The invention relates generally to a microwave oven having multiple cooking cavities, and more specifically to the insulated divider of a microwave oven having multiple cooking cavities.
Traditional microwave ovens usually comprise a single cooking cavity in which a foodstuff to be cooked is placed. The number of foodstuffs that can be prepared at the same time in such traditional microwave ovens is therefore limited and inadequate for many users. For example, preparing different foodstuffs that require different cooking parameters in a single cavity microwave oven may require the time to cook them sequentially rather than concurrently because of the different cooking parameters. Out of this need, microwave ovens with multiple cooking cavities were developed. One problem is that microwaves emitted into one cavity may interfere with microwaves emitted into another cavity.
In one aspect, the invention relates to a radio frequency heating apparatus that has a cavity dividable into at least two sub-cavities, a removable partition for thermally insulating the at least two sub-cavities, a rail provided along a boundary of the cavity for supporting the removable partition, and at least one radio frequency generator configured to transmit radio frequency radiation into at least one of the at least two sub-cavities. The rail or a perimeter of the partition is corrugated with a set of grooves or ridges. The dimensions of the corrugations are selected based on the frequency of transmitted radio frequency radiation between the two sub-cavities.
In the drawings:
Turning now to the drawings and to
The microwave oven 100 further includes a door 200. The door 200 is provided with a choke frame 220 which encompasses a first pane of glass 224 and a second pane of glass 226 which correspond, respectively, to the first and second sub-cavities 116, 118. The first and second panes of glass 224, 226 are constructed in such a way, that they are optically transparent but not transparent to microwaves. Furthermore, the first and second panes of glass 224, 226 are separated by the choke frame 220. A hinge 228 mounted to one side of the door 200 and to the cabinet 120 pivotally connects the door 200 to the cabinet 120.
The hinge 228 allows the door 200 to pivotally move between a first open position, best seen in
According to one embodiment, the removable partition 114 may be arranged at half of the height of the cooking cavity 112, thereby enabling the division of the cooking cavity into the two sub-cavities 116, 118 essentially identical in size (or volume). However, according to another embodiment, the partition 114 may be arranged such that the cooking cavity 112 may be divided in different manners (e.g. at one third or two third of the height or, in other cases, at one fourth or three fourths of the height), thereby resulting in sub-cavities 116, 118 of different sizes/volumes.
On the sloped surfaces 134 of the lower layer 130, along the perimeter of the partition 114, are provided a set of grooves or ridges 136. In an exemplary embodiment, the set of ridges 136 is provided as a series of semi-circular corrugations protruding out from the sloped surface 134 of the lower layer 130 of the removable partition 114 and protruding towards the side wall 126 of the cooking cavity 112. In an exemplary embodiment, the lower layer 130 and the corrugated ridges 136 are formed of a single, common material. Non-limiting examples of suitable materials for the lower layer 130 of the partition 114 include aluminum or sheet steel. It is contemplated that the upper layer 132 of the partition 114 is formed of a type of glass, including, but not limited to, borosilicate. The lower and upper layers 130, 132 can be attached to each other by any suitable method, including, but not limited to, gluing the lower and upper layers 130, 132 to one another in such a way that the air gap is sufficiently maintained.
The removable partition 114 is supported by a rail 128 that is attached to the side wall 126 of the cooking cavity 112. The rail 128 protrudes from the boundary or side wall 126 of the cooking cavity 112 such that a sloped or angled surface 137 of the rail 128 angles outwardly from the side wall 126 from the topmost part to the lowermost part of the rail 128, and the angled surface 137 of the rail 128 is sloped relative to the boundary of the cavity 112. The angle of the angled surface 137 of the rail 128 as it protrudes from the side wall 126 of the cooking cavity 112 is the same as the angle of the sloped surface 134 of the lower layer 130 of the partition 114 as it angles away from the side wall 126 of the cooking cavity 112, such that when the removable partition 114 is laid on and supported by the angled surface 137 of the rail 128, the two surfaces can contact and complement one another. The angled surface 137 of the rail 128 is illustrated herein as being provided with a set of grooves or ridges 138 in a complementary pattern to the grooves or ridges on the sloped surface 134 of the lower layer 130 of the partition 114, such that the ridges 136, 138 on one of the surfaces are received in the grooves or ridges 136, 138 of the complementary surface. It is also contemplated that the angled surface 137 of the rail 128 could be completely smooth or flat and have no grooves or ridges 138. Furthermore, it is also possible that the angled surface 137 of the rail 128 could have protruding ridges 138 and the sloped surface 134 of the lower layer 130 of the partition 114 could have complementary inwardly protruding ridges 136, in the opposite configuration from what is illustrated herein. Further, it is contemplated that the sloped surface 134 could be completely smooth or flat and have no grooves or ridges 136, while the angled surface 137 of the rail 128 has protruding ridges 138. It is contemplated that the rail 128 is formed of the same material as the lower layer 130 of the partition 114 and the ridges 136, although any suitable material can alternatively be used.
