Various downhole components use control lines for operation. For example, subsurface safety valves, such as tubing retrievable safety valves, deploy on production tubing in a producing well. Actuated by hydraulics via a control line, the safety valve can selectively seal fluid flow through the production tubing if a failure or hazardous condition occurs at the well surface. In this way, the safety valve can minimize the loss of reservoir resources or production equipment resulting from catastrophic subsurface events.
One type of safety valve is a deep-set safety valve that uses two control lines for operation. One active control line controls the opening and closing of the safety valve's closure, while the other control line is used for “balance.” Due to the deep setting of the valve, this balance control line negates the effect of hydrostatic pressure from the active control line.
In
As is known, the flow of the produced fluid can be stopped at any time during production by switching the safety valve 40 from an open condition to a closed condition. To that end, a hydraulic system having a pump 30 draws hydraulic fluid from a reservoir 35 and communicates with the safety valve 40 via a first control line 32A. When actuated, the pump 30 exerts a control pressure PC through the control line 32A to the safety valve 40.
Due to vertical height of the control line 32A, a hydrostatic pressure PH also exerts on the valve 40 through the control line 32A. For this reason, a balance line 32B also extends to the valve 40 and provides fluid communication between the reservoir 35 or pressure from pump 31 and the valve 40. Because the balance line 32B has the same column of fluid as the control line 32A, the outlet of the balance line 32B connected to the valve 40 has the same hydrostatic pressure PH as the control line 32A.
As with the deep-set safety valve, there may be other reasons to run multiple control lines downhole to components. Unfortunately, the control lines have to pass uphole to a wellhead. Communicating with multiple control lines through a wellhead can present a number of challenges due to limited space, installation complexity, and sealing issues. The difficulties are exacerbated when subsea wellhead equipment is used. In general, subsea wellhead equipment has restrictions on how many penetrations can be made through it for the use of control lines, fiber optics, etc.
Typically, intelligent well completions, deep-set safety valves, and other well system require two or more control lines penetrating the wellhead and running downhole. However, current control line systems have limitations due to the restrictions on the number of wellhead penetrations that can be made as well as issues pertaining to when one of the control lines ruptures.
The subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
A multiple control line system uses concentric control lines having an outer control line disposed about at least one inner control line. For example, the concentric control lines can use an inner control line encapsulated within an outer control line. Encapsulated together, the dual control lines only require one penetration through the wellhead to extend downhole. At the wellhead, the dual control lines communicate with an operating system, which can provide hydraulics, fluid, electric power, signals, or the like for downhole components as described herein. Thus, the outer control line can convey a medium, such as fluid, power, electric signals, and optical signals, while the inner control line can convey a same or different medium.
At some point downhole, the dual control lines extending along the tubing couple to a manifold having an inlet and at least two outlets. The outer control line terminates at the inlet with a sealed fitting. The inner conduit is allowed to pass through the manifold and out one of the outlets with another sealed fitting. This inner conduit can then convey hydraulics, power, signals, or the like to one or more downhole components, such as a safety valve, a hydraulic sleeve, a sensor, a motor, a solenoid, or the like.
A separate control line couples to the other outlet of the manifold with a sealed fitting. Internally, a cross-drilled port for the outlet communicates with the annular space between the inner and outer conduits exposed in the manifold. This allows hydraulics, wiring, power, or the like from the outer control line from the surface to communicate with the separate control line extending from the manifold. From there, the separate control line can couple to the same downhole component as the inner control line or can couple to an entirely different component.
More than two control lines can be encapsulated inside one another, and more than one manifold may be used downhole to branch off other control lines. Historically, intelligent well completion tools and deep-set safety valves have required at least two control line penetrations through the wellhead for operation. Using encapsulated control lines and manifolds, the multiple control line system of the present disclosure allows one control line penetration through the wellhead to be used while giving the benefits of multiple separate control lines for operation of downhole components.
