The exemplary embodiments described herein relate to nuclear magnetic resonance (NMR) logging for determining the porosity and the pore type of subterranean formations.
When drilling a wellbore penetrating a subterranean formation, the drilling fluid (or drilling mud) infiltrates into the formation surrounding the wellbore. This infiltration occurs over multiple steps. Initially, as the drill bit exposes the formation, the drilling mud, including solid particles like weighting agents and drill cuttings, migrates into the pore spaces of the formation that is close to the wellbore wall. During this step of drilling mud infiltration, the solids form an internal mud cake in the formation at the wellbore by bridging the pores in the formation. As the internal mud cake forms, the fluid in the drilling mud readily flows into the formation, which is sometimes referred to as spurt invasion. Then, after the internal mud cake forms and pore bridging stabilizers, an external mud cake starts to build up on the wellbore wall. As the external mud cake begins to form, the fluid in the drilling mud infiltrates into the surrounding formation to a lesser degree by a mechanism known as transient invasion or static invasion. As the external mud cake thickens, infiltration of the fluid of drilling mud into the surrounding formation decreases until a steady state is reached. Even though it can take hours to build up an external mud cake of 2.5 mm, the most significant amount of fluid infiltration from the drilling mud into the surrounding formation is believed to occur within a few seconds.
NMR tools are often used to analyze the properties of the formation close to the wellbore such as porosity and pore type. Generally, the NMR tool produces a radiofrequency (RF) excitation pulse that penetrates into the formation and interacts with the fluids therein. This interaction then produces an NMR signal that is measured by the NMR tool. Depending on the RF excitation pulse and NMR signal detection parameters, various NMR properties may be measured. Because NMR measurements interrogate the composition of the fluid that interacts with the RF excitation pulse, the amount of fluid infiltration from drilling muds can affect NMR measurements and the formation properties derived. For logging-while-drilling (LWD) NMR measurements, the fluid composition in the portion of the formation being interrogated is changing due to the spurt invasion and transient invasion, which increases the error associated with the NMR measurements and the formation properties derived therefrom.
The following figures are included to illustrate certain aspects of the embodiments, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, as will occur to those skilled in the art and having the benefit of this disclosure.
The exemplary embodiments described herein relate to NMR methods for determining the porosity and the pore type of subterranean formations while accounting for fluid infiltration from the drilling mud or mud filtrate thereof into the formation. The NMR methods described herein may be performed with logging while drilling (LWD) NMR tools, measurement while drilling (MWD) NMR tools, wireline NMR tools, slickline NMR tools, and the like.
As used herein, the term “whole mud” refers to the drilling mud including the fluid and solid particles therein. As used herein, the term “mud filtrate” refers to the fluid of the drilling mud that is filtered during infiltration into the surrounding formation.
As used herein, the term “porosity” refers to a measure of how much of a rock or other material is open space (i.e., not solid).
As used herein, the term “sensitive volume” refers to the volume of the formation investigated by NMR. The thickness of the sensitive volume is determined by the RF excitation pulse parameters (e.g., the bandwidth of the RF refocusing pulse in a Carr-Purcell-Meiboom-Gill (CPMG) echo train decay) and the magnetic field gradient of the logging instrument.
Generally, the amplitude of the NMR signal from a fluid is proportional to the number of protons in the sensitive volume. With proper calibration, NMR signal amplitude may be converted to proton density in the sensitive volume. In porous rocks, the NMR signal amplitude (represented by A) is proportional to the apparent porosity of the formation (represented by ϕapp) is given by Equation 1, where C is the calibration constant, is the porosity, HI is the hydrogen index, and s is the saturation (on a scale of 0-1 based on the % of the fluid composition) and where the subscripts w, o, and g are the water, oil, and gas components of the fluid in the sensitive volume, respectively.
A=C*ϕapp=(Sw*HIw+So*HIo+Sg*HIg)*ϕ Equation 1
The calibration constant (C) may be determined by measuring the NMR signal amplitude of a filled tank (Sw=1) with a fluid having known HIw, which has ϕ=100%. Typically, the HI for water and oil are substantially close to 1. A slight deviation may be observed to high salinity water. Additionally, slight deviations in HIo may be observed based on the density of the oil (ρo). Equation 2 provides an estimation of HIo.