A=c/2fcTE10, (1)
where, A=width of the waveguide, or distance A between the peak or pitch of adjacent ridges, c=speed of light in the vacuum, and fcTE10=cut-off frequency, which is the upper limit of the working frequency of the microwave oven 100. In this way, the dimensions of the corrugations are selected on the basis of a cut-off frequency of transmitted radio frequency radiation between the two sub-cavities 116, 118.
It is contemplated herein that the transmitted microwave bandwidth of the microwave oven 100 is 2.5 GHz, in which case equation (1) provides a value of A=6 cm, indicating that the pitch or distance A of not more than 6 cm for a microwave oven 100 with a working frequency of 2.5 GHz is required for optimal function. Placing the ridges 136, 138 at a pitch or distance A of less than 6 cm will result in even greater attenuation of transmission of microwaves, but it is understood herein that any distance A that is less than or equal to 6 cm would be effective within the scope of the invention for a microwave oven 100 with a transmitted microwave bandwidth of 2.5 GHz. It is also contemplated that the invention can be applied with microwave ovens having transmitted microwave bandwidths of any suitable value, and that equation (1) can be used to determine a suitable distance A between ridges 136, 138 for the partition 114 and/or the rail 128. For example, the bandwidth of frequencies between 2.4 GHz and 2.5 GHz is one of several bands that make up the industrial, scientific and medical (ISM) radio bands. In another embodiment, the transmission of other microwave frequency bands is contemplated and may include non-limiting examples contained in the ISM bands defined by the frequencies: 13.553 MHz to 13.567 MHz, 26.957 MHz to 27.283 MHz, 902 MHz to 928 MHz, 5.725 GHz to 5.875 GHz and 24 GHz to 24.250 GHz.
The embodiments described above provide for a variety of benefits including the attenuation of microwave transmission between multiple cavities in a microwave oven such that foodstuffs contained in different cooking cavities may be cooked at the same time and independently of each other resulting in more even cooking and reduced cooking time.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/012749 | 1/8/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/119910 | 7/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2742612 | Cohn | Apr 1956 | A |
2956143 | Schall | Oct 1960 | A |
2958754 | Hahn | Nov 1960 | A |
2981904 | Ajioka et al. | Apr 1961 | A |
3260832 | Johnson | Jul 1966 | A |
3265995 | Hamasaki | Aug 1966 | A |
3430023 | Tingley | Feb 1969 | A |
3440385 | Smith | Apr 1969 | A |
3489135 | Astrella | Jan 1970 | A |
3536129 | White | Oct 1970 | A |
3639717 | Mochizuki | Feb 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3737812 | Gaudio et al. | Jun 1973 | A |
3812316 | Milburn | May 1974 | A |
4000390 | Graff | Dec 1976 | A |
4088861 | Zwillinger | May 1978 | A |
D248607 | Yamamura et al. | Jul 1978 | S |