The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
The concentric control lines 120A-B pass uphole from the manifold 100 and through the wellhead 60. At the surface, an operating system 70 communicates with these control line 120A-B. In general, the operating system 70 can be a hydraulic manifold or well control panel and can have one or more pumps 72a-b, reservoirs 73, and other necessary components for a high-pressure hydraulic system used in wells. The operating system 70 can also include electric components for conveying power, electrical, optical, or other signals downhole. These and other possibilities can be used in the disclosed system 50. For the present disclosure, the operating system 70 is described as being hydraulic for convenience; however, the teachings of the present disclosure are applicable to other types of systems.
Extending from the manifold 100, the downhole control lines 130A-B pass to one or more downhole components 80. For example, the control lines 130A-B can connect to a deep-set safety valve as the component 80 having two actuators 82A-B. Alternatively, the downhole components 80 may include two separate safety valves with independent actuators 82A-B. Still further, the downhole components 80 can include a hydraulic device 82A and an electronic device 82B or vice a versa. For a hydraulic device, the downhole components 80 can include, but are not limited to, a tubing retrievable safety valve, a downhole deployment valve (DDV) coupled to casing, a hydraulically actuated packer, a hydraulically actuated sliding sleeve, or any other type of hydraulic tool useable downhole. For an electronic device, the downhole components 80 can include, but are not limited to, a sensor, a motor, a telemetry device, a memory unit, a solenoid, or any other electronic component useable downhole.
As noted herein, passing control lines through the components of the wellhead 60 can be complicated. Thus, use of the concentric control lines 120A-B between the operating system 70 and the manifold 100 reduces the complications associated with passing control lines through the wellhead 60. As shown in
The concentric control lines 120A-B are manufactured as one, and the manifold 100 splits or separates the concentric control lines 120A-B to the downhole control lines 130A-B. To assemble the manifold 100, the outer control line 120B is cut to a length that exposes enough of the inner control line 120A to feed through the manifold 100. A fitting 112 having a jam nut and ferrules crimps and seals the outer control line 120B in a port 113 of the manifold 100.
The inner control line 120A exits an opposing port 115 at the bottom of the manifold 100, and another fitting 114 having a jam nut and ferrules crimps and seals the inner control line 120A in the port 115. As shown, the inner control line 120A can pass directly through the manifold 100 uninterrupted from the uphole end to the downhole end. In this way, the inner control line 120A does not need to be severed or cut to affix to the manifold 100, although such an arrangement could be used as needed. The downhole control line 130A is therefore the same lines as the inner control line 120A.
To create the split, the manifold 100 defines a cross-drilled port 117 that intersects with the uphole port 113. In this way, the cross-drilled port 117 can communicate with the annulus between the outer control line 120B and the inner control line 120A. At the cross-drilled port 117, a fitting 116 having a jam nut and ferrules crimps and seals the other downhole control line 130B in the manifold 100.
Both control lines 120A/130A and 120B/130B can convey hydraulic fluid between the operation system 70 and downhole components 80. Alternatively, one set of control lines (i.e., 120A/130A) can convey electric wiring, fiber optics, or the like, while the surrounding control lines 120B/130B can convey hydraulics. The reverse is also possible as is the arrangement of both lines 120A/130B and 120B/130B conveying electric wiring, fiber optics, or the like rather than hydraulic fluid.
The operating system 70 can have multiple lines 74A-B extending from actuators 72A-B, which can be pumps, reservoirs, power supplies, control units, sensor units, etc. An uphole manifold 76, which can be a reverse of the disclosed manifold 100, can be used uphole of the wellhead 60 to combine the system's multiple lines 74A-B to the concentric lines 120A-B. This uphole manifold 76 can be separate from the wellhead 60 or can be incorporated into a control line hanger (not shown) disposed in the wellhead 60.
