The present disclosure generally relates to internal combustion engines, and more particularly relates to multiple cylinder internal combustion engines.
Internal combustion engines are widely used for a variety of purposes. In many situations, internal combustion engines are used to power pieces of power equipment, particularly in situations where utilizing an electric motor would be inconvenient or impractical, such as when access to residential or commercial power supplies may be unavailable or when electrical power cords or extension cords would be cumbersome or dangerous. For example, often outdoor power equipment such lawnmowers, power washers, snow blowers, etc., utilize internal combustion engines as a power source. Frequently, in such applications the internal combustion engine may include a single cylinder, relatively small displacement engine. While such engines are typically cost effective and simple, many opportunities exist for improving the function, performance, and/or operation of such internal combustion engines.
According to an implementation, an internal combustion engine may include a first piston reciprocatingly disposed in a first cylinder, and a second piston reciprocatingly disposed in a second cylinder. The internal combustion engine may also include a crankshaft coupled with the first piston and the second piston for rotational motion associated with reciprocating movement of at least one of the first piston and the second piston. A combustion chamber may be fluidly coupled with the first cylinder and with the second cylinder. An intake valve providing selective fluid communication between an intake system and the combustion chamber. The intake valve may be generally centrally disposed between first cylinder and the second cylinder. An ignition source may be at least partially disposed within the combustion chamber. The internal combustion engine may also include an exhaust valve providing selective fluid communication between an exhaust system and the combustion chamber.
One or more of the following features may be included. The crankshaft may be configured to be disposed in a generally vertical orientation during operation. The first cylinder and the second cylinder may be arranged in a parallel-inline configuration. The first cylinder and the second cylinder may be arranged in an offset configuration. The first cylinder and the second cylinder may have substantially the same diameter. The first cylinder and the second cylinder may have different diameters.
The crankshaft may be coupled with the first piston via a first crank journal and may be coupled with the second piston via a second crank journal. The crankshaft may be coupled with the first piston and the second piston via a first crank journal.
The combustion chamber may include a cavity overlying at least a portion of the first cylinder and at least a portion of the second cylinder. One or more of the intake valve and the exhaust valve may include overhead valves. The intake valve may be actuated by an intake rocker arm. The exhaust valve may be actuated by an exhaust rocker arm. The intake rocker arm may have a greater length than the exhaust rocker arm. A centerline of the intake valve may be at least partially offset from a bore center line of the first cylinder and the second cylinder. The exhaust valve may be at least partially offset over one of the first cylinder and the second cylinder. The ignition source may include a spark plug.
According to another implementation, an internal combustion engine may include a first piston reciprocatingly disposed in a first cylinder, and a second piston reciprocatingly disposed in a second cylinder. A crankshaft may be coupled with the first piston and the second piston for rotational motion associated with reciprocating movement of at least one of the first piston and the second piston. The crankshaft may be configured to be disposed in a generally vertical orientation during operation. A combustion chamber may be fluidly coupled with the first cylinder and the second cylinder. An intake valve may provide selective fluid communication between an intake system and the combustion chamber. The intake valve may be generally centrally disposed within the combustion chamber relative to the first cylinder and the second cylinder. An exhaust valve may provide selective fluid communication between an exhaust system and the combustion chamber. An ignition source may be at least partially disposed within the combustion chamber.
One or more of the following features may be included. At least a portion of a flow pathway associated with the intake valve may be disposed on a first side of an engine cylinder head. At least a portion of a flow pathway associated with the exhaust valve may be disposed on a second side of the engine cylinder head. The intake valve may be actuated by an intake rocker arm and the exhaust valve is actuated by an exhaust rocker arm. The intake rocker arm may have a greater length than the exhaust rocker arm. The intake valve and the exhaust valve may be actuated by a respective intake cam lobe and an exhaust cam lobe of a common camshaft.