4101750 | Doner | Jul 1978 | A |
4107502 | Tanaka et al. | Aug 1978 | A |
4136271 | Tanaka et al. | Jan 1979 | A |
4139828 | Commault et al. | Feb 1979 | A |
4143646 | Sampsel et al. | Mar 1979 | A |
4166207 | Burke | Aug 1979 | A |
4196332 | MacKay et al. | Jan 1980 | A |
4264800 | Jahnke et al. | Apr 1981 | A |
4283614 | Tanaka et al. | Aug 1981 | A |
4321445 | Kristof et al. | Mar 1982 | A |
4354562 | Newman | Oct 1982 | A |
4374319 | Guibert | Feb 1983 | A |
D268079 | Miyake et al. | Mar 1983 | S |
4463324 | Rolfs | Jul 1984 | A |
D275546 | Tanaka et al. | Sep 1984 | S |
D276122 | Tanaka et al. | Oct 1984 | S |
D277355 | Miyake et al. | Jan 1985 | S |
4595827 | Hirai et al. | Jun 1986 | A |
D285893 | Mizuma et al. | Sep 1986 | S |
4628351 | Heo | Dec 1986 | A |
4673800 | Hirai et al. | Jun 1987 | A |
4703151 | Sakamoto | Oct 1987 | A |
4743728 | Nagafusa et al. | May 1988 | A |
D297698 | Nishikawa et al. | Sep 1988 | S |
D297800 | Feil et al. | Sep 1988 | S |
4786774 | Kaminaka | Nov 1988 | A |
D303063 | Satake | Aug 1989 | S |
4870238 | Hodgetts et al. | Sep 1989 | A |
4886046 | Welch et al. | Dec 1989 | A |
4937413 | Spruytenburg et al. | Jun 1990 | A |
4999459 | Smith et al. | Mar 1991 | A |
5075525 | Jung | Dec 1991 | A |
D330144 | Takebata et al. | Oct 1992 | S |
5369254 | Kwon | Nov 1994 | A |
D353511 | Saimen | Dec 1994 | S |
5483045 | Gerling | Jan 1996 | A |
5546927 | Lancelot | Aug 1996 | A |
5558800 | Page | Sep 1996 | A |
D378723 | Weiss | Apr 1997 | S |
5619983 | Smith | Apr 1997 | A |
D385155 | Weiss et al. | Oct 1997 | S |
5735261 | Kieslinger | Apr 1998 | A |
5831253 | Han et al. | Nov 1998 | A |
5878910 | Gibemau et al. | Mar 1999 | A |
D411074 | Sakai et al. | Jun 1999 | S |
5919389 | Uehashi et al. | Jul 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
5973305 | Kim et al. | Oct 1999 | A |
5981929 | Maeda et al. | Nov 1999 | A |
6018158 | Kang | Jan 2000 | A |
6054696 | Lewis et al. | Apr 2000 | A |
6057535 | Derobert et al. | May 2000 | A |
6097019 | Lewis et al. | Aug 2000 | A |
6268593 | Sakai | Jul 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6429370 | Norte et al. | Aug 2002 | B1 |
6557756 | Smith | May 2003 | B1 |
6559882 | Kerchner | May 2003 | B1 |
D481582 | Seum et al. | Nov 2003 | S |
6664523 | Kim et al. | Dec 2003 | B1 |
6696678 | Hudson et al. | Feb 2004 | B2 |
D495556 | Milrud et al. | Sep 2004 | S |
6853399 | Gilman et al. | Feb 2005 | B1 |
D521799 | Ledingham et al. | May 2006 | S |
D522801 | Lee | Jun 2006 | S |
D527572 | Lee et al. | Sep 2006 | S |
7105787 | Clemen, Jr. | Sep 2006 | B2 |
7111247 | Choi et al. | Sep 2006 | B2 |
D530973 | Lee et al. | Oct 2006 | S |
D531447 | Lee et al. | Nov 2006 | S |
D532645 | Lee | Nov 2006 | S |
7193195 | Lundstrom et al. | Mar 2007 | B2 |
D540105 | Lee et al. | Apr 2007 | S |
D540613 | Jeon | Apr 2007 | S |
D550024 | Jeon | Sep 2007 | S |
7361871 | Cho et al. | Apr 2008 | B2 |
D568675 | Kawata | May 2008 | S |
7476828 | Genua | Jan 2009 | B2 |