HIo=9ρo(0.15+0.2(0.9−ρ0)2) Equation 2
In downhole applications, the most uncertainty with deriving ϕ is from the gas present in the sensitive volume because HIg is typically much less than 1. Typically, in high-pressure virgin gas reservoirs HIg is about 0.4. However, for depleted gas reservoirs the HIg can be significantly lower.
Additionally, in formations with or without significant gas concentrations, uncertainty with deriving ϕ can be a result of the sensitive volume and, consequently, the ϕapp not being representative of the formation. For example, vibration or radial movement of the NMR tool and wellbore rugosity (i.e., small-scale variations in the wellbore surface) may cause the sensitive volume to be partially inside the wellbore where the mud porosity is much higher than formation porosity because much of the mud is liquid and not solid. Having the sensitive volume to be partially inside the wellbore artificially increases the ϕapp and, consequently, the ϕ. In another example, the solids present in the drilling mud may penetrate into the sensitive volume, which is volume that would otherwise be occupied by a fluid. This artificially decreases the ϕapp and, consequently, the ϕ.
To reduce the uncertainty induced by the foregoing issues, the present application measures the ϕapp for two or more sensitive volumes and, then, compares the ϕapp of each of the sensitive volumes for quality control in determining ϕ.
As used herein, the terms “ϕsh” refers to the apparent porosity corresponding to a shallow sensitive volume that is closer to the NMR tool than a deep sensitive volume. Further, “ϕdeep” refers to the apparent porosity corresponding the deep sensitive volume. That is, the shallow sensitive volume at a smaller radial distance from the NMR (or wellbore) than the deep sensitive volume.
The NMR properties that may be measured as ϕapp include a spin-lattice relaxation time (T1), a spin-spin relaxation time (T2), or a Carr-Purcell-Meiboom-Gill (CPMG) echo train decay.
In a liquid-bearing formation where the above described concerns with gas are minimal, ϕsh≅ϕdeep (e.g., within about 5% of each other) may indicate that ϕsh is representative of the formation. Accordingly, ϕsh, ϕdeep, or an average thereof may be used as ϕapp to calculate ϕ.
In a liquid-bearing formation where the above described concerns with gas are minimal, ϕsh>ϕdeep may indicate that drilling mud (also referred to as whole mud) are contributing to part of ϕsh, which may be due to vibration or radial movement of the NMR tool and wellbore rugosity. Accordingly, ϕdeep may be used as ϕapp to calculate ϕ.
In a liquid-bearing formation where the above described concerns with gas are minimal, ϕsh<ϕdeep may indicate pore bridging in the shallow sensitive volume, which is caused by solids from the drilling mud infiltrating the shallow sensitive volume. Accordingly, ϕdeep may be used as ϕapp to calculate ϕ.
In a gas-bearing formation, in addition to comparing ϕsh and ϕdeep, the presence, absence, or magnitude of the NMR signal corresponding to (1) the mud filtrate (referred to herein as a “characteristic mud filtrate NMR signal” or “NMRfiltrate”), (2) the whole mud (referred to herein as a “characteristic whole mud NMR signal” or “NMRmud”), or (3) both may be used to determine the extent to which the respective fluid has infiltrated into the formation. Such infiltration information may then be used to determine which of ϕsh or ϕdeep to use as ϕapp when calculating ϕ. Additionally, depending on the calculation, the wetting or non-wetting characteristics of the mud filtrate may be of interest. Accordingly, the NMR signal corresponding to the wetting or non-wetting mud filtrate are referred to herein as a “characteristic wetting mud filtrate NMR signal” (or “NMRwet”) and the “characteristic non-wetting mud filtrate NMR signal” (or “NMRnw”), respectively.
As used herein, “wetting fluids” refers to fluids that maintain good contact with a solid surface, specifically the subterranean formation, resulting from attractive intermolecular interactions between the fluid and the mineral molecules on the surface. Conversely, a “non-wetting fluid,” as used herein, refers to a fluid that minimizes contact with a solid surface, specifically the subterranean formation, when the fluid and the surface are brought together.
