The field of the invention is dispensers for chemical concentrates, and particularly the dispensing of chemical concentrates at multiple flow rates and different concentrations.
Dispensers of the type concerned with in this invention are disclosed in U.S. Pat. Nos. 5,320,288 and 5,372,310. While the spraying apparatus disclosed in these patents can control the flow of carrier fluid and chemical product, it cannot do so in a precise and controlled manner.
U.S. Pat. No. 2,719,704 discloses a valve element 31 with eductor passages 41 and 43. These interconnect with inlet openings 58 and 61.
U.S. Pat. Nos. 2,991,939 and 4,901,923 disclose eductor type dispensers having rotatable discs with various sized apertures for controlling the amount of concentrate being drawn into the water flowing through a nozzle.
A dispenser which dispenses chemical concentrate should have the capability of dispensing the concentration at a low rate such as in the instance where a bottle is to be filled and at a high rate where a bucket is to be filled. In the instance of a bucket fill, it is desirable if both a low and high concentration of chemical concentrate can be provided.
The prior art provides either a rotatable eductor with concentrate flow passages, eductor type dispensers having rotatable discs with various sized apertures, or a sliding open-venturi. It does not provide a dispensing apparatus with both sliding and rotating eductors as well as valving so as to afford different concentrations of chemical concentrate at different flow rates.
In application Ser. No. 09/956,294 filed Sep. 19, 2001, a dispenser for dispensing different concentrations of chemical concentrate into a stream of water from a concentrate container at different flow rates is disclosed. The teachings of this application are incorporated by reference. The disclosed dispenser includes a body member having a through bore with an inlet end adapted to be connected to a source of pressurized water at one end and an outlet at the opposite end connected to the inlet housing. A valve member is slideably positioned in the through bore of the body member. An eductor is slideably and rotatably received in the body member. The eductor is in contact with the valve member and in fluid communication with a source of chemical concentrate. A trigger member is connected to the body member and eductor to cause slideable movement of the eductor. The eductor and valve member are constructed and arranged to provide control of both different concentrations of chemical concentrate and different flow rates of water and chemical concentrate.
The present invention provides an improvement of the dispenser disclosed in Ser. No. 09/956,294 by providing an improved functionality of the previously disclosed dispenser by preventing rotation of the concentration selection members during operation of the device. This is important to the quality of the delivered diluted product, namely to the precise ratio of the concentrate to the carrier stream and the resultant mixture concentration. The previously disclosed design allowed the concentrate selection device to be rotated during the “ON” condition. During this rotation of the concentrate selection members, the flow of concentrated product to the mixing chamber is blocked and then reopened at a new position corresponding with a different product flow rate. If this is allowed to occur during the “ON” condition, the carrier stream/water flowing the diluted concentration of the product in the container to which dispensing is occurring will be incorrect and, as is the case with many such concentrated products, will not function as intended.
To provide the previously referred to anti-rotation when “ON” feature, an interlocking guide feature is provided to the dispenser body component and a corresponding recess to accept the guide feature in the eductor component, such that when the eductor translates, as powered by depressing the dispenser trigger, the guide engages the recess and remains engaged during the travel to either the low flow or the high flow condition. When engaged, the guide feature prevents rotation of the eductor assembly but allows linear translation of the eductor assembly as powered by the user through use of the trigger component and as powered by the internal compression spring for returning the eductor assembly to the “OFF” condition. The guide feature and recess are disengaged in the “OFF” condition and the eductor assembly is free to rotate for selection of dilution concentration by the user.
The present invention provides in one embodiment a dispenser for dispensing different concentrations of chemical concentrate into a stream of water from a concentrate container at different flow rates. The dispenser includes a body member having a through bore with an inlet end adapted to be connected to a source of pressurized water at one end and an outlet at the opposite end. A product and a vent passage communicate with the through bore. An eductor is slideably and rotatably received in the through bore. A guide member is positioned in the through bore and a stop member is located on the eductor. There is at least one passage in the stop member for passing over the guide member. There is also at least one stop surface for engaging the guide member. The guide member, the stop member and the stop surface are constructed and arranged to stop axial movement of the eductor, yet allow axial movement of the eductor, yet allow axial movement when the passage is aligned with the guide member.
