorber, and then diverting the pressurized gas from at least some remaining product gas in the one adsorber bed, first to another adsorber for at least partial pressure equalization between the adsorber beds, and then to still another adsorber bed to purge the still other adsorber of adsorbed constituent gas.
- 5. A method of producing an oxygen concentrated gas from ambient air in a pressure swing adsorption apparatus having three adsorber beds of nitrogen adsorbing material and delivering the oxygen concentrated gas to an outlet of the apparatus, comprising the steps of:
(a) feeding ambient air through one adsorber bed in a co-current direction to adsorb at least a substantial amount of the nitrogen in the ambient air and delivering the balance of the ambient air as an oxygen concentrated product gas to the apparatus outlet, while increasing the gas pressure in the first adsorber bed to an elevated operating pressure; (b) substantially simultaneously with step (a) directing pressurized gas from a second adsorber bed to be fed in a counter-current direction through a third adsorber bed to begin a process of repressurizing the third adsorber bed while the second adsorber bed is depressurizing; (c) then permitting the first adsorber bed to begin depressurization from an elevated operating pressure while continuing to deliver product gas from the one adsorber bed to the apparatus outlet but diverting a small portion of the product gas from the one adsorber bed to the third adsorber bed to continue repressurization of the third adsorber bed; (d) substantially simultaneously with step (c) continuing the depressurization of the second adsorber bed while causing nitrogen adsorbed in the second adsorber bed to be purged and discharged from the apparatus; (e) then feeding ambient air through the third adsorber bed in the co-current direction to adsorb at least a substantial amount of the nitrogen in the ambient air and delivering the balance of the ambient air as an oxygen concentrated product gas to the apparatus outlet, while increasing the gas pressure in the third adsorber bed to an elevated operating pressure; (f) substantially simultaneously with step (e) directing pressurized gas from the first adsorber bed to be fed in a counter-current direction through the second adsorber bed to begin a process of repressurizing the second adsorber bed while the first adsorber bed is depressurizing; (g) then permitting the third adsorber bed to begin depressurization from the elevated operating pressure while continuing to deliver product gas from the third adsorber bed to the apparatus outlet but diverting a small portion of the product gas from the third adsorber bed to the second adsorber bed to continue repressurization of the second adsorber bed; (h) substantially simultaneously with step (g) continuing the depressurization of the first adsorber bed while causing nitrogen adsorbed in the first adsorber bed to be purged and discharged from the apparatus; (i) then feeding ambient air through the second adsorber bed in the co-current direction to adsorb at least a substantial amount of the nitrogen in the ambient air and delivering the balance of the ambient air as an oxygen concentrated product gas to the apparatus outlet, while increasing the gas pressure in the second adsorber bed to an elevated operating pressure; (j) substantially simultaneously with step (i) directing pressurized gas from the third adsorber bed to be fed in a counter-current direction through the first adsorber bed to begin a process of repressurizing the first adsorber bed while the third adsorber bed is depressurizing; (k) then permitting the third adsorber bed to begin depressurization from the elevated operating pressure while continuing to deliver product gas from the third adsorber bed to the apparatus outlet but diverting a small portion of the product gas from the third adsorber bed to the second adsorber bed to continue repressurization of the second adsorber bed; (l) substantially simultaneously with step (g) continuing the depressurization of the first adsorber bed while causing nitrogen adsorbed in the first adsorber bed to be purged and discharged from the apparatus; and (m) then repeating steps (a) through (l) as needed to continue the delivery of product gas to the apparatus outlet.
- 6. A multiple bed pressure swing adsorption apparatus for producing a concentrated product gas from a gaseous mixture and comprising:
(a) at least two but no more than three adsorbers each having means for adsorbing at least one constituent gas from the gaseous mixture to produce a product gas from the remainder of the gaseous mixture; (b) means for feeding the gaseous mixture in a co-current direction alternately to each of the adsorbers to produce the product gas; (c) means for delivering a substantial portion of the product gas from the then producing adsorber to an outlet in the apparatus; (d) means fluidly connecting the adsorbers for diverting a predetermined portion of product gas from a source other than the then producing adsorber to flow in a counter-current direction through another of the adsorbers not then functioning as the producing adsorber, to purge and expel from the other adsorber the one constituent gas adsorbed by the other adsorber; and (e) means fluidly connected to the adsorbers for selectively sequencing the movement of the gaseous mixture through the adsorbers and for selectively directing the product gas to the outlet and/or the diverting means.
- 7. The pressure swing adsorption apparatus of claim 6 and comprising three adsorbers, wherein the other source is the adsorber not then functioning as either the producing adsorber or the adsorber being purged.
- 8. The pressure swing adsorption apparatus of claim 7 wherein the diverting means comprises valves that are controlled to be open in the sequence substantially as shown in FIG. 3.
- 9.The pressure swing adsorption apparatus of claim 7 wherein the diverting means comprises valves that are controlled to be open for the times substantially as shown in FIG. 3.
- 10. The pressure swing adsorption apparatus of claim 6 wherein the means for delivering a usable portion of the product gas comprises check valve means for enabling product gas to be delivered only when a predetermined pressure is reached and for preventing delivered product gas from flowing back into the discharge means.
- 11. A pressure swing adsorption apparatus of claim 6 wherein the gaseous mixture comprises ambient air for producing an oxygen concentrated gas for medical use, the apparatus comprising three adsorbers each to adsorb nitrogen from the ambient air, the three adsorbers being controlled to produce the oxygen concentrated gas and to be purged of adsorbed nitrogen, in the cycle and sequence of steps substantially as shown in FIG. 2.
- 12. The pressure swing adsorption apparatus of claim 11 in which the oxygen concentrated gas is produced at a rate of at least about 3 lpm and has a concentration of over about 90% oxygen.
- 13. The pressure swing adsorption apparatus of claim 6 wherein the diverting means includes means for diverting pressurized gas from each adsorber to another of the adsorbers to at least partially equalize the pressures within the two adsorbers.
- 14. The pressure swing adsorption apparatus of claim 13 wherein the diverting means comprises a first fluid path fluidly connecting the adsorbers and sized to substantially optimize purging of the adsorbed constituent gas, and a second fluid path fluidly connecting the adsorbers and sized to substantially optimize the pressure equalization.
Parent Case Info
[0001] This invention relates generally to gas concentrator apparatus for separating gas mixtures by pressure swing adsorption (“PSA”) and more particularly to apparatus for the efficient and quiet production of oxygen for various industrial, commercial and/or medical purposes. Priority is claimed in co-pending provisional patent application No. 60/202,898, filed May 10, 2000.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60202898 |
May 2000 |
US |