In a gas-bearing formation, ϕsh>ϕdeep may indicate that the mud filtrate has infiltrated the shallow sensitive volume more significantly than the deep sensitive volume. The NMRfiltrate may be used to determine the extent to which the fluid has infiltrated into the formation. For example, when T2 distribution is the NMR signal measured in the sensitive volumes, the presence of the characteristic mud filtrate NMR signal (T2,filtrate) in the T2,sh may indicate that mud filtrate has at least partially infiltrated the shallow sensitive volume.
In a gas-bearing formation when ϕsh>ϕdeep and the NMRmud is not observed in either the shallow or deep sensitive volumes, the whole drilling mud may not have infiltrated the sensitive volumes. Accordingly, the solids of the drilling mud would not be interfering with the NMR signal in the shallow sensitive volume, and ϕsh may be used as ϕapp to calculate ϕ.
In a gas-bearing formation for ϕsh>ϕdeep and the NMRmud is observed in the shallow sensitive volume and not in the deep sensitive volume, the shallow sensitive volume is contaminated with signal from the whole mud, which may be due to wellbore rugosity and/or movement/vibrations of the NMR tool. In such instances, the ϕapp may be computed from the sum of the true non-movable (bound water) porosity (ϕbw,true) and the true movable porosity (ϕmv,true), where the true movable and non-movable porosities may be taken from different sensitive volumes.
T2cutoff corresponds to the size boundary between small pores containing bound fluid and larger pores containing free fluids and may be used to determine the portions of the NMR signal used to calculate or approximate each of ϕmv,true and ϕbw,true.
Because the corresponding T2 of the NMRmud usually is below the T2cutoff, calculating the bound water from deeper sensitive volume measurement is more accurate (i.e., ϕbw,true≈ ϕbw,deep). The ϕbw,deep may be calculated by integrating the partial porosities corresponding to T2≤T2cutoff.
The NMR signal from the shallow sensitive volume may be used to calculate or approximate ϕmv,true. More specifically, ϕmv,true relates to the movable porosity in the shallow sensitive volume (ϕmv,sh) by Equation 3, wherein f is the fraction of the sensitive volume being contaminated with the whole mud. Further, the non-moveable porosity of the shallow sensitive volume (ϕbw,sh) can be represented by Equation 4, where ϕmud is the whole mud porosity. Then, given that ϕbw,true≈ ϕbw,deep, as described above, Equation 5 can be derived for calculating f. By combining Equations 4 and 5, Equation 6 is derived for calculating ϕapp.
Accordingly, ϕapp, which as described above is ϕbw,true+ϕmv,true, may be calculated according to Equation 7 for a gas-bearing formation when ϕsh>ϕdeep and the NMRmud is observed in the shallow sensitive volume and not in the deep sensitive volume.
In a gas-bearing formation, ϕsh<ϕdeep, where the long relaxation components of the NMR signal are lower and the short relaxation components in the NMR signal are greater for the shallow sensitive volume as compared to the deep sensitive volume, may indicate that the solids from the drilling fluid have infiltrated into the shallow sensitive volume because long relaxation components of an NMR response in porous media typically correspond to fluids in larger pores and short relaxation components of an NMR response in porous media typically correspond to fluids in smaller pores, and the solids infiltrated into the larger pores in the formation, causing the reduction of the number of the large-sized pores and increase of the number of the smaller pores. Accordingly, ϕdeep may be used as ϕapp to calculate ϕ.
In a gas-bearing formation, ϕsh≅ϕdeep may indicated either no fluid has infiltrated the two sensitive volumes or fluid has completely infiltrated the two sensitive volumes.
For ϕsh≅ϕdeep when the continuous fluid phase in the mud is the non-wetting phase such as oil and the NMRnw is present in both the shallow sensitive volume and the deep sensitive volume, the mud filtrate has infiltrated both sensitive volumes. The non-wetting phase of the drilling mud fluid is used to determine the presence or absence of infiltration when ϕsh≅ϕdeep because the relaxation time of which is not affected by the pore size. Accordingly, ϕsh, ϕdeep, or an average thereof may be used as ϕapp to calculate ϕ.
