The herein described invention relates generally to hydraulic drives and, more particularly, to a versatile and efficient hydraulic drive employing multiple gear motors in a unique configuration.
Utility vehicles for agriculture, forestry or construction, as well as winches and cranes, are often driven by one or more hydraulic motors via a speed reduction gear or a step-down gear unit. Such vehicles typically include one or more pumps for supplying pressurized hydraulic fluid to one or more hydraulic gear motors. Many gear motors, because of the geometry of the gear teeth, inherently produce a small torque pulse for each gear tooth as the gears rotate, and this in turn produces torque pulses in the drive output of the motor. Such torque pulses are commonly referred to as torque ripple. The torque ripple can produce undesirable noise and vibration.
The present invention provides a hydraulic drive employing multiple hydraulic motors, especially gear motors, in a manner that provides one or more of several advantages heretofore not attainable by conventional hydraulic drives. Among these advantages is the ability to reduce or essentially eliminate torque ripple, even while using conventional and proven hydraulic motor design technology as opposed to more costly ripple reducing technologies. Another advantage is that features of the invention may be packaged in a compact housing that may also allow for stacking of multiple hydraulic drives to increase torque loads and increase volumetric output.
More particularly, the invention provides a hydraulic drive comprising multiple gear motors each having a gear motor output shaft, and a common gear engaged by the output shafts of the multiple gear motors. The common gear may be a ring gear that drives an output shaft of the hydraulic drive. The multiple gear motors preferably are housed within a housing, and the output shaft of the hydraulic drive may extend from either end or both ends of the housing.
In a preferred embodiment, the multiple gear motors include respective meshed pairs of gears disposed in a common housing. One of the gears of each pair may have an output shaft provided with a pinion gear for engaging the common gear. The phase relationship between the pinion gear and corresponding gear of each gear set may be varied from gear set to gear set to provide for cancellation of torque ripple.
A controller may be provided for controlling operation of the gear motors to control output speed and torque of the hydraulic drive.
According to another aspect of the invention, a hydraulic drive comprises multiple hydraulic motors each having an output shaft, and a common gear engaged by the output shafts of the multiple hydraulic motors. Each hydraulic motor has a characteristic periodic torque ripple out of phase with the characteristic periodic torque ripple of at least one other hydraulic motor for cancelling torque ripple and thereby reducing the torque ripple at the common gear.
The hydraulic motors may be gear motors, although other types of hydraulic motors exhibit periodic torque ripple such as hydraulic piston motors. The common gear may drive an output shaft of the hydraulic drive, and the multiple hydraulic motors may be housed within a housing with an output shaft of the hydraulic drive extending from at least one end of the housing.
The multiple hydraulic motors may each have an output shaft provided with a pinion gear for engaging the common gear, and the phase relationship between the pinion gear and hydraulic motor varies from hydraulic motor to hydraulic motor.
The hydraulic motor has particular application in a vehicle, such as a skid-steer utility vehicle, for driving the wheels (including track wheels if a track is employed) of the vehicle for propelling the vehicle.
Further features of the invention will become apparent from the following detailed description when considered in conjunction with the drawings.
In the annexed drawings:
Referring now in detail to the drawings and initially to
In
The pinions 33 of the gear sets 25 engage the ring gear 35 at circumferentially spaced apart locations that may be equally spaced apart as shown. The pinions and gear sets may be identical, although preferably the angular position of the pinion teeth relative to the teeth on the corresponding gear is varied among the gear sets. This is done so that each gear set is out of phase with at least one other gear set. The phasing may be selected such that the torque pulses (ripple) diametrically opposed gear sets are 180 degrees out of phase such that the pulses tend to cancel one another. In addition, the phasing of diametrically opposed pairs of gear sets may have the torque pulses out of phase with the torque pulses of other pairs of gear sets. As will be appreciated by those skilled in the art, the phasing of the gear sets, as well as the number of gear sets, may be varied as desired.