In one aspect, the dispenser includes first and second parts, only one of which is rotatable with the first part of the eductor being rotatable and extends from the body member.
In yet another aspect, there is a trigger member connected to the body member and eductor to cause slideable movement of the eductor and further includes a latching mechanism with a living hinge.
In another embodiment, the present invention provides a dispenser for dispensing different concentrations of chemical concentrate into a stream of water from a concentrate container at different flow rates comprising;
In another aspect, the dispenser includes a valve member, the valve member positioned in the through bore of the body member and including first and second valve members operatively associated with the eductor, the valve members constructed and arranged so that when the eductor is in the third phase, the first valve member is moved in a linear slideable manner with respect to the second valve member, a first flow rate is effected and when the eductor is in a second phase, the second valve member is moved in a linear slideable manner with respect to the body portion with the first valve member moved linearly with respect to the second valve member, a second increased flow rate is established.
A general object of the invention is to provide a dispensing apparatus which can effect a mixing of chemical concentrate into a stream of water at different concentrations and dispense the mixed concentrate at controlled flow rates.
Yet another object is a dispenser of the foregoing type which has a lock-in feature during operation.
Referring to
Referring to
An annular groove 36 is provided in the eductor part 24 and accommodates a head portion 38 of the trigger 40 with flange portions such as shown at 42 on the trigger 40 having shafts (not shown) for extending into bores such as 44. A latch member 46 extends upwardly from the member 12 for fitment through the passage 48 of the trigger 40.
As shown in
Referring also to
As seen in
Referring to
As seen in
Referring back to
Operation
A better understanding of the dispenser will be had by a description of its operation. Referring to
Referring now to
This low flow condition is utilized to fill a bottle which is shown by the icon 129 in
In order to initiate a high flow condition, the trigger 40 is moved further toward body member 12. This is shown in
This high flow condition is utilized to fill a bucket which is shown by the icon 131 in
During the previously described flow conditions through the dispenser 10 such as when in the high or low flow condition, and as previously stated, the concentrate will be drawn upwardly from the container 16 such as through the dip tube 19 and passage 21. However, as noted previously in
The orientation of the various passages 90-94 with the opening 23a in seal 23 is facilitated by the indexing shown in
The mixed solution will then exit through nozzle 20 down through the tube 15 positioned in the spout 22. Tube 15 in this instance is flexible so as to allow the eductor 24 to move inwardly and outwardly from the body member 12. With product passing through tube 15 and spout 22, this is the position which is utilized when filling a bucket or a bottle. As previously described a low flow condition would be utilized for filling a bottle while the high flow condition would be utilized to fill a large vessel such as a bucket. The spout 22 provides for the dispenser to be hung on a bucket. If desired, a hose (not shown) can be connected to spout 22 for filling purposes such as a “scrubber washer” or when the dispenser is mounted to a wall. Dispenser 10 can easily be converted to a spray unit by the replacement of the nozzle 20 and the attachment of a conventional spray head. This is shown in
In
In
As seen in
As illustrated in the Standard Configuration Spray line 2, and as stated previously, the dispenser can be equipped with a spray head as shown at 135 in
While a six position function for the dispenser 10 is indicated in the illustration of
It will thus be seen that there is now provided a very versatile dispenser which can be utilized in not only a high and a low flow condition but also can be adjusted to vary the concentration of mixed solution. The dispenser 10 is produced economically so that once it is captively connected to a container, it is disposable and/or recyclable. As indicated in the drawings, most of the components are composed of a molded plastic with polypropylene being preferred. This affords a living hinge feature for latch member 46 in trigger passage 48.