For ϕsh≅ϕdeep when the continuous fluid phase in the mud is the non-wetting phase such as oil and NMRnw is not detected in the sensitive volumes, neither of the sensitive volumes are infiltrated with a significant amount of mud filtrate, which may indicate little to no fluid infiltration.
In some instances of little to no fluid infiltration, the differential pressure between the drilling mud in the wellbore and the formation may be increased to force the mud filtrate into at least a portion of the shallow sensitive volume. Then, the measurement and analysis of ϕsh and ϕdeep may be undertaken again, such as during the wiping or tripping operation.
In some instances of little to no fluid infiltration, the above methods may be ambiguous for the gas porosity estimation. In such case, a magnetic field gradient-based diffusion analysis may be performed for determining Sw and Sg of Equation 1, which may then be used for calculating ϕ according to Equation 1.
For example, additional NMR measurements may be taken in a magnetic field gradient-based diffusion analysis. Exemplary NMR measurements may include at least two CPMG echo trains measurement having different set of G·TE parameter, where G is the logging tool's magnetic field gradient in the corresponding sensitive volume and TE is the interecho time for a CPMG echo train. The two echo trains may be acquired from the same or two different sensitive volumes. In the case that the at least two echo trains are acquired from the same sensitive volume, the two TE are varied. In the case that the at least two echo trains are acquired from different sensitive volumes having different G, it is equally valid to choose the combination Gsh·TEsh>Gdeep·TEdeep or the opposite. Practically it may be preferred to apply the larger TE at the sensitive volume where G is also larger to maximize contrast. For instance, if Gdeep<Gsh, the logging program is switched to acquire the two CPMGs for the two different sensitive volumes where the interecho times are chosen such that
such that sufficient contrast of gas signal in T2app,sh vs. T2app,deep is warranted.
In some instances, the additional NMR measurements may be further analyzed by a joint inversion of the two CPMG sequences described in Equation 8 where the result is displayed in 2-dimensional plot as illustrated in
By choosing (G·TE)sh at the deeper sensitive volume to be significantly larger than (G·TE)deep of the shallow sensitive volume, Equation 10 is derived, which is close to 1 for liquids and significantly greater than 1 only for gases because of the large D coefficient and when (G·TE)sh is chosen to be also sufficiently sensitive for gas
greater than above 5. For instance, if Gdeep=1 G/cm, TE=0.4 ms, and Gsh=2.5 G/cm, TE=3.5 ms, the gas, T2app and consequently ϕapp, changes from above 1 sec to about 0.2 sec at 100° C. and 4000 psi.
The deep sensitive volume echo train can be expressed by Equation 11, and the shallow sensitive volume echo train can be expressed by Equation 12
By jointly inverting these two echo trains, a set of ={Rj, T2app,sh,j} is obtained. is then be converted to the apparent relaxation time set ={T2app,shsh,j/Rj, T2app,sh,j}={T2app,deep,j, T2app,sh,j} where is displaced in 2D cross-plot illustrated in
Relative to determining the pore type of the formation (also referred to as pore typing), the NMR relaxation time of the wetting phase of the drilling mud fluid is proportional to the ratio of pore volume (V) to pore surface area (S) as described in Equation 100, where V/S is often considered the pore size, p is surface relaxation, and subscripts 1 and 2 represent T1 and T2, respectively.
In general, the bulk relaxation rate is much smaller than the second term on the right hand side of Equation 100. Therefore, NMR relaxation times are regarded as proportional to the pore size. Even if the bulk and surface relaxation terms (T1 or 2,bulk and ρ1 or 2) in Equation 13 are comparable, the pore structure information still can be derived because the bulk relaxation time is easily measured and accounted for. For those pores that are filled with an oil that does not wet the surface of the pore (a non-wetting fluid), the surface relaxation is very small such that the measured relaxation time is substantially close to the bulk relaxation time value. Therefore, NMR measurement of the non-wetting fluid is insensitive to the pore size information for pores that are saturated with the non-wetting fluid. For pore typing, the pore sizes may be determined from the pores saturated with a wetting fluid like water, which as described herein may be the mud filtrate that infiltrates the formation. Therefore, for the pore typing purpose, the significant wetting phase mud filtrate invasion is preferred and the pore typing is generally preferred to be derived from the shallow sensitive volume.