Although two concentric control lines 120A-B are shown in
As shown in
At this second manifold 100B, a distal end of the intermediate control line 120B is crimped and sealed therein so it communicates with a branching control line 121B. Meanwhile, the inner control line 120A pass through this second manifold 100B to components further downhole. As will be appreciated, the branching off the various control lines 120A-C can be used to operate separate downhole components independently or to achieve any variety of useful purposes downhole.
In general, the disclosed manifold 100 can dispose at any desirable point downhole from a wellhead. For example, the manifold 100 as shown in
Preferably, the manifold 100 plumbs to a safety valve or other downhole component and deploys through the wellhead 60 when run downhole. In one arrangement shown in
In another arrangement shown in
With an understanding of the multiple control line system 50 of the present disclosure provided above, discussion now turns to example implementations of the disclosed system used with various downhole components. For example, multiple control line systems 90A-C in
As described previously, the deep-set safety valve 150 of
In the dual control line system 90A of
In the control line system 90B of
As another alternative, the configuration of the control line system 90C in
In each of these implementations, one or more connection lines 74A-B couple from the hydraulic system 70. In
For its part, the safety valve 150 in
As best shown in
Either way, with the primary control line 130A charged with hydraulic pressure, the primary actuator 160A opens the closure 165. For example, the piston of the actuator 160A moves the flow tube 154 down, which opens the flapper 152 of the safety valve 150. For its part, the hydraulic pressure from the balance control line 130B offsets the hydrostatic pressure in the primary control line 130A by acting against the balance actuator 160B. For example, the balance actuator 160B having the balance piston assembly acts upward on the flow tube 154 and offsets the hydrostatic pressure from the primary control line 130A. Therefore, this offsetting negates effects of the hydrostatic pressure in the primary control line 130A and enables the valve 50 to operate at greater setting depths.
If the balance control line 130B loses integrity and insufficient annular pressure is present to offset the primary control line's hydrostatic pressure, then the valve 150 can fail in the open position, which is unacceptable. To overcome unacceptable failure, the control system 90A-C can include a fail-safe device or regulator 140 disposed at some point down the well. The regulator 140 interconnects the two control lines 130A-B to one another and acts as a one-way valve between the two lines 130A-B in a manner disclosed in co-pending application Ser. No. 12/890,056, filed 24 Sep. 2010, which is incorporated herein by reference in its entirety.
Branching from the manifold, the system 90D includes first and second control lines 180A-B interconnected to one another by a one-way connecting valve 188 and connected to a single control port 172 on the safety valve 170. With the two control lines 180A-B run from the surface to the safety valve 170, one of the control lines 180B can power the safety valve 170 open while the second control line 180A can be used to close the valve 170.
For example, the control line 180B can be the main line, while the hydraulic system 70 maintains the other control line 180A closed at the wellhead to prevent exhausting of control fluid through it. The hydraulic system 70 at the surface applies hydraulic pressure to the control port 172 via control fluid in the control line 180B. The hydraulic pressure moves the internal sleeve 174 against the spring force 176. When sufficiently moved, the internal sleeve 174 opens the flapper 178 that normally blocks the internal bore 171 of the safety valve 170.
To close the safety valve 170, the hydraulic system 70 can exhaust the second control line 180A to a fluid reservoir (not shown), allowing the release of hydraulic pressure of the control fluid. The connecting valve 188 prevents control fluid from migrating back up through the main control line 180B. The release allows the spring force 176 to move the internal sleeve 174 and permits the flapper 178 to close the bore 171.
Likewise, the operation system 70 can communicate control fluid to the safety valve 170 via the second control line 180A to open the safety valve 170 in the event the first control line 180B is blocked or damaged. The one-way connecting valve 188 prevents the control fluid in the control line 180A from entering into the other control line 180B.
