A system for utilizing a stringed instrument pickup with multiple coils involves, in some embodiments, connecting a first end of a first coil to a terminal of a bobbin body. The coil is wound around the bobbin body a predetermined number of times and a second end of the first coil is electrically connected to a second terminal of the bobbin body. A first end of a second coil is connected to the second terminal and wound around the bobbin body before being connected to a third terminal. The first, second, and third terminals extending from the bobbin body are each connected to a selector that allows the first and second coils to be active individually or concurrently.
In other embodiments, a pickup system employs multiple coils wound around a single bobbin body to allow the respective coils to be selected via separate terminals extending from the single bobbin body. A user alters how a magnetic field contributes to the electrical output, and sound characteristics, from string motion by activating the second coil.
A pickup with multiple coils can be incorporated into a stringed instrument as part of an optimized musical system operated in accordance with various embodiments. A first pickup is constructed with a first coil extending between a first pair of terminals and a second coil extending between a second pair of terminals on a single bobbin body. The first pickup is mounted to a body of a stringed instrument in a position separated from a second pickup. A user selects the second coil of the first pickup to alter how a magnetic field reacts to detected string motion to generate electrical output.
Assorted embodiments of the present disclosure are directed to a stringed instrument pickup consisting of multiple coils being utilized in a musical system to provide optimized generation of electrical signals in response to an instrument being played.
A stringed instrument pickup is a structure that converts movement of a tensioned string into electrical signals. Numerous different pickup structures and configurations have been utilized to customize the manner in which string motion and vibration is captured in an output electrical signal. However, the past arrangements for a single pickup have been static and failed to provide options for a user to customize the outputted electrical signal that are subsequently reproduced as audible sound, such as music.
While numerous different pickups can be positioned on a stringed instrument to provide different selectable characteristics for generating electrical signals, such pickups occupy valuable real estate on a stringed instrument and can have degraded sound quality due to the placement of the pickup(s) relative to the tensioned strings. In addition, positioning a pickup under a different section of the instrument strings can change the sound of the pickup as the harmonic mix of the string's output changes due to where the pickup is physically located relative to the string tensioning bridge of the instrument. By incorporating multiple coils into a single bobbin assembly, a user can select a diverse variety of means for translating string motion into electrical signals with a single pickup. The ability to customize the various coils of a bobbin assembly can additionally provide precise, or vast, alterations to the manner in which electrical signals are generated from string motion, which can optimize musical reproduction without the need for external signal processing, such as a pedal, mixer, or other circuitry.
Accordingly, embodiments of the present disclosure are directed to a single stringed instrument pickup that provides options for a user to customize the manner in which a played instrument string is captured by the pickup. By activating multiple different coils in a single bobbin, multiple coil sizes, and potentially coil shapes, can be employed with a single pickup to provide customized pickup structure and electrical signal generation in response to instrument string motion in the customized magnetic field. As such, the ability to select different pickup coils provides selectable electrical impedance and magnetic fields that translate string motion with different output signals that optimize music generation and playback.
An example stringed instrument 100 is conveyed in
The pickup 108 is configured to have a magnetic field that is influenced by movement of a string 106 and such magnetic activity is translated to electrical signals by a coil with such electrical signals being subsequently used by other audio equipment, such as an amplifier, speaker, or control board, to produce sound. However, the clarity and sonic accuracy of stringed instrument pickups 108 have traditionally been imprecise. That is, the generated magnetic field and how it reacts to vibrating strings 108 in assorted configurations have not been able to accurately represent sound as if a user was listening to string motion in-person. For example, a pickup 108 can be constructed to be very accurate for a relatively narrow range of frequencies, but struggle to convey the other frequencies produced by string 106 motion. In another example, a pickup 108 can have relatively high sensitivity, which increases the strength of the representative electrical signal, but at the cost of losing the breadth and depth of the sound properties of the moving and/or vibrating string(s) 106.
With these issues in mind, many stringed instruments 100 employ multiple pickups 108 in an attempt to provide diversity in the manner in which string 106 motion is captured into electrical signals via magnetic and electrical aspects of a pickup 108.
With the implementation of multiple pickups 122/124 into a guitar 120 a user can select one or more of the pickups 122/124 to be active while playing the strings 106. For example, a selector, such as a button knob, lever, or switch, can be located on the guitar 120 to allow activation of a single pickup 122 or multiple pickups 122/124 concurrently. In the non-limiting example shown in
Although any number, and type, of pickup can be employed in a single guitar 120 the magnetic signature and electrical operation of pickups can be degraded if the pickups are positioned in close physical proximity. Thus, the physical size of the area under the strings 106 can limit how many pickups can be utilized to provide sonic options for a user.