Due to the possible presence of solid infiltration (pore bridging), borehole rugosity or drilling induced lateral vibration causing whole mud contamination and/or fluid types in the NMR sensitive volume, the same ϕsh and ϕdeep described herein relative to porosity may be compared and applied accordingly to determine the pore type of the formation. A description of using ϕ for determining pore type is described in U.S. Application No. PCT/US2015/017790.
For pore typing, when ϕsh>ϕdeep and no NMRmud is observed in either sensitive volume, the T2,sh may be used for pore typing.
For pore typing, when ϕsh<ϕdeep and the long relaxation components of the NMR signal are lower and the short relaxation components in the NMR signal are greater for the shallow sensitive volume as compared to the deep sensitive volume, the T2,deep may be used for pore typing. Additionally, the porosity deficit (Δϕ=ϕdeep−ϕsh) may be used to report near-wellbore formation damage caused by solid particle infiltration.
For pore typing, when ϕsh≅ϕdeep, the T2,sh, T2,deep, or an average thereof may be used for pore typing. The preferred choice, however, is the one which corresponds to minimal G·TE.
For both the porosity and pore typing methods described herein, more than two sensitive volumes may be measured, analyzed, and compared. For example, three sensitive volumes (e.g., shallow, intermediate, and deep) may be measured and compared. Then, for example, ϕsh≅ϕint>ϕdeep may indicate that the mud filtrate has infiltrated the shallow and intermediate sensitive volumes. Accordingly, the ϕsh, ϕint, or an average thereof may be used for determining ϕ and the T2,sh, T2,int, or an average thereof may be used for pore typing.
Various NMR tool configurations can be used to measure the NMR properties of sensitive volumes at different depths into the formation.
Other known NMR tool configurations may be implemented to investigate the desired number of sensitive volumes at the desired radial distances from the tool. For example, field shaping may be used when the NMR tool includes a single NMR RF coil.
As illustrated, the drilling assembly 100 may include a drilling platform 102 that supports a derrick 104 having a traveling block 106 for raising and lowering a drill string 108. The drill string 108 may include, but is not limited to, drill pipe and coiled tubing, as generally known to those skilled in the art. A kelly 110 supports the drill string 108 as it is lowered through a rotary table 112. A drill bit 114 is attached to the distal end of the drill string 108 and is driven either by a downhole motor and/or via rotation of the drill string 108 from the well surface. As the bit 114 rotates, it creates a wellbore 116 that penetrates various subterranean formations 118. Along the drill string 108 logging while drilling (LWD) or measurement while drilling (MWD) equipment 136 is included.
In the present application, the LWD/MWD equipment 136 may be capable of NMR analysis of the subterranean formation 118 proximal to the wellbore 116. The LWD/MWD equipment 136 may transmit the measured data to a processor 138 at the surface wired or wirelessly. Transmission of the data is generally illustrated at line 140 to demonstrate communicable coupling between the processor 138 and the LWD/MWD equipment 136 and does not necessarily indicate the path to which communication is achieved.
A pump 120 (e.g., a mud pump) circulates drilling mud 122 through a feed pipe 124 and to the kelly 110, which conveys the drilling mud 122 downhole through the interior of the drill string 108 and through one or more orifices in the drill bit 114. The drilling mud 122 is then circulated back to the surface via an annulus 126 defined between the drill string 108 and the walls of the wellbore 116. At the surface, the recirculated or spent drilling mud 122 exits the annulus 126 and may be conveyed to one or more fluid processing unit(s) 128 via an interconnecting flow line 130. After passing through the fluid processing unit(s) 128, a “cleaned” drilling mud 122 is deposited into a nearby retention pit 132 (i.e., a mud pit). While illustrated as being arranged at the outlet of the wellbore 116 via the annulus 126, those skilled in the art will readily appreciate that the fluid processing unit(s) 128 may be arranged at any other location in the drilling assembly 100 to facilitate its proper function, without departing from the scope of the scope of the disclosure.