Moreover, the control line system 90D can aid in keeping the control fluid substantially clean of debris and can reduce the potential for blockage. For example, the control lines 180A-B can have sumps 182A-B to collect debris and can have in-line filters 186A-B to filter debris from the control fluid. During use, control fluid and associated debris is allowed to migrate through the system 90D so that the potential for blockage can be reduced. In addition, operators can cycle the safety valve 170 open and closed by applying control fluid with the main control line 180B and exhausting the control fluid with the other control line 180A. These and other techniques can be used, include those disclosed in U.S. Pat. Publication No. 2009/0050333, which is incorporated herein by reference in its entirety.
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
15376 | Humphrey | Jul 1856 | A |
3598238 | Collins, Jr. | Aug 1971 | A |
4065094 | Adams | Dec 1977 | A |
4143712 | James et al. | Mar 1979 | A |
4399870 | Baugh et al. | Aug 1983 | A |
4460040 | Bowyer | Jul 1984 | A |
4597445 | Knox | Jul 1986 | A |
4621695 | Pringle | Nov 1986 | A |
4624315 | Dickson et al. | Nov 1986 | A |
4667736 | Rumbaugh et al. | May 1987 | A |
4791991 | Morris et al. | Dec 1988 | A |
4834183 | Vinzant et al. | May 1989 | A |
4838355 | Leismer et al. | Jun 1989 | A |
4945993 | Dickson et al. | Aug 1990 | A |
4951753 | Eriksen | Aug 1990 | A |
4986357 | Pringle | Jan 1991 | A |
5058682 | Pringle | Oct 1991 | A |
5125457 | Meaders | Jun 1992 | A |
5145005 | Dollison | Sep 1992 | A |
5167284 | Leismer | Dec 1992 | A |
5199494 | Williamson, Jr. | Apr 1993 | A |
5249630 | Meaders et al. | Oct 1993 | A |
5259457 | Williamson, Jr. | Nov 1993 | A |
5293943 | Williamson, Jr. | Mar 1994 | A |
5310004 | Leismer | May 1994 | A |
5343955 | Williams | Sep 1994 | A |
5358053 | Akkerman | Oct 1994 | A |
5415237 | Strattan | May 1995 | A |
5564501 | Strattan et al. | Oct 1996 | A |
5564502 | Crow et al. | Oct 1996 | A |
5682921 | Rawson et al. | Nov 1997 | A |
5799949 | Beall et al. | Sep 1998 | A |
5823265 | Crow et al. | Oct 1998 | A |
5918858 | Rawson et al. | Jul 1999 | A |
5947206 | McCalvin et al. | Sep 1999 | A |
6003605 | Dickson et al. | Dec 1999 | A |
6056055 | Falconer et al. | May 2000 | A |
6109351 | Beall | Aug 2000 | A |
6148843 | Pringle | Nov 2000 | A |
6173785 | Adams et al. | Jan 2001 | B1 |
6237693 | Deaton | May 2001 | B1 |
6260850 | Beall et al. | Jul 2001 | B1 |
6263910 | Davis et al. | Jul 2001 | B1 |
6283477 | Beall | Sep 2001 | B1 |
6296061 | Leisner | Oct 2001 | B1 |
6302210 | Crow et al. | Oct 2001 | B1 |
6328062 | Williams et al. | Dec 2001 | B1 |
6378610 | Rayssiguier et al. | Apr 2002 | B2 |
6491106 | Simonds | Dec 2002 | B1 |
6502640 | Rayssiguier et al. | Jan 2003 | B2 |
6505684 | Rayssiguier et al. | Jan 2003 | B2 |
6513594 | McCalvin et al. | Feb 2003 | B1 |
6523613 | Rayssiguier et al. | Feb 2003 | B2 |
6626244 | Powers | Sep 2003 | B2 |
6659185 | Dennistoun et al. | Dec 2003 | B2 |
6666271 | Deaton et al. | Dec 2003 | B2 |
6776240 | Kenison et al. | Aug 2004 | B2 |