7482562 | Song et al. | Jan 2009 | B2 |
D586619 | Pino et al. | Feb 2009 | S |
D587959 | Hensel | Mar 2009 | S |
7556033 | Kim | Jul 2009 | B2 |
D602306 | Lavy | Oct 2009 | S |
7770985 | Davis et al. | Aug 2010 | B2 |
D625557 | Pino et al. | Oct 2010 | S |
D626370 | Baek | Nov 2010 | S |
7919735 | Kiyono et al. | Apr 2011 | B2 |
7926313 | Schenkl et al. | Apr 2011 | B2 |
D638249 | Ryan et al. | May 2011 | S |
8074637 | Yamauchi | Dec 2011 | B2 |
D655970 | De'Longhi | Mar 2012 | S |
D658439 | Curtis et al. | May 2012 | S |
D662759 | Blacken et al. | Jul 2012 | S |
D663156 | Curtis et al. | Jul 2012 | S |
D670529 | Hensel | Nov 2012 | S |
D673000 | De'Longhi | Dec 2012 | S |
D673418 | Lee et al. | Jan 2013 | S |
D678711 | Reiner | Mar 2013 | S |
8389916 | Ben-Shmuel et al. | Mar 2013 | B2 |
8455803 | Danzer et al. | Jun 2013 | B2 |
8492686 | Bilchinsky et al. | Jul 2013 | B2 |
8530807 | Niklasson et al. | Sep 2013 | B2 |
8610038 | Hyde et al. | Dec 2013 | B2 |
8745203 | McCoy | Jun 2014 | B2 |
8803051 | Lee et al. | Aug 2014 | B2 |
D717579 | Gregory et al. | Nov 2014 | S |
9040879 | Libman et al. | May 2015 | B2 |
D736554 | Steiner et al. | Aug 2015 | S |
D737620 | Miller et al. | Sep 2015 | S |
D737622 | Miller et al. | Sep 2015 | S |
9131543 | Ben-Shmuel et al. | Sep 2015 | B2 |
9132408 | Einziger et al. | Sep 2015 | B2 |
9179506 | Sim et al. | Nov 2015 | B2 |
9210740 | Libman et al. | Dec 2015 | B2 |
9215756 | Bilchinsky et al. | Dec 2015 | B2 |
9351347 | Torres et al. | May 2016 | B2 |
9374852 | Bilchinsky et al. | Jun 2016 | B2 |
D769669 | Kim et al. | Oct 2016 | S |
9560699 | Zhylkov et al. | Jan 2017 | B2 |
9585203 | Sadahira et al. | Feb 2017 | B2 |
20020060215 | Allera | May 2002 | A1 |
20050162335 | Ishii | Jul 2005 | A1 |
20060289435 | Park | Dec 2006 | A1 |
20060289526 | Takizaki et al. | Dec 2006 | A1 |
20090134155 | Kim et al. | May 2009 | A1 |
20100176121 | Nobue et al. | Jul 2010 | A1 |
20100176123 | Mihara | Jul 2010 | A1 |
20100187224 | Hyde et al. | Jul 2010 | A1 |
20100276417 | Uchiyama | Nov 2010 | A1 |
20110031236 | Ben-Shmuel et al. | Feb 2011 | A1 |
20110168699 | Oomori et al. | Jul 2011 | A1 |
20110290790 | Sim et al. | Dec 2011 | A1 |
20120067872 | Libman et al. | Mar 2012 | A1 |
20120103972 | Okajima | May 2012 | A1 |
20120152939 | Nobue et al. | Jun 2012 | A1 |
20120160830 | Bronstering | Jun 2012 | A1 |
20130048881 | Einziger et al. | Feb 2013 | A1 |
20130080098 | Hadad et al. | Mar 2013 | A1 |
20130142923 | Torres et al. | Jun 2013 | A1 |
20130153570 | Carlsson | Jun 2013 | A1 |
20130156906 | Raghavan et al. | Jun 2013 | A1 |
20130186887 | Hallgren et al. | Jul 2013 | A1 |
20130200066 | Gelbart et al. | Aug 2013 | A1 |
20130277353 | Joseph et al. | Oct 2013 | A1 |
20140197161 | Dobie | Jul 2014 | A1 |
20140203012 | Corona et al. | Jul 2014 | A1 |
20140208957 | Imai et al. | Jul 2014 | A1 |
20140277100 | Kang | Sep 2014 | A1 |
20150034632 | Brill et al. | Feb 2015 | A1 |
20150070029 | Libman et al. | Mar 2015 | A1 |