Chemicals, fluids, additives, and the like may be added to the drilling mud 122 via a mixing hopper 134 communicably coupled to or otherwise in fluid communication with the retention pit 132. The mixing hopper 134 may include, but is not limited to, mixers and related mixing equipment known to those skilled in the art. In other embodiments, however, the chemicals, fluids, additives, and the like may be added to the drilling mud 122 at any other location in the drilling assembly 100. In at least one embodiment, for example, there could be more than one retention pit 132, such as multiple retention pits 132 in series. Moreover, the retention pit 132 may be representative of one or more fluid storage facilities and/or units where the chemicals, fluids, additives, and the like may be stored, reconditioned, and/or regulated until added to the drilling mud 122.
The processor 138 may be a portion of computer hardware used to implement the various illustrative blocks, modules, elements, components, methods, and algorithms described herein. The processor 138 may be configured to execute one or more sequences of instructions, programming stances, or code stored on a non-transitory, computer-readable medium. The processor 138 can be, for example, a general purpose microprocessor, a microcontroller, a digital signal processor, an application specific integrated circuit, a field programmable gate array, a programmable logic device, a controller, a state machine, a gated logic, discrete hardware components, an artificial neural network, or any like suitable entity that can perform calculations or other manipulations of data. In some embodiments, computer hardware can further include elements such as, for example, a memory (e.g., random access memory (RAM), flash memory, read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM)), registers, hard disks, removable disks, CD-ROMS, DVDs, or any other like suitable storage device or medium.
Executable sequences described herein can be implemented with one or more sequences of code contained in a memory. In some embodiments, such code can be read into the memory from another machine-readable medium. Execution of the sequences of instructions contained in the memory can cause a processor 138 to perform the process steps described herein. One or more processors 138 in a multi-processing arrangement can also be employed to execute instruction sequences in the memory. In addition, hard-wired circuitry can be used in place of or in combination with software instructions to implement various embodiments described herein. Thus, the present embodiments are not limited to any specific combination of hardware and/or software.
As used herein, a machine-readable medium will refer to any medium that directly or indirectly provides instructions to the processor 138 for execution. A machine-readable medium can take on many forms including, for example, non-volatile media, volatile media, and transmission media. Non-volatile media can include, for example, optical and magnetic disks. Volatile media can include, for example, dynamic memory. Transmission media can include, for example, coaxial cables, wire, fiber optics, and wires that form a bus. Common forms of machine-readable media can include, for example, floppy disks, flexible disks, hard disks, magnetic tapes, other like magnetic media, CD-ROMs, DVDs, other like optical media, punch cards, paper tapes and like physical media with patterned holes, RAM, ROM, PROM, EPROM and flash EPROM.
The NMR relaxation data may be communicated to a logging facility 228 for storage, processing, and analysis. The logging facility 228 may be provided with electronic equipment for various types of signal processing including a control system or processor similar to processor 138 of
Embodiments disclosed herein include Embodiment A, Embodiment B, Embodiment C, and Embodiment D.
Embodiment A is a method that comprises: introducing a nuclear magnetic (NMR) tool into a wellbore penetrating a subterranean formation; measuring an apparent porosity of (1) a shallow sensitive volume (ϕsh) at a first radial distance from the NMR tool and (2) a deep sensitive volume (ϕdeep) at a second radial distance from the NMR tool, wherein the first radial distance is less than the second radial distance; and calculating a porosity (ϕ) of the portion of the subterranean formation subterranean formation based on a comparison of the ϕsh and the ϕdeep.
Embodiment B is a system that comprise: a nuclear magnetic resonance (NMR) tool; a memory communicably coupled to the NMR tool, wherein the memory stores software that, when executed, causes the processing unit to: measure via the NMR tool an apparent porosity of (1) a shallow sensitive volume (ϕsh) in a subterranean formation at a first radial distance from the NMR tool and (2) a deep sensitive volume (ϕdeep) in the subterranean formation at a second radial distance from the NMR tool, wherein the first radial distance is less than the second radial distance; and calculate a porosity (ϕ) of the portion of the subterranean formation based on a comparison of the ϕsh and the ϕdeep.