According to yet another implementation, an internal combustion engine may include a first piston reciprocatingly disposed in a first cylinder, and may include a second piston reciprocatingly disposed in a second cylinder. A crankshaft may be coupled with the first piston and the second piston for rotational motion associated with reciprocating movement of at least one of the first piston and the second piston. The crankshaft may be configured to be disposed in a generally vertical orientation during operation. A combustion chamber may be fluidly coupled with the first cylinder and the second cylinder. An intake valve may provide selective fluid communication between an intake system and the combustion chamber. The intake valve may be generally centrally disposed relative to the first cylinder and the second cylinder. The intake valve may be at least partially offset relative to a bore centerline of the first cylinder and the second cylinder. An exhaust valve may provide selective fluid communication between an exhaust system and the combustion chamber. An ignition source may be at least partially disposed within the combustion chamber.
One or more of the following features may be included. The combustion chamber may be formed in an engine cylinder head. The engine cylinder head may define an intake pathway associated with the intake valve on a first side of the cylinder head. The engine cylinder head may define an exhaust pathway associated with the exhaust valve on a second side of the cylinder head.
In general, the present disclosure relates to internal combustion engines having multiple cylinders. For the clarity of description and illustration, the present disclosure will generally relate to internal combustion engines including two cylinders. However, it will be appreciated that internal combustion engines consistent with the present disclosure may include a greater number of cylinders. As such, the present disclosure should not be limited to internal combustion engines having only two cylinders. Consistent with the present disclosure, the internal combustion engine may include a four-cycle engine, such as a gasoline engine or a propane engine. In additional implementations, the engine may include a diesel engine or a two-stroke engine. In some embodiments, the engine may include an air cooled engine, e.g., in which at least a portion of the cooling of the engine is accomplished by radiant cooling and/or convective cooling of at least a portion of the engine. For example, the at least a portion of the engine, such as the engine block (which may contain and/or define one or more of the cylinders) and/or the cylinder head (e.g., which may contain and/or define at least a portion of a combustion chamber associated with one or more of the cylinders) may include fins, or other features, that may facilitate radiative cooling and/or convective cooling (e.g., as a result of air movement across the features) of the engine. In some implementations, at least a portion of the cooling may be accomplished through the use of a liquid heat transfer medium, such as the lubricating oil of the engine, a water, glycol, etc., based coolant, or the like. Consistent with some such implementations, the liquid heat transfer medium may be splashed onto one or more pistons of the engine, may pass through (e.g., via liquid passages) at least a portion of the engine block and/or cylinder head, or the like. In some such implementations, the liquid may further pass through a heat transfer structure, such as a liquid-air heat exchanger (such as a radiator) and/or may pass through a reservoir (such as a crankcase) which may have fins and/or other heat dissipating structures.
According to some implementations, an internal combustion engine consistent with the present disclosure may include multiple cylinders (each having a corresponding reciprocating piston) that may, at least in part, participate in the four cycle combustion process. That is, two or more cylinders may participate in one or more of an intake of a fuel-air mixture, the compression of the fuel-air mixture, the combustion of the fuel-air mixture, power generation from the combustion of the fuel-air mixture, and at least partial exhaust of combustion products of the fuel-air mixture from at least a portion of the cylinders and/or at least a portion of the combustion chamber associated with the cylinders. For example, at least two cylinders may be at least partially filled with the fuel-air mixture, and the corresponding pistons of the at least two cylinders may be caused to reciprocate within the respective cylinders, at least in part, by the combustion of the fuel-air mixture. In some implementations consistent with the present disclosure, cylinders that may, at least in part, participate in the combustion process may also be referred to as fired cylinders.
Continuing with the foregoing, consistent with some implementations, each fired cylinder may “participate” in the combustions process in that the fired cylinder may be exposed to the burning fuel-air mixture. In some implementations, each fired cylinder may participate in the combustion process in that the fired cylinder may generate power and/or rotational motion as a result of being exposed to the burning fuel-air mixture. Consistent with some implementations, each fired cylinder may participate/undergo at least one or more cycles of the four-cycle process (i.e., intake, compression, power, exhaust). Further, consistent with some implementations, the at least two cylinders may be in fluid communication with each other during at least a majority of the intake cycle, the power cycle, and/or the exhaust cycle.