Accordingly, assorted embodiments are directed to a single pickup that is configured with multiple selectable coils that provide greater electrical, magnetic, and sound control to a guitar user.
In a humbucking configuration, as shown by segmented boxes, has a second bobbin 148 that separates and positions pole pieces 150 from a coil 152. One or more magnets 154 can be placed between the bobbins 142/148, sometimes in combination with one or more spacers, or shims, 156 so that the magnetic polarity of one coil 144 is the opposite of the other coil 152 and the bobbin assemblies 142/148 are out-of-phase. It is contemplated that individual bobbins 142/148 of a humbucker pickup configuration can be selected. As such, a pickup 140 can be configured to allow each bobbin 142/148 to be a combined single pickup or selectable single coil pickups to sense motion of adjacent string(s) 106 in different ways.
The bobbin 164, as shown, can be secured to a baseplate 168 that can provide structural rigidity and electrical contact terminals for the respective ends 170 of the coil 166. For instance, a positive end and negative end of the coil 166 can be attached to the baseplate 168 to allow for efficient and reliable electrical connections to a selector and/or output, such as a cable jack.
Each bobbin 182/184 has a single electrically conductive coil 188, in the non-limiting example of
Connecting the first ends 190 of each coil 188 and the second ends 192 of each coil 188, as represented by segmented terminals 196, provides a parallel wiring configuration that produces a different electrical output than the series wiring configuration, which can produce different sound characteristics when a generated stream of electrical signals is outputted as sound, such as more prominent higher audible frequencies. While it is contemplated that a selector can be connected to the pickup 180 to allow for activation of either series or parallel wiring configuration, the ability to select two different magnetic fields for a pickup 180 with two bobbins 182/184 and coils 188 is relatively expensive in terms of physical size. Accordingly, various embodiments are directed to a coil and bobbin assembly that provides a user with more diverse magnetic field behavior with greater range of electrical outputs resulting from proximal string motion compared to either in a single bobbin pickup or a humbucking pickup.
Although the wound wire 206 may be continuous to define a single coil of a predetermined number of turns, such as 2500 or 5000 circumferential passes completely around the bobbin body 202, multiple coils can be provided by the bobbin assembly 200 by connecting different ends of wire 206 to the respective terminals. For instance, a first wire 206 can continuously extend from a first electrically conductive terminal 210 to a second electrically conductive terminal 212 to form a first coil and a second wire 214 can continuously extend from the second terminal 212 to third terminal 216 to form a second coil. Hence, the single bobbin body 202 concurrently supports multiple wire coils that can be independently, and concurrently, activated via the terminals 210/212/216.
With the bobbin body 202 sporting multiple selectable coils, the assembly 202 provides increased signal generation, impedance, and magnetic field behavior without taking up valuable real estate in an instrument body. It is noted that the bobbin assembly 200 can be constructed with more than two selectable coils. For instance, three coils can be activated via four separate terminals or five coils can be activated via six terminals. It is contemplated that a tap wire can extend from a terminal 208 to a tap in the wire 206/214 instead of having multiple wire ends connected to a common terminal.
It is contemplated that the coils 222/224 may be constructed of different materials, wire gauges, or electrically conducting properties. As a non-limiting example, a first coil 222 has 5000 turns and is constructed of copper while the second coil 224 has 2000 turns and is constructed of silver to provide different electrical impedances for selection by a user. The presence of multiple different coils in a single bobbin assembly 220 allows at least four configurable impedances, and corresponding magnetic fields, responding to instrument string 106 motion. That is, a user can select the first coil 222 alone, second coil 224 alone, the coils 222/224 connected in series, or the coils 222/224 connected in parallel via the various terminals provided by the bobbin body 202 to provide differing manners of translating string 106 motion into a stream of electrical signals.
The physical separation of coils 242/244 can correspond with matching coil configurations. For instance, the coils 242/244 can be constructed of the same material and wrapped about the body 202 for a matching number of turns, at least within a range of tolerance, such as within 5% of the overall amount of turns or 2% of the overall length of wound wire. The ability to customize the construction of the coils 242/244 to be different or matching provides a wide range of selectable magnetic field properties due as a product of activating a single coil or multiple coils 242/244. It is contemplated that the wire can pass through internal cavities in the bobbin body 202, or otherwise be electrically and/or magnetically insulated from the wire of the other coil, to reach a terminal 226/228/232 positioned on the bottom of the body 202, which prevents the coils from physically touching or interfering (electrically and/or magnetically) with one another during activation.
A bobbin assembly with multiple selectable coils can be employed in a stringed instrument alone. However, some embodiments pair one or more bobbin assemblies together with additional structure.