Embodiments A and B may optionally include one or more of the following: Element 1: wherein calculating the ϕ is according to according to C*ϕapp=(Sw*HIw+So*HIo+Sg*HIg)*ϕ, where an apparent porosity (ϕapp) is based on the comparison of the ϕsh and the ϕdeep, C is a calibration constant, HI is a hydrogen index, and S is a saturation and where subscripts w, o, and g are water, oil, and gas components, respectively, of a fluid in a sensitive volume being measured; Element 2: Element 1 and wherein the subterranean formation is a liquid-bearing subterranean formation, and wherein the comparison of the ϕsh and the ϕdeep is: (1) if ϕsh>ϕdeep, use the ϕdeep for the ϕapp; (2) if ϕsh<ϕdeep, use the ϕdeep for the ϕapp; and (3) if ϕsh≅ϕdeep, use the ϕsh, the ϕdeep, or an average thereof for the ϕapp; Element 3: Element 1 and wherein the subterranean formation is a gas-bearing subterranean formation, and wherein the drilling mud has a characteristic drilling mud NMR signal (NMRmud), a characteristic non-wetting mud filtrate NMR signal (NMRnw), or both, wherein the NMRmud and NMRnw are a spin-lattice relaxation (T1), a spin-spin relaxation (T2), or a Carr-Purcell-Meiboom-Gill (CPMG) echo train, and wherein the comparison of ϕsh and ϕdeep is: (1) if ϕsh>ϕdeep and the NMRmud is not detected in the shallow or deep sensitive volumes, use the ϕsh for the ϕapp; (2) if ϕsh>ϕdeep and the NMRmud is detected in the shallow sensitive volume but not detected in the deep sensitive volume, calculate ϕapp according to
where ϕbw,deep is a non-movable porosity of the deep sensitive volume, ϕmv,sh is a movable porosity of the shallow sensitive volume, ϕmud is a porosity of the drilling mud, and ϕbw,sh is a non-movable porosity of the shallow sensitive volume; (3) if ϕsh<ϕdeep and a long relaxation component in the ϕsh decreases and a short relaxation component in the ϕsh increases relative to the ϕdeep, use the ϕdeep for the ϕapp; (4) if ϕsh≅ϕdeep and the NMRnw is present in both the shallow and deep sensitive volumes, use the ϕsh, the ϕdeep, or an average thereof for the ϕapp; and (5) if ϕsh≅ϕdeep and the NMRnw is not present in both the shallow and deep sensitive volumes, either: (A) increase a differential pressure between the drilling mud in the wellbore and the gas-bearing subterranean formation to force the drilling mud into at least a portion of the shallow sensitive volume and perform again the comparison of the ϕsh and the ϕdeep, or (B) perform a magnetic field gradient-based diffusion analysis to determine the Sw and the Sg and use the Sw and the Sg for calculating the ϕ according to the C*ϕapp=(Sw*HIw+So*HIo+Sg*HIg)*ϕ; and Element 4: the method further comprising: drilling the wellbore, wherein the NMR tool is a logging while drilling (LWD) NMR tool. Exemplary combinations may include, but are not limited to, Element 1 in combination with Element 4; Elements 1 and 2 in combination with Element 4; and Elements 1 and 3 in combination with Element 4.
Embodiment C is a method that comprises: introducing a nuclear magnetic (NMR) tool into a wellbore penetrating a subterranean formation; measuring an apparent porosity of (1) a shallow sensitive volume (ϕsh) at a first radial distance from the NMR tool and (2) a deep sensitive volume (ϕdeep) at a second radial distance from the NMR tool, wherein the first radial distance is less than the second radial distance; and determining a pore type of the portion of the subterranean formation based on a comparison of the ϕsh and the ϕdeep.
Embodiment D is a system that comprises: a nuclear magnetic resonance (NMR) tool; a memory communicably coupled to the NMR tool, wherein the memory stores software that, when executed, causes the processing unit to: measure via the NMR tool an apparent porosity of (1) a shallow sensitive volume (ϕsh) at a first radial distance from the NMR tool and (2) a deep sensitive volume (ϕdeep) at a second radial distance from the NMR tool, wherein the first radial distance is less than the second radial distance; and determine a pore type of the portion of the subterranean formation based on a comparison of the ϕsh and the ϕdeep.