In some implementations, two (or more than two, in some particular implementations) fired cylinders may be in fluid communication with one another during at least a portion of the four-cycle process (and during a diesel and/or two-cycle process). In some particular implementations, the two (or more) fired cylinders may be in fluid communication with each other during more than one cycle of operation. For example, two fired cylinders may be in fluid communication with one another during the intake cycle, during the compression cycle, during the power cycle, during the exhaust cycle, and/or during more than one such cycle (including, but not limited to being in fluid communication with one another during all four cycles of operation). In some implementations, e.g., in which the internal combustion engine may include more than two fired cylinders, two fired cylinders may be in fluid communication with each other during at least a portion of the four-cycle process, and or more than two fired cylinders may be in fluid communication with each other during at least a portion of the four-cycle process. In some particular implementations, two (or more) fired cylinders may be in fluid communication with each other, at least in part, via a shared and/or common combustion chamber. For example, each of the fluidly coupled fired cylinders may be fluidly coupled with a combustion chamber, in which at least a portion of the combustion process may occur. In some implementations, two (or more) fired cylinders may be in fluid communication with each other via a shared and/or common combustion chamber during each of the four cycles of operation.
According an illustrative example embodiment consistent with the present disclosure, an internal combustion engine may generally include a first piston reciprocatingly disposed in a first cylinder, and may include a second piston reciprocatingly disposed in a second cylinder. A crankshaft may be coupled with the first piston and with the second piston for rotational motion of the crankshaft associated with reciprocating movement of the first piston and the second piston. That is, for example, rotation of the crankshaft may cause reciprocating movement of the first piston and the second piston. Similarly, reciprocating movement of the first piston and/or the second piston may cause rotation of the crankshaft. The internal combustion engine may further include a combustion chamber that may be fluidly coupled with the first cylinder and the second cylinder. Consistent with such a feature, the combustion chamber, together with the first cylinder and the second cylinder, may define a fluid volume (e.g., which may vary depending upon reciprocating movement and/or position of the first piston and the second piston within the respective first cylinder and second cylinder). In some such embodiments, the combustion chamber may be disposed at a distal end (e.g., relative to the crankshaft) of the first cylinder and the second cylinder, and may, at least in part, enclose the distal ends of the first cylinder and the second cylinder.
The internal combustion engine may further include an ignition source, which may selectively ignite a fuel-air mixture within one, or more, of the first cylinder, the second cylinder, and the combustion chamber. In some example embodiments, the ignition source may be at least partially disposed within the combustion chamber. The internal combustion engine may also include one or more intake valves. The one or more intake valves may provide selective fluid communication between an intake system and the combustion chamber. For example, the one or more intake valves may be selectively opened (e.g., during at least the intake cycle, and/or at least a portion of the intake cycle, of the four cycle internal combustion engine) to allow a fuel-air mixture to be drawn into one or more of the first cylinder, the second cylinder, and the combustion chamber by way of an intake runner or manifold, e.g., which may be coupled with a carburetor or fuel injection system (e.g., to facilitate mixing of fuel with air prior to, or during the fuel-air mixture entering via the intake valve). The intake valve may also be selectively closed to prevent flow from one or more of the first cylinder, the second cylinder, and the combustion chamber back into the intake system (e.g., during at least a portion of one or more of the compression cycle, the power cycle, and the exhaust cycle of the internal combustion engine).
Consistent with some embodiments, an intake valve (e.g., at least one of the one or more intake valves) may be generally centrally located within the combustion chamber (e.g., generally centrally located within the combustion chamber relative to the first and second cylinders). In some such implementations, the intake valve may generally be in between the first and second cylinders. In some implementations, the intake valve may be relatively evenly, centrally located relative to the first cylinder and the second cylinder. In some implementations, the intake valve may be offset relative to one or both of the first cylinder and the second cylinder. The internal combustion engine may also include one or more exhaust valves that may provide selective fluid communication between an exhaust system and one or more of the combustion chamber, the first cylinder, and the second cylinder. That is, the one or more exhaust valves may be selectively opened to allow combusted fuel-air mixture to be expelled from the combustion chamber and/or the first cylinder and the second cylinder (e.g., during at least a portion of the exhaust cycle of the internal combustion engine) into the exhaust system. The exhaust system may include, for example, an exhaust runner and/or exhaust manifold, e.g., which may be coupled with a muffler and/or other desired exhaust system components. In a similar manner as the intake valve(s) the exhaust valve(s) may be selectively closed, e.g., to prevent flow from one or more of the first cylinder, the second cylinder, and the combustion chamber into the exhaust system (e.g., during at least a portion of one or more of the intake cycle, the compression cycle, and the poser cycle of the internal combustion engine).