It win also be seen that a good hand fed is provided by dispenser 10. This is accomplished by placement of the handle 17 beneath body member 12 and outwardly from trigger 40 to allow placement of a thumb on trigger 40.
An important feature of dispenser 10 is the orientation of the guide member 74 in the notches 95-98. This prevents rotation of eductor part 24 during a flow condition and affords delivery of accurate concentrations of chemical product. It should be further stated that selector ring 86 affords a stop surface for contact with guide member 74 when guide member is not orientated with notches 95-98. This prevents eductor 11 from moving inwardly into body member. Indexing ring 85 provides a second stop surface when notches 95-98 move over guide member and guide member contacts indexing ring 85 when the eductor is moved into body member 12.
The dispenser 10 has been preferably described in conjunction with a latching feature for the trigger 40. It is obvious that this is not an essential feature that can be eliminated. Neither is it essential that a back flow preventer be employed in the unit itself This could be accomplished upstream in a supply line. Further, while the spout 22 offers the advantage of a hose attachment such 12 as with the barbs 100, this could be eliminated although it does further offer the advantage of a bucket attachment. Neither is it essential that the container connector 14 provides a captive use of the dispenser with the container. The dispenser 10 could be utilized with a refillable container. In some instances, it may be desirable to limit the dispenser for flow through a single passageway. This could be accomplished by placement of a pin through body member 12 and a groove in eductor part 24 or may be accomplished by an additional part called the lock out clip. This clip, when installed, makes it difficult to turn the selector portion of the lower eductor. All such and other modifications within the spirit of the invention are meant to be within a scope as defined by the appended claims.
This application is a Continuation of U.S. Ser. No. 12/111,650, filed Apr. 29, 2008, now U.S. Pat. No. 7,850,095, issued on Dec. 14, 2010; which is a Continuation of U.S. Ser. No. 11/206,427, filed Aug. 18, 2005, now U.S. Pat. No. 7,370,813, issued May 13, 2008; which is a Continuation of U.S. Ser. No. 10/658,496, filed Sep. 9, 2003, now U.S. Pat. No. 6,988,675, issued Jan. 24, 2006; which is a Continuation-In-Part of U.S. Ser. No. 09/956,294, filed Sep. 19, 2001, now U.S. Pat. No. 6,708,901, issued Mar. 23, 2004; which claims priority to U.S. Provisional application No. 60/261,613, filed Jan. 12, 2001.
Number | Name | Date | Kind |
---|---|---|---|
1202425 | Randall | Oct 1916 | A |
1721726 | Boe | Jul 1929 | A |
2389134 | Brown | Nov 1945 | A |
2454929 | Kempton | Nov 1948 | A |
2719704 | Anderson et al. | Oct 1955 | A |
2781061 | Frey | Feb 1957 | A |
2788244 | Gilmour | Apr 1957 | A |
2991939 | Packard | Jul 1961 | A |
3090564 | Gilmour | May 1963 | A |
3145735 | Osrow et al. | Aug 1964 | A |
3228613 | Goldstein | Jan 1966 | A |
3282227 | Nielsen | Nov 1966 | A |
3357598 | Kraft | Dec 1967 | A |
3473481 | Brane | Oct 1969 | A |
3764074 | James | Oct 1973 | A |
3776468 | Davenport | Dec 1973 | A |
3847178 | Keppel | Nov 1974 | A |
3862640 | Hechler | Jan 1975 | A |
3863843 | Hechler | Feb 1975 | A |
3938550 | Hechler | Feb 1976 | A |