Embodiments C and D may optionally include one or more of the following: Element 5: wherein the drilling mud having a characteristic NMR property for each of the drilling mud (NMRmud), wherein the NMR property is a spin-lattice relaxation (T1), a spin-spin relaxation (T2), or a Carr-Purcell-Meiboom-Gill (CPMG) echo train; the method further comprising: measuring a spin-spin relaxation for the shallow sensitive volume (T2,sh) and a spin-spin relaxation for the deep sensitive volume (T2,deep); and wherein the comparison of ϕsh and ϕdeep is: (1) if ϕsh>ϕdeep and the NMRmud is not detected in the shallow or deep sensitive volumes, use the T2,sh to determine the pore type; (2) if ϕsh>ϕdeep and the NMRmud is detected in the shallow sensitive volume but not detected in the deep sensitive volume use the T2,deep to calculate the pore type; (3) if ϕsh<ϕdeep and a long relaxation component in ϕsh decreases and a short relaxation component in ϕsh increases relative to ϕdeep, use the T2,deep to determine the pore type; and (4) if ϕsh≅ϕdeep, use the T2,sh, the T2,deep, or an average thereof to determine the pore type; Element 6: Element 5 and wherein the T2,sh or the T2,deep are measured using the CPMG echo train, and wherein ϕsh≅ϕdeep and the T2,sh or the T2,deep with a lesser G·TE is used to determine the pore type, wherein G is a magnetic field gradient of the NMR tool for a corresponding sensitive volume and TE is an interecho time for the CPMG echo train; and Element 7: drilling the wellbore, wherein the NMR tool is a logging while drilling (LWD) NMR tool. Exemplary combinations may include, but are not limited to, Element 5 in combination with Element 7; and Elements 5 and 6 in combination with Element 7.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth, used in the present specification and associated claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the embodiments of the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claim, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
One or more illustrative embodiments incorporating the invention embodiments disclosed herein are presented herein. Not all features of a physical implementation are described or shown in this application for the sake of clarity. It is understood that in the development of a physical embodiment incorporating the embodiments of the present invention, numerous implementation-specific decisions must be made to achieve the developer's goals, such as compliance with system-related, business-related, government-related and other constraints, which vary by implementation and from time to time. While a developer's efforts might be time-consuming, such efforts would be, nevertheless, a routine undertaking for those of ordinary skill in the art and having benefit of this disclosure.
While compositions and methods are described herein in terms of “comprising” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope and spirit of the present invention. The invention illustratively disclosed herein suitably may be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/020804 | 3/4/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/151140 | 9/8/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6040696 | Ramakrishnan et al. | Mar 2000 | A |
20030001569 | Chen et al. | Jan 2003 | A1 |
20030006767 | Georgi et al. | Jan 2003 | A1 |
20040027122 | Heaton et al. | Feb 2004 | A1 |
20110129357 | Jennings et al. | Jun 2011 | A1 |
20130113479 | Chen et al. | May 2013 | A1 |
20150285944 | Herron | Oct 2015 | A1 |
20170205527 | Coman | Jul 2017 | A1 |
20170254919 | Coman | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2693917 | Jan 2009 | CA |
2007002678 | Jan 2007 | WO |
2008115969 | Sep 2008 | WO |
Entry |
---|
Canadian Office Action for Application No. 2,962,364 dated May 8, 2018. |
Clerke et al., “Application of Thomeer Hyperbolas to Decode the Pore Systems, Facies and Reservoir Properties of the Upper Jurassic Arab D Limestone, Ghawar Field, Saudi Arabia: A ‘Rosetta Stone’ Approach,” GeoArabia, 2008, pp. 113-160, vol. 13, No. 4, Gulf PetroLink, Bahrain. |
International Search Report and Written Opinion for PCT/US2016/020804, dated Nov. 30, 2016. |
Number | Date | Country | |
---|---|---|---|
20180347351 A1 | Dec 2018 | US |