Consistent with some illustrative example embodiments, in an internal combustion engine including two cylinders fluidly coupled with a common combustion chamber, the intake valve(s) and exhaust valve(s) may be arranged to provide relatively efficient and effective mixing of the fuel and air forming the fuel-air mixture. Further in some such implementations, the arrangement of the intake valve(s) and/or exhaust valve(s) may allow relatively efficient and effective distribution of the fuel-air mixture within the volume of the combustion chamber and between the two cylinders (e.g., during at least a portion of the intake stroke and/or the compression stroke), and expulsion and/or removal of combusted fuel-air mixture from the volume of the combustion chamber and the two cylinders. For example, in some such embodiments, the arrangement of the intake valve(s) and/or exhaust valve(s) may allow and/or facilitate relatively uniform mixing of the fuel and air and relatively uniform distribution of the fuel-air mixture in the combustion chamber and/or the first and second cylinders during ignition and/or combustion of the fuel-air mixture. In some such implementations, the relatively efficient and effective mixing of the fuel and air and/or the relatively uniform distribution of the fuel-air mixture may beneficially impact one or more of relatively uniform power production between the two cylinders (e.g., the force acting on the respective first and second pistons), relatively complete and/or efficient combustion of the fuel-air mixture, overall power generation of the engine, thermal efficiency of the engine, and/or various additional and/or alternative operating parameters and/or characteristics of the engine.
Consistent with the foregoing, in some illustrative example embodiments the engine may include an intake valve (e.g., one or more intake valves) that may be generally centrally located between the first and second cylinders. In some such implementations, the generally centrally located intake valve may increase tumble, swirl, and roll of the fuel-air mixture entering the combustion chamber, e.g., which may increase and/or enhance the mixing of the fuel and air. In some such implementations, the increase in tumble, swirl and roll of the fuel-air mixture entering the combustion chamber may increase and/or enhance the mixing of fuel and air to provide a more uniform distribution of fuel-air mixture at stoichiometric ratios (and/or at other desired fuel to air ratios) within the combustion chamber. The increased and/or enhanced mixing of the fuel and air may, for example, provide relatively more uniform mixing of the fuel and the air (e.g., such that the fuel-air ratio may be relatively more uniform throughout one or more of the combustion chamber, the first cylinder, and the second cylinder), and/or may provide improved atomization and/or vaporization of the fuel (e.g., which may facilitate uniform and/or complete combustion of the fuel-air mixture). In some such embodiments, the intake valve may be generally centrally positioned between the two cylinders and an exhaust valve may be generally biased over one of the cylinders and/or to one side of the combustion chamber. In some such implementations, the surface area of the combustion chamber to volume of the combustion chamber may be relatively decreased by the generally centrally positioned intake valve. The relatively decreased combustion chamber surface area to volume may, in some implementations, increase the power output of the engine and/or provide more complete and/or efficient combustion, e.g., relative to a configuration having a relatively larger combustion chamber surface area to volume.
Consistent with the foregoing, and referring to the drawings, an illustrative example embodiment of an internal combustion engine 10 consistent with the present disclosure is shown. Consistent with the illustrative example embodiment, and as shown, e.g., in
While the above-described and depicted illustrated example embodiment is shown having a parallel, inline configuration, it will be appreciated that other configurations may also be utilized. For example, the first and second cylinders may be arranged such that the rotational axis of the crankshaft lies outside of the plane of the longitudinal centerlines of the first and second cylinders. Additionally and/or alternatively, the first and second pistons may have different timings, such that the first and second pistons may reach top-dead-center at relatively different rotational positions of the crankshaft. For example, the respective connecting rods associated with the first piston and the second piston may be coupled with the crankshaft via separate crankpins, e.g., which may not be coaxial with one another. Further, a greater or fewer number of counterweights may be utilized to achieve a desired rotational balancing of the crankshaft during operation of the internal combustion engine. Additionally, the internal combustion engine may be configured for operation in non-vertical orientations of the crankshaft, including, but not limited to, horizontal orientations of the crankshaft.