3964689 | Horvath, Jr. | Jun 1976 | A |
4010768 | Hechler | Mar 1977 | A |
4014363 | Hechler | Mar 1977 | A |
4277030 | Hechler | Jul 1981 | A |
4382552 | Lubsen et al. | May 1983 | A |
4422833 | Miller et al. | Dec 1983 | A |
4475689 | Hauger et al. | Oct 1984 | A |
4508272 | Thompson | Apr 1985 | A |
4901923 | McRoskey et al. | Feb 1990 | A |
5007588 | Chow et al. | Apr 1991 | A |
5297733 | Burks et al. | Mar 1994 | A |
5320288 | Ketcham, Jr. | Jun 1994 | A |
5351875 | Rhine et al. | Oct 1994 | A |
5372310 | Ketcham | Dec 1994 | A |
5423228 | Budd et al. | Jun 1995 | A |
5529244 | Horvath, Jr. et al. | Jun 1996 | A |
5544810 | Horvath, Jr. et al. | Aug 1996 | A |
5765605 | Waymire et al. | Jun 1998 | A |
5769322 | Smith | Jun 1998 | A |
5927338 | Boticki et al. | Jul 1999 | A |
5996907 | Toetschinger et al. | Dec 1999 | A |
6079595 | Meyer et al. | Jun 2000 | A |
6158673 | Toetschinger et al. | Dec 2000 | A |
6161779 | Oyler et al. | Dec 2000 | A |
6283330 | Gillespie et al. | Sep 2001 | B1 |
6363977 | Smeller et al. | Apr 2002 | B1 |
6425534 | Ketcham et al. | Jul 2002 | B2 |
6655401 | Sand et al. | Dec 2003 | B2 |
6708901 | Hubmann et al. | Mar 2004 | B2 |
6749133 | Ketcham et al. | Jun 2004 | B1 |
6765605 | Inoue | Jul 2004 | B1 |
6772914 | Hubmann et al. | Aug 2004 | B2 |
6988675 | Hubmann et al. | Jan 2006 | B2 |
7025289 | Hubmann et al. | Apr 2006 | B2 |
7341206 | Hubmann et al. | Mar 2008 | B2 |
7370813 | Hubmann et al. | May 2008 | B2 |
7850095 | Hubmann et al. | Dec 2010 | B2 |
8016212 | Hubmann et al. | Sep 2011 | B2 |
20020008161 | Ketcham et al. | Jan 2002 | A1 |
20020092925 | Hubmann et al. | Jul 2002 | A1 |
20040155119 | Hubmann et al. | Aug 2004 | A1 |
20080179420 | Hubmann et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1645335 | Apr 2006 | EP |
1353756 | Jun 2006 | EP |
1716930 | Nov 2006 | EP |
1675689 | Jan 2007 | EP |
20030200174 | Jul 2003 | JP |
2003200174 | Jul 2003 | JP |
20040227309 | Aug 2004 | JP |
20030014739 | Aug 2004 | JP |
515754 | Jan 2003 | TW |
0236267 | May 2002 | WO |
02055213 | Jul 2002 | WO |
2005023432 | Mar 2005 | WO |
20050023432 | Mar 2005 | WO |
Entry |
---|
Gilmour Group, “Spray Doc,” catalog (1990) 6 pages, PA, USA. |
A U.S. patent application entitled Spraying Apparatus with Insert. It is believed that this application was filed in the USPTO some time after Aug. 11, 2000. |
A U.S. patent application entitled Spraying Apparatus Having a Sealing Member with Apertures. This application was filed in the USPTO Feb. 4, 1999, designated as U.S. Appl. No. 09/244,392 naming Ketcham as inventor. |
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 13/619,777, dated Sep. 12, 2013 (5 pages). |
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 13/619,777, dated May 13, 2013 (6 pages). |
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 13/619,777, dated May 28, 2013 (6 pages). |
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 13/619,800, dated Jan. 30, 2014 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20110095047 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
60261613 | Jan 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12111650 | Apr 2008 | US |
Child | 12966958 | US | |
Parent | 11206427 | Aug 2005 | US |
Child | 12111650 | US | |
Parent | 10658496 | Sep 2003 | US |
Child | 11206427 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09956294 | Sep 2001 | US |
Child | 10658496 | US |