By offsetting the gear teeth of the gear motor pinion 33 of opposing gear sets and/or all of the gear motors, torque ripple may be significantly decreased or even cancelled.
The hydraulic drive 15 provides multiple speed capabilities. For high speed operation, one, two or more gear motors 26, but usually less than all gear motors, can be operated to drive the ring gear 35 (or other common output device). When more torque is needed at medium and/or low speeds, more gear motors can be operated. That is, low speed high torque output is provided by engaging all gear motors (four gear motors in the illustrated embodiment). As speed of the output shaft increases, the number of motors driving the ring gear can be decreased to allow for increased speed with decreased torque requirements.
Preferably, opposing sets of gear motors are operated at any given time, and preferably the gear motors of the opposed sets are out of phase as above discussed so as to eliminate or cancel torque ripple. A controller 40 including automatic pressure compensation control may be provided to allow for automatic upshifting and downshifting of the gear motors. The hydraulic drive may include valving between motors or a clutching mechanism, as depicted at 42 in
The torque ripple cancelling feature may be applied to other types of hydraulic motors, such as radial piston motors that exhibit a characteristic periodic torque ripple. The output efficiency of a hydraulic drive using gear motors, however, will be higher at the low end of the speed range and higher efficiency is gained at the low and high speed ranges, and thus gear motors are preferred.
While a ring gear is shown in the illustrated embodiment, other arrangements may also be utilized. For instance, the ring gear may be replaced by an internal gear or a planetary drive configuration may be used in which the gear motors interact with the output shaft 22 via a sun gear.
If desired, each gear set may additionally include an idler gear to prevent the deflection or bending moment of the gear motor drive shafts.
As can now be appreciated by those skilled in the art, the hydraulic drive can use conventional and proven gear design technology in a unique manner that affords additional functionality. The hydraulic drive can be configured, such as shown, to allow for stacking of multiple hydraulic drives to increase torque loads and increase volumetric output.
Provision also may be made, via suitable porting in the housing, for lubricating the gear motors even when not engaged to maintain lubrication of the “off” gear motors and further to prevent overheating, particularly during high speed operation when less than all of the gear motors are “on”.
The multi-gear motor drive may be arranged in a compact package to reduce radial dimensions.
Referring now to
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This application claims the benefit of U.S. Provisional Application No. 60/812,280 filed Jun. 9, 2006, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2463349 | Baner | Mar 1949 | A |
3766995 | Young et al. | Oct 1973 | A |
4177693 | Ivanko et al. | Dec 1979 | A |
4274302 | Herscovici | Jun 1981 | A |
4380255 | Fromm | Apr 1983 | A |
4584903 | Hirt et al. | Apr 1986 | A |
4685354 | McCabria | Aug 1987 | A |
4797060 | Kishi et al. | Jan 1989 | A |
4803390 | Bertram et al. | Feb 1989 | A |
4829850 | Soloy | May 1989 | A |
4858490 | Grant | Aug 1989 | A |
4928552 | Gabriele | May 1990 | A |
5387818 | Leibowitz | Feb 1995 | A |
5463914 | Tyan | Nov 1995 | A |
5518461 | Pfordt | May 1996 | A |
5954144 | Thames | Sep 1999 | A |
6030196 | Coeuret | Feb 2000 | A |
6786289 | Batemen et al. | Sep 2004 | B2 |
6889578 | Spaziani et al. | May 2005 | B2 |
7011275 | Redfern | Mar 2006 | B2 |
7044877 | Ai | May 2006 | B2 |
7270030 | Belloso | Sep 2007 | B1 |
7326141 | Lyons et al. | Feb 2008 | B2 |
20040251862 | Imai | Dec 2004 | A1 |
20060009323 | Zhang | Jan 2006 | A1 |
20050107199 | Kim | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080113838 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60812280 | Jun 2006 | US |