I. Field of the Invention
The invention of the multiple coupling and non-coupling inductor is related to a design for reduction of power consumption due to current and abatement of electromagnetic interference, and employs penetrated grooves lying inside the X-axis as well as the Y-axis of magnetic conductors for penetration of every conductor as a structural design of the magnetic field of an iron-core assembly with multiple coupling and non-coupling.
II. Description of the Prior Art
According to the inventor's perennial research for a design of an iron-core structure, a resolution is amelioration of the old-type structure of an iron core, which employs both laminar conductor and magnetic core mutually stacking as a magnetic conductor with an adequate height for simple installation and reduction of electromagnetic interference to reach a securely connecting goal while the magnetic conductor is equipped on an electronic equipment.
Owing to a stacked combination of an iron-core magnetic object by a staggering configuration of two laminar conductors, which only offers a one-way double magnetic field in the said design, more magnetic fields are required and another iron-core components is prepared frequently for a product with a higher power output. Furthermore, to coincide with a tendency in the modern industry, the inventor is always pondering an integration of various functions and reduction in volume. Based on this perception, this invention employs mutually perpendicular penetrated grooves lying inside the magnetic conductor and makes one of conductors at least penetrate grooves that conductors generate mutual inductance along the X-axis and the Y-axis directions but none between the X-axis and the Y-axis to form an iron-core component with a structural design of multiple coupling & non-coupling magnetic field. Thus, the structural design with this single iron-core component is able to provide magnetic fields as offered by multiple iron-core components.
The major objective of this invention of the multiple coupling & non-coupling inductor is to offer a single iron-core component with a structural design of a multiple coupling & non-coupling iron core to solve a traditional configuration of two iron-core components and curtail space of embedding an iron-core component.
The secondary objective of this invention of the multiple coupling & non-coupling inductor is to provide an iron-core component, which is able to receive a signal corresponding to a different phase or a signal corresponding to an identical phase.
With an illustration of diagrams, the detailed description and technical content related to this invention is displayed as follows:
a is a vertical view from one side of the inductor of this invention.
b is a lateral view for the inductor of this invention.
a is another vertical view from one side for the inductor of this invention.
b is another lateral view of the inductor of this invention.
Firstly, referring to
Besides, the lower magnetic conductor 12 is similar to a serrate rectangle block where the Y-axis upper channel 121, which is perpendicular to the X-axis upper channel 110, is prepared on the top of the conductor as a penetrated track for the Y-axis conductors 22 & 22′, and the same-directional corresponding groove 124 and the Y-axis lower channel 122 are prepared on the longitudinal sidewall and the bottom along the Y-axis of the lower magnetic conductor 12 for Y-axis conductors 22 & 22′, which can be fixed inside grooves and bended inwards for welding on the machine board.
Moreover, also referring to
As shown in
Thus, using several sets of mutually perpendicular penetrated channels and grooves contained inside magnetic conductors of this invention to include multiple sets of conductors with a stack method, the mutual inductance of plural conductors occurs along the X-axis and the Y-axis rather than between the X-axis and the Y-axis so an iron core has multiple multi-directional magnetic field from a single iron-core component providing a magnetic field for over one iron-core component.
Number | Name | Date | Kind |
---|---|---|---|
4538132 | Hiyama et al. | Aug 1985 | A |
6140899 | Kayser et al. | Oct 2000 | A |
7397336 | Kawarai | Jul 2008 | B2 |