6851477 | Hill, Jr. et al. | Feb 2005 | B2 |
6854519 | Deaton et al. | Feb 2005 | B2 |
6880641 | Dennistoun et al. | Apr 2005 | B2 |
6988556 | Vick, Jr. | Jan 2006 | B2 |
6991040 | Hill et al. | Jan 2006 | B2 |
7055607 | Jacob | Jun 2006 | B2 |
7178599 | Anderson et al. | Feb 2007 | B2 |
7195072 | McKay | Mar 2007 | B2 |
7213653 | Vick, Jr. | May 2007 | B2 |
7246668 | Smith | Jul 2007 | B2 |
7314091 | Wagner et al. | Jan 2008 | B2 |
7392849 | Lauderdale et al. | Jul 2008 | B2 |
7434626 | Vick, Jr. | Oct 2008 | B2 |
7487830 | Wolters et al. | Feb 2009 | B2 |
7552774 | Anderson et al. | Jun 2009 | B2 |
7624807 | Vick, Jr. | Dec 2009 | B2 |
7654333 | Smith | Feb 2010 | B2 |
7694742 | Bane et al. | Apr 2010 | B2 |
7878252 | Smith et al. | Feb 2011 | B2 |
7954550 | Anderson | Jun 2011 | B2 |
20020060075 | Purkis et al. | May 2002 | A1 |
20080078556 | Stoesz et al. | Apr 2008 | A1 |
20080314599 | Bane et al. | Dec 2008 | A1 |
20090229817 | Partouche | Sep 2009 | A1 |
20100206582 | Meyyappan et al. | Aug 2010 | A1 |
20120073829 | Smith et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1006259 | Jun 2000 | EP |
1241322 | Sep 2002 | EP |
2213181 | Aug 1989 | GB |
2355740 | May 2001 | GB |
2419363 | Apr 2006 | GB |
2427214 | Dec 2006 | GB |
2434166 | Jul 2007 | GB |
2423780 | Sep 2011 | GB |
9914461 | Mar 1999 | WO |
03054347 | Jul 2003 | WO |
2004022906 | Mar 2004 | WO |
2004044379 | May 2004 | WO |
Entry |
---|
Copending U.S. Appl. No. 12/890,056, entitled “Fail Safe Regulator for Deep-Set Safety Valve Having Dual Control Lines” by Roddie R. Smith and Donnie R. Clapp, filed Sep. 24, 2010. |
European Search and Examination Report received in application No. GB 0917053.1 dated Oct. 28, 2009. |
Oceaneering International, Inc.; “Control Line Filtration Systems;” Product Information Brochure, dated Apr. 2006. |
European Search and Examination Report received in application No. GB0810130.5 dated Jul. 28, 2008. |
“Paintball Pressure Regulators,” obtained from www.docsmachine.com/tech/regs.html, generated on Sep. 13, 2010, 3 pages. |
Halliburton, “Tubing-Retrievable Subsurface Safety Valve,” copyright 2008. |
Weatherford, “Optimax™ Series Tubing-Retrievable Surface-Controlled Subsurface Safety Valves Models WSP . . . ”, copyright 2007-2011. |
Weatherford, “Optimax™ Series Tubing-Retrievable Surface-Controlled Subsurface Safety Valves Models WSSP . . . ”, copyright 2007. |
Weatherford, “Optimax™ Series Tubing-Retrievable Surface-Controlled Subsurface Safety Valves Models WP . . . ”, copyright 2007. |
Weatherford, “Optimax™ Series Tubing-Retrievable Surface-Controlled Subsurface Safety Valves Model WDB . . . ”, copyright 2006-2011. |
Weatherford, “Safety Valves,” copyright 2005-2010. |
Weatherford, “W Magazine: Optimax: ‘The Missing Link,’” Sep. 2001, p. 25. |
Search Reports received in corresponding European Application No. 12183602.7, dated Oct. 18, 2012. |
First Office Action received in corresponding Canadian application 2,788,889, dated Apr. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20130056222 A1 | Mar 2013 | US |