The bottom view of the pickup 260 shown in
In the non-limiting embodiment where the baseplate 266 comprises plate terminals 268, the respective plate terminals 268 can physically contact the respective bobbin terminals 208. Regardless of whether the baseplate 266 consists of plate terminals 268, the physical separation of terminals corresponding to different coils allows one or more coils of the bobbin assemblies 262/264 to be activated via electrical interconnections that are fixed in place by at least one support 270. It is noted that in operation the respective bobbin assemblies 262/264 will each be rotated so that the electrical terminals physically contact the corresponding plate terminals 268 and the pole pieces 272 face and are vertically aligned with instrument strings 106, as generally shown in
The respective bobbin assemblies 262/264 can be secured to the baseplate 266 with one or more fasteners, such as rivets, screws, pins, tabs, or retainers. It is contemplated that one or more bobbin assemblies 262/264 are mounted atop at least one spring, or other suspension, that dampens movement and positioning the pole pieces 272 a predetermined distance from the respective instrument strings. The baseplate 266 may also be mounted to the body, or neck, of a stringed instrument with one or more fasteners and may employ a motion, and/or vibration, dampening suspension.
The assorted views of the pickup 260 shown in
Once the pickup is assembled with the bobbin assemblies 262/264 mounted to the baseplate 266 with the various plate terminals 268 electrically connected to the bobbin terminals 208, a user can selectively activate a diverse variety of coils that correspond with different electrical impedances, magnetic fields, and sound characteristics captured in electrical signals outputted by the pickup 260. In the non-limiting example pickup 260 configuration shown in
By selecting any two of the three plate terminals 276/278/280 corresponding to the first bobbin assembly 262, or terminals 282/284/286 corresponding to the second bobbin assembly 264, different numbers of coils, and lengths of conducting wire acting as an electrical resistor, receive electrical current that produces different coil configurations that respond differently to vibrations and movement of adjacent strings 106 to produce different sound characteristics in the generated electrical signals.
By selecting plate terminals 274 and 278, both coils of the first bobbin assembly 262 are activated with greater electrical resistance provided by the increased number of wire windings of the second coil. The exemplary electrical configuration of
As a result of the dual coil bobbin assemblies 262/264, nine different pickup configurations can be selected, each of which has different impedance, magnetic, and acoustic properties that provide diverse acoustic generation to a user without adding nine separate single-coil bobbin assemblies to an instrument. It is noted that the selection of various coils can provide matching, or mismatching, electrical impedances between the bobbin assemblies 262/264. The ability to selectively utilize different electrical impedances, such as impedances differences of 100, 500, 1000, or more ohms, allows for a broad range of useful sonic properties from a single pickup 260.
In some embodiments, a single bobbin assembly is utilized without a humbucking counterpart bobbin assembly. Such a configuration may, or may not, employ a baseplate 266, but can provide selective activation of different wound coils that correspond with different magnetic properties that translate to different sound characteristics. Regardless of the humbucking configuration of a pickup, the use of a bobbin assembly with more than one coil allows for precise, or vast, alterations to the manner in which string movement and vibration translates to outputted electrical signals depending on the structural configuration of the coils.
Decision 300 next evaluates if additional electrical coils are to be incorporated into the pickup. If so, procedure 290 cycles to step 292 where a new coil is connected between two terminals of the single bobbin body. It is contemplated that the generation of new may connect to a wire end to a terminal connected to a different coil. That is, different coils may share a bobbin terminal. Through the repeated execution of decision 300, any number of coils can be incorporated into a single bobbin body, as long as there is enough separate terminals to select individual coils. Hence, the number of coils may be limited to a function of the number of separate bobbin terminals, such as one more terminal than the number of coils.
Once decision 300 determines no additional coils are to be constructed on a single bobbin, decision 302 evaluates if the constructed bobbin assembly will be part of a humbucking pickup arrangement, as discussed in regard to
Regardless of whether a humbucking pickup arrangement is constructed, step 306 mounts the pickup to stringed instrument. The mounting of step 306 may involve mounting other pickups on the stringed instrument with each pickup being physically separated so that the magnetic profile of the respective bobbins do not interfere with one another. The respective pickups are then wired to one or more electronic selectors in step 308. The selector(s) can be configured to allow the various pickups, or coils of the multi-coil pickup, to be activated individually, or concurrently. The ability to selectively activate less than all the pickups of a stringed instrument can provide diverse magnetic field interactions with moving adjacent instrument string(S) that translate to different streams of electrical signals and different subsequent musical playback when the stringed instrument is played.
