1. Field of the Invention
The present invention relates generally to the field of optical systems and more particularly to a multiple field of view reflective telescope.
2. Description of Related Art
A reflective (catoptric) telescope with a wide field of view is commonly used today in space-based surveillance sensors. One of the first types of these reflective telescopes that were developed to address the multi-spectral large aperture requirements of space-based surveillance sensors is known as the three mirror anastigmatic optical system.
The main problem with the three mirror anastigmatic optical system 100 is that it is often too large to be effectively used in a space-based surveillance sensor. To address this problem, John M. Rodgers added a fourth mirror to the three mirror anastigmatic optical system 100 which enabled one to fold the optical design into a more compact arrangement.
The present invention includes a reflective telescope that has multiple field of views and can be packaged in a compact arrangement. In one embodiment, the reflective telescope includes two entrance pupils, a primary mirror, a secondary mirror, a tertiary mirror, a quaternary mirror, a moveable fold mirror and an external exit pupil. The fold mirror can be moved into a non-bypass position and out of the way such that the incident beams transverse the primary, secondary, tertiary and quaternary mirrors and are collimated, forming an external exit pupil. Or, the fold mirror can be moved into a bypass position where the incident beams bypass the primary, secondary, tertiary and quaternary mirrors and instead reflect off the fold mirror directly to the exit pupil. In an alternative embodiment, the tertiary mirror instead of the fold mirror can be moved into either the bypass position or the non-bypass position.
A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
Referring to
Referring to
As shown in
As shown in
Referring to
As shown in
Referring to
The reflective telescope 300 can also be configured to be operated (step 616) in the bypass mode where the fold mirror 314 is moved into a position such that the beams 501a and 501b bypass the mirrors 306, 308, 310 and 312 in the reflective telescope 300 (see
Referring again to
The reflective telescope 300 has a magnifying power that is determined by the ratio of the radii of curvature of the mirrors 306, 308, 310, 312 and 314 and their relative locations. Details about an exemplary 4× reflective telescope 300 is provided below with respect to TABLES 1–5 where the shapes of mirrors 306, 308, 310, 312 and 314 are concave, convex, flat, concave and flat respectively. TABLE 1 presents surface prescription data for a 4:1 image reduction embodiment of the reflective telescope 300. In TABLE 1, “decenter” (D(j)) defines a new coordinate system (displaced and/or rotated) which is used to define surfaces of the reflective telescope 300. The surfaces which follow a decenter are aligned on the local mechanical axis (z-axis) of the new coordinate system. And, this new mechanical axis remains in use until it is changed by another decenter. The order in which displacements and tilts are applied to a given surface is specified by using different decenter types which generate different new coordinate systems.
In TABLE 1, all dimensions are given in millimeters. And, positive radii of curvature means that the center of curvature is to the right and a negative radii of curvature means that the center of curvature is to the left. Moreover, the thickness indicates the axial distance to the next surface. Lastly in TABLE 1, A(i) indicates the aspheric mirror i defined by the following equation:
where the base curvature (CURV) and aspheric constants K, A, B, C, and D are given in TABLE 2.
In TABLE 3, aperture diameter is denoted by C-1 . . . C-4 and aperture data in terms of diameter, decenter system and rotation are also. In TABLE 4, decenter system data are given wherein tilt configurations are defined by angles alpha, beta, and gamma (degrees) so as to follow standard cartesian coordinate system nomenclature. The trailing code RETU means return to the coordinate system preceding the decentration and BEND means tilting the coordinate system following the reflection by an amount equal to the tilt of the surface in question. Lastly, TABLE 5 describes the changes in the diameter from the large entrance pupil 302 (small field of view) to the small entrance pupil 304 (larger field of view).
Referring to
From the foregoing, it can be readily appreciated by those skilled in the art that the reflective telescopes 300 and 300′ expand upon the traditional four mirror anastigmatic optical system 200 in at least two ways. First, the reflective telescopes 300 and 300′ allow two separate aperture/field of view combinations to transverse the same telescope configuration, thereby creating two separate afocal functions. Second, the reflective telescopes 300 and 300′ can be bypassed by the insertion of a fold mirror 314 between the primary and tertiary mirrors 306 and 310. When coupled with a multiple field of view imaging system 318 (for example, a two field of view refractive imager), then the telescope arrangement can create separate (4 or more) field of view functions. And in the alternative embodiment, the reflective telescope 300′ has a tertiary mirror 310 which is a two-position component. One position for the telescope arrangement and another position to by-pass the other three mirrors 308, 310 and 312 (see
Following are some additional features, advantages and uses of the present invention:
Although two embodiments of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the two embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3674334 | Offner | Jul 1972 | A |
4205902 | Shafer | Jun 1980 | A |
4226501 | Shafer | Oct 1980 | A |
4265510 | Cook | May 1981 | A |
4691999 | Wheeler | Sep 1987 | A |
4804258 | Kebo | Feb 1989 | A |
5142417 | Brunn | Aug 1992 | A |
5144476 | Kebo | Sep 1992 | A |
5173801 | Cook | Dec 1992 | A |
5309276 | Rodgers | May 1994 | A |
5331470 | Cook | Jul 1994 | A |
5477395 | Cook | Dec 1995 | A |
5627675 | Davis et al. | May 1997 | A |
5640008 | Bosch et al. | Jun 1997 | A |
5831762 | Baker et al. | Nov 1998 | A |
5847879 | Cook | Dec 1998 | A |
5953155 | Eckel et al. | Sep 1999 | A |
6084727 | Cook | Jul 2000 | A |
6109756 | Takahashi | Aug 2000 | A |
6120156 | Akiyama | Sep 2000 | A |
6268963 | Akiyama | Jul 2001 | B1 |
6406156 | Lin | Jun 2002 | B1 |
6441957 | Teuchert et al. | Aug 2002 | B1 |