With additional reference to
While the illustrated example embodiment includes a gear-driven camshaft, it will be appreciated that the camshaft may be rotationally coupled with the crankshaft in a variety of suitable configurations, including, but not limited to, belt-drive, chain-drive, etc. Additionally, while the illustrated example embodiment includes a pushrod actuated valve arrangement, with the camshaft being disposed within the crankcase, other configurations may equally be utilized. For example, the camshaft may be disposed outside of the crankcase, such as in the cylinder head. Further, rather than a pushrod actuation arrangement, the camshaft may directly actuate the rockers (e.g., the respective cam lobes may directly actuate the rockers, such as in a roller rocker configuration). Still further, in some implementation, the cam may directly actuate the valves (e.g., the cam lobes may directly actuate the valve stems). It will be appreciated that various additional and/or alternative configurations may equally be utilized.
With particular reference to
Consistent with the illustrated example embodiment shown in
With particular reference to
Consistent with the illustrated example embodiment, with the intake valve being generally centrally located within the combustion chamber and/or generally centrally located relative to the first cylinder and the second cylinder, the exhaust valve (e.g., exhaust valve 34) may be displaced (e.g., in a direction parallel to the bore centerline) toward one of the first cylinder and the second cylinder. That is, for example, if the intake valve is generally centrally located, the exhaust valve may be off to the side of the intake valve. For example, in the illustrated example embodiment, the exhaust valve may, therefore, be more closely positioned relative to one cylinder or the other cylinder. Combustion products from burning of the fuel-air mixture may exit the combustion chamber via the exhaust valve and an exhaust port (e.g., exhaust port 54 in fluid communication with the exhaust valve via the exhaust passage, or runner, and then into an exhaust system which may, for example, include a muffler, etc.). Consistent with the illustrated example, the intake port may extend through a first side of the cylinder and the exhaust port may extend through a second, generally opposed, side of the cylinder head. Such a configuration may, for example, facilitate locating the intake system and the exhaust system on different and/or opposed sides of the cylinder head and/or engine. In some implementations, locating the intake system and the exhaust system (e.g., including the intake port and runner and the exhaust port and runner, respectively) may, for example, reduce heating of the intake fuel-air mixture due to proximity with heated combustion products being exhausted from the combustion chamber.
As additionally depicted, the combustion chamber may also include and/or locate an ignition source. For example, as shown, e.g., in
With additional reference to
As generally discussed above, in some implementations, at least the first cylinder and the second cylinder may be generally arranged to provide a parallel, inline configuration. For example, as diagrammatically depicted in
While a parallel, inline configuration may suitably be used in some embodiments consistent with the present disclosure, it will be appreciated that other configurations may also be utilized. For example, in some implementations consistent with the present disclosure, the first and second cylinders may be arranged such that the rotational axis of the crankshaft lies outside of the plane of the longitudinal centerlines of the first and second cylinders. For example, and referring also to
As generally described above, in some implementations, the first and second pistons may have a common timing, e.g., such that each piston may reach a top-dead-center (i.e., an apogee of reciprocation) at the same (and/or generally the same) rotational angle of the crankshaft. Additionally and/or alternatively, the first and second pistons may have different timings, such that the first and second pistons may reach top-dead-center at relatively different rotational positions of the crankshaft. For example, the respective connecting rods associated with the first piston and the second piston may be coupled with the crankshaft via separate crankpins, e.g., which may not be coaxial with one another. Further, a greater or fewer number of counterweights may be utilized to achieve a desired rotational balancing of the crankshaft during operation of the internal combustion engine. Additionally, the internal combustion engine may be configured for operation in non-vertical orientations of the crankshaft, including, but not limited to, horizontal orientations of the crankshaft.
As generally described above, the crankshaft may be coupled with the first piston and the second piston for rotation of the crankshaft associated with reciprocating movement of the first piston and/or the second piston. In particular, in some implementations, rotation of the crankshaft may result in reciprocating movement of the first piston and/or the second piston. Correspondingly, reciprocating movement of the first piston and/or the second piston may result in rotation of the crankshaft. As discussed above, during operation of an internal combustion engine consistent with the present disclosure, both modes of movement may be implicated during different operating cycles of the internal combustion engine (e.g., rotation of the crankshaft may drive reciprocating movement of one or more of the pistons, and an induced reciprocating movement of one or more of the pistons may drive rotation of the crankshaft). Consistent with the present disclosure, one, or both, of the pistons may be associated with the crankshaft for respective movement thereof in a variety of manners.