20150136758 | Yoshino et al. | May 2015 | A1 |
20150156827 | Ibragimov et al. | Jun 2015 | A1 |
20150173128 | Hosokawa et al. | Jun 2015 | A1 |
20150271877 | Johansson | Sep 2015 | A1 |
20150289324 | Rober et al. | Oct 2015 | A1 |
20150305095 | Huang et al. | Oct 2015 | A1 |
20150334788 | Hofmann et al. | Nov 2015 | A1 |
20150373789 | Meusburger et al. | Dec 2015 | A1 |
20160029442 | Houbloss et al. | Jan 2016 | A1 |
20160088690 | Kubo et al. | Mar 2016 | A1 |
20160119982 | Kang et al. | Apr 2016 | A1 |
20160219656 | Hunter, Jr. | Jul 2016 | A1 |
20160327281 | Bhogal et al. | Nov 2016 | A1 |
20160353528 | Bilchinsky et al. | Dec 2016 | A1 |
20160353529 | Omori et al. | Dec 2016 | A1 |
20170099988 | Matloubian et al. | Apr 2017 | A1 |
20170105572 | Matloubian et al. | Apr 2017 | A1 |
20170251529 | Spagnoli | Aug 2017 | A2 |
Number | Date | Country |
---|---|---|
1523293 | Aug 2004 | CN |
101118425 | Feb 2008 | CN |
201081287 | Jul 2008 | CN |
102012051 | Apr 2011 | CN |
102620324 | Aug 2012 | CN |
103156532 | Jun 2013 | CN |
203025135 | Jun 2013 | CN |
105042654 | Nov 2015 | CN |
204987134 | Jan 2016 | CN |
106103555 | Nov 2016 | CN |
3238441 | Apr 1984 | DE |
102004002466 | Aug 2005 | DE |
102008042467 | Apr 2010 | DE |
0199264 | Oct 1986 | EP |
0493623 | Aug 1992 | EP |
1193584 | Mar 2002 | EP |
1424874 | Jun 2004 | EP |
1426692 | Jun 2004 | EP |
1471773 | Oct 2004 | EP |
1732359 | Dec 2006 | EP |
1795814 | Jun 2007 | EP |
1970631 | Sep 2008 | EP |
2031938 | Mar 2009 | EP |
2205043 | Jul 2010 | EP |
2230463 | Sep 2010 | EP |
2220913 | May 2011 | EP |
2512206 | Oct 2012 | EP |
2405711 | Nov 2012 | EP |
2618634 | Jul 2013 | EP |
2775794 | Sep 2014 | EP |
2906021 | Aug 2015 | EP |
2393339 | Dec 2016 | EP |
2766272 | Jan 1999 | FR |
2976651 | Dec 2012 | FR |
639470 | Jun 1950 | GB |
1424888 | Feb 1976 | GB |
2158225 | Nov 1985 | GB |
2193619 | Feb 1988 | GB |
2367196 | Mar 2002 | GB |
S55155120 | Dec 1980 | JP |
57194296 | Dec 1982 | JP |
59226497 | Dec 1984 | JP |
H0510527 | Jan 1993 | JP |
H06147492 | May 1994 | JP |
8-171986 | Jul 1996 | JP |
2000304593 | Nov 2000 | JP |
2008108491 | May 2008 | JP |
2011146143 | Jul 2011 | JP |
2013073710 | Apr 2013 | JP |
2050002121 | Jul 2005 | KR |
101359460 | Feb 2014 | KR |
20160093858 | Aug 2016 | KR |
2122338 | Nov 1998 | RU |
2215380 | Oct 2003 | RU |
2003111214 | Nov 2004 | RU |
2003122979 | Feb 2005 | RU |
2008115817 | Oct 2009 | RU |
2008137844 | Mar 2010 | RU |
8807805 | Oct 1988 | WO |
0036880 | Jun 2000 | WO |
02065036 | Aug 2002 | WO |
03077601 | Sep 2003 | WO |
2008018466 | Feb 2008 | WO |
2008102360 | Aug 2008 | WO |
2009039521 | Mar 2009 | WO |
2011138680 | Nov 2011 | WO |
2012001523 | Jan 2012 | WO |
2012162072 | Nov 2012 | WO |
2011039961 | Feb 2013 | WO |
2015024177 | Feb 2015 | WO |
2015099648 | Jul 2015 | WO |
2015099650 | Jul 2015 | WO |
2015099651 | Jul 2015 | WO |
2016128088 | Aug 2016 | WO |
2017190792 | Nov 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20190029082 A1 | Jan 2019 | US |