Step 324 involves a user of the stringed instrument selecting a pickup coil setting. Such selection can be conducted by physically articulating a selector of the instrument, such as a knob, lever, or button, or can be conducted remotely, such as via an external control board or amplifier. A selected coil setting corresponds with an electrical current flowing through a predetermined coil of at least one pickup, which may be less than all the available coils of a single bobbin, pickup, or instrument. The movement of a string within the magnetic field in step 326 induces a current in the selected pickup coil(s) which produces a stream of electrical signals with a first sonic profile.
It is contemplated that an electrical signal sonic profile for a played instrument string corresponds with how the magnetic field interacts with string motion, which results in the generation of a stream of electrical signals that represent audible frequencies that differ from those received by a human ear in response to a string motion. For instance, an electrical signal sonic profile may have attenuated low, mid, or high audible frequencies, increased gain for less than all the audible frequencies produced by string motion, or reduced gain for less than all the audible frequencies produced by string motion. It is noted that step 326 may be conducted any number of times for one or more strings while the first coil setting continuously provides the first electrical signal sonic profile.
Next, decision 328 evaluates if a new signal sonic profile is to be utilized. If not, step 326 is revisited and the first profile remains for any strummed strings. If a new coil setting and profile are called for, step 330 proceeds to select a new coil setting that corresponds with a new signal profile that differs from the first profile. The new second coil setting can provide a different electrical impedance and/or electrical current than the first coil setting to produce a different magnetic field that results in the generation of differing signal sonic profiles. The new coil setting selected in step 330 may select additional, or fewer, coils in a single bobbin or in a single pickup in a humbucking pickup arrangement. The new second signal profile is then outputted from the instrument in step 332 in response to the strumming of at least one string.
At any time after the selection of the second coil setting, decision 328 can evaluate if a new coil setting, and the corresponding electrical signal sonic profile, is to be selected. Accordingly, steps 330 and 332 can be executed any number of times to select any number of available different coil settings and electrical signal sonic profile from a single pickup.
Similarly, at any time after the selection of the first coil setting, decision 334 can evaluate if additional pickups of the stringed instrument are to be activated. A choice of additional pickups prompts step 336 to select at least one additional pickup with a selector prior to strumming at least one string in step 338 to produce a stream of electrical signals having a new sonic profile that differs from the electrical signal sonic profile produced from a single pickup, at least due to the additional pickup's separated location from the multi-coil pickup that has a different relative position relative to the tensioned instrument strings. It is noted that a newly activated, and physically separated, pickup from step 336 can comprise multiple coils, or a single coil, wound around a single bobbin.
Through the various embodiments of the present disclosure, a user is provided with greater tonal options from an electric stringed instrument than from single coil pickups. The ability to select different coils wound on a single bobbin, which have different coil electrical and physical configurations, allows for customization of how the magnetic field of the pickup behaves to produce a stream of electrical signals without taking up greater physical real estate on the stringed instrument. Such magnetic field behavior customization provides a user with greater tonal output control from the stringed instrument that optimizes how the stringed instruments sounds to an audience through a transducing speaker.
Even though numerous characteristics and advantages of the various embodiments of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the disclosure, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
4175462 | Simon | Nov 1979 | A |
4809578 | Lace, Jr. | Mar 1989 | A |
5136918 | Riboloff | Aug 1992 | A |
5136919 | Wolstein | Aug 1992 | A |
5311806 | Riboloff | May 1994 | A |
5376754 | Stich | Dec 1994 | A |
5763808 | Thomson | Jun 1998 | A |
5789691 | Stich | Aug 1998 | A |
5834671 | Phoenix | Nov 1998 | A |
6034316 | Hoover | Mar 2000 | A |
6121537 | Pawar | Sep 2000 | A |
8309836 | Bolger et al. | Nov 2012 | B1 |
9704464 | Petschulat | Jul 2017 | B1 |
9747882 | Micek | Aug 2017 | B1 |
9837063 | Feese | Dec 2017 | B1 |
10446130 | Shaw | Oct 2019 | B1 |
20020069749 | Hoover | Jun 2002 | A1 |
20050087063 | Bryce | Apr 2005 | A1 |
20050150364 | Krozack et al. | Jul 2005 | A1 |
20060011051 | Aivbrosino | Jan 2006 | A1 |
20060156911 | Stich | Jul 2006 | A1 |
20120036983 | Ambrosino | Feb 2012 | A1 |
20140041514 | Gross | Feb 2014 | A1 |
20140245877 | Gelvin | Sep 2014 | A1 |
20150107444 | Pezeshkian | Apr 2015 | A1 |
20150371624 | Wolf | Dec 2015 | A1 |
20160027422 | Baker | Jan 2016 | A1 |
20180102121 | Shaw et al. | Apr 2018 | A1 |
20200058280 | Shaw | Feb 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200058280 A1 | Feb 2020 | US |