Consistent with an example embodiment, and as generally discussed above, the crankshaft may be coupled with the first piston via a first crank journal and may be coupled with the second piston via a second crank journal. It will be understood that crank journals may generally refer to portion of the crankshaft that is offset from the centerline of the crankshaft and is configured to be coupled with a connecting rod for rotation of the crankshaft associated with reciprocating movement of the piston connected with the connecting rod. Crank journals may also be referred to as crank pins. Example arrangements including a crankshaft coupled with a first piston via a first crank journal and coupled with a second piston via a second crank journal are depicted, e.g., in
In further example embodiments consistent with the present disclosure, the crankshaft may be coupled with the first piston and the second piston via a first crank journal. For example, the crankshaft may only include a single crank journal. Consistent with such an embodiment, the first piston and the second piston may both be coupled to the crankshaft via the first crank journal. Further, the crankshaft may include one counterweight on the outside of the connection to the first piston and a second counterweight on the outside of the connection to the second piston, without a counterweight being disposed between the connections to the two pistons. It will be appreciated that, in some such embodiments, the crankshaft includes only a single crank journal, or crank pin. However, in some implementations it may not be necessary to finish the entirety of the single crank journal to a bearing finish (such as a highly polished and/or exactingly high round tolerance). For example, the region associated with the connection to the first piston and the region associated with the connection to the second piston may be finished to a bearing finish, while the region of the crank journal in between these two connection points may be less well finished.
As generally discussed above, the first piston and the second piston may be arranged in a variety of configurations (such as parallel, in-line, and offset), and the first piston and the second piston may be coupled with the crankshaft in a variety of configurations (e.g., each of the pistons coupled to separate respective crank journals, and both of the pistons coupled to the same, single crank journal). Accordingly, it will be appreciate that a variety of connecting rod configurations may be utilized. As is generally known, a connecting rod may provide the physical connection between a piston and a crank journal of the crankshaft. With additional reference to
Referring to
Referring to
With additional reference to
Referring also to
While several illustrative example embodiments of crankshaft and connecting rod arrangements for coupling the pistons with the crankshaft, it will be appreciated that a wide variety of additional and/or alternative configurations may equally by utilized. As such, the present disclosure should not be limited to the depicted example configurations.
Referring to
While the foregoing description has generally pertained to an arrangement including two cylinders and two respective pistons, it will be appreciated that a greater number of cylinders and pistons may be utilized. According to various configurations, an engine may include more than two cylinders that may be fluidly coupled by a common combustion chamber, an engine may include more than one set of two cylinders fluidly coupled by respective common combustion chambers (e.g., the engine may include a first pair of cylinders fluidly coupled by a first common combustion chamber, and may include at least a second pair of cylinders fluidly coupled by at least a second common combustion chamber), and/or an engine may include at least two cylinders fluidly coupled by a common combustion chamber and one or more additional cylinders not fluidly coupled with another cylinder by a common combustion chamber.
A variety of illustrative example embodiments have been described, each including a variety of features, concepts, and arrangements. It will be appreciated that features, concepts, and arrangements disclosed in the context of one, or several, discrete embodiments are susceptible to application in other embodiments, and/or susceptible to combination with features, concepts, and/or arrangements discussed relative to multiple different embodiments. Herein, such combination of features, concepts, and arrangements from the several embodiments is expressly intended to be within the scope of the present disclosure.
A variety of feature, advantages, implementations, and embodiments have been described herein. However, it will be appreciated that the foregoing description and the depicted embodiments are only intended for the purpose of illustration and explanation, and should not be construed as a limitation on the present invention. It will be appreciated that the features and concepts associated with the various embodiments are susceptible to combination with features and concepts of other disclosed embodiments. Additionally, it will be appreciated that the concepts embodied by the description and illustration are susceptible to variation and modification, all of which are intended to be encompassed by the present invention.
This application claims the benefit of U.S. provisional patent application Ser. No. 63/175,258, filed on 15 Apr. 2021, entitled “MULTIPLE CYLINDER ENGINE”, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63175258 | Apr 2021 | US |