The present invention concerns a multiple-hearth furnace.
A multiple-hearth furnace comprises a furnace wall delimiting a cylindrical space with a vertical axis. A plurality of soles positioned one above the other delimit the hearths of the furnace within this space. In each hearth, rabble arms rotated by means of a central shaft coaxial with the vertical axis of the furnace are provided. These rabble arms are equipped with sole scrapers which turn over the material under treatment on the sole and displace it on a first type of sole toward the periphery and on a second type of sole toward the center of the sole. The first type of sole is provided with peripheral drop holes through which the material under treatment falls onto a sole of the second type in the stage below. The second type of sole is provided with a central drop hole through which the material under treatment falls onto a sole of the first type in the stage below.
It is also a known practice to equip at least one rabble arm in each stage of the furnace with a wall scraper. The function of this wall scraper is to recover the material that accumulates in the immediate vicinity of the furnace wall so as to push it into the peripheral drop holes on the first type of sole and, on the second type of sole, to redirect it into the flow of material being displaced toward the center of the furnace. When the furnace starts, there is a radial clearance between the wall scraper and the inner surface of the furnace wall. However, as the furnace operates, this functional clearance is quickly clogged with material under treatment. A layer of material forms on the inner surface of the wall which the wall scraper progressively compacts by a “pasting” process, eventually forming a very hard crust that adheres to the inner surface of the wall. The wall scraper rubs against this peripheral crust, generating a by no means insignificant additional braking moment on the rabble arm. It should be noted that the situation is aggravated by the fact that hardness and resistance of the peripheral crust are not usually uniform. The modulus of the braking force exerted on the wall scraper thus varies irregularly, causing jerking of the rabble arm. This results in dynamic stresses which generate fatigue effects that are the source of numerous rabble arm fractures.
The object of the present invention is to propose a multiple-hearth furnace which reduces the abovementioned effects. According to the invention, this objective is achieved by a multiple-hearth furnace according to Claim 1.
A multiple-hearth furnace according to the present invention comprises, in a manner that is known per se, a furnace wall delimiting a cylindrical space with a vertical axis, a plurality of soles which delimit the hearths within this cylindrical space and at least one rabble arm with a wall scraper. This wall scraper is associated with one of the soles, where it is rotated about the vertical axis of the furnace. During the rotation of this rabble arm about its vertical axis, its wall scraper defines a scraped zone on the inner surface of the furnace wall. According to the present invention, the furnace wall comprises a plurality of wall cavities which form a succession of access openings into the zone scraped by the wall scraper. It will be appreciated that these wall cavities greatly reduce the risk of formation of a crust of hardened material adhering to the inner surface of the furnace wall. Through these access openings in the scraped zone, the wall cavities become filled with material, but a “pasting” compaction effect, which is the origin of the formation of a hardened crust adhering to the inner surface of the furnace wall, scarcely occurs. The material that accumulates in the wall cavities remains relatively soft and results in substantially jerk-free braking.
The furnace wall generally comprises an external shell and a refractory inner liner. The wall cavities mentioned above are made in the refractory liner, and in a preferred embodiment, the shell is equipped with cleaning openings through which the wall cavities are accessible. It is thus easy to obtain access to the wall cavities in order to push back the material that has accumulated in the wall cavities onto the sole. It is even possible to clean the sole through these cleaning openings over a certain radial depth which depends on the tools employed. With tools having their ends bent back by a certain angle, it is also possible to clean the inner surface of the refractory liner through the cleaning openings.
For reasons of stability, leak-tightness and thermal insulation of the furnace wall, the cleaning opening associated with a wall cavity will be substantially smaller in cross section than the access opening formed by the wall cavity in the scraped zone. For the same reasons, the cross section of the wall cavity preferably diminishes progressively in the direction of the cleaning opening.
Preferably, the circumferential extent of the residual surface between two successive access openings is smaller than the circumferential extent of such an access opening. Ideally, two successive access openings would be separated by a sharp edge, but for reasons of wear and stability, a residual surface will generally be provided between two access openings. The circumferential extent of this residual surface is preferably smaller than 50% of the circumferential extent of one of the access openings that it separates. In the vertical direction, the access openings extend slightly beyond the upper limit of the scraped zone.
The wall cavities can easily be cleaned through the cleaning openings in the external shell by workers equipped with special tools. However, it is also possible to envisage equipping one or more or even all the wall cavities with a fluid injection device so as to be able to eject the material accumulated in the wall cavity onto the sole by means of the liquid injected. Alternatively, one or more or even all of the wall cavities can be equipped with a mechanical pusher, so as to be able to push the material accumulated in a wall cavity onto the sole.
Each of the cleaning openings can also advantageously have associated with it a plugging device comprising a steel blind flange fixed to a companion flange of the external shell mentioned above and a central core made of refractory material that penetrates into the cleaning opening.
Further specific features and features of the invention will become apparent from the detailed description of some advantageous embodiments which are described below, by way of illustration, with reference to the attached drawings. These show the following:
The soles of the multiple-hearth furnace are alternately of the first type shown in
According to the present invention, the furnace wall 10 comprises a plurality of wall cavities 54 which form a succession of access openings 56 in the scraped zone 52. It will be appreciated that these wall cavities 54, which are formed in the refractory inner liner 48, greatly reduce the risk of formation of a crust of hardened material adhering to the inner surface 42 of the furnace wall 10 and offering resistance to the passage of the wall scraper 32. Through these access openings 56 in the scraped zone 52, the wall cavities 54 in the wall 10 become progressively filled with material. However, the “pasting” compaction effect, which is the origin of the formation of a peripheral crust of very hard material adhering to the inner surface of the furnace wall, scarcely occurs. The material that accumulates in the wall cavities 54 is scarcely compacted by the passage of the wall scraper 32. It remains relatively soft and thus results in substantially jerk-free braking.
Cleaning openings 58 in the external shell 46 provide access to the wall cavities 54. Through these cleaning openings 58, it is easy to introduce from the outside bars, lances or other cleaning devices in order to push the material accumulated in the wall cavities 54 back onto the sole 22 or even to clean the sole over a certain radial depth which depends on the tools employed. With tools with their tips bent back through a certain angle, it is also possible through the cleaning openings 58 to clean the inner surface 42 of the refractory liner around an access opening 56.
For reasons of stability, leak-tightness and thermal insulation of the furnace wall 10, the cleaning opening associated with a wall cavity 54 will be substantially smaller in cross section than the access opening 56 formed by this wall cavity in the scraped zone 52. The cross section of the wall cavity 54 thus diminishes gradually in the direction of the cleaning opening. In the preferred embodiment shown in the drawings, the wall cavities 54 are, for example, pyramidal in shape, and the cleaning openings are cylindrical in shape and are formed on the apex axis of the pyramid (see
In
The way in which the access openings 56, 56′ are arranged in the inner surface of the refractory liner will be better understood by reference to
Number | Date | Country | Kind |
---|---|---|---|
91080 | Jun 2004 | LU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/051628 | 4/13/2005 | WO | 00 | 3/1/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/119153 | 12/15/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2317941 | Rowen | Apr 1943 | A |
2471882 | Martin | May 1949 | A |
2488115 | Benos | Nov 1949 | A |
2676006 | Martin | Apr 1954 | A |
2969960 | Gurley, Jr. | Jan 1961 | A |
3175809 | Grimes | Mar 1965 | A |
3361419 | Siemssen | Jan 1968 | A |
3430928 | Smith | Mar 1969 | A |
3874644 | Grimes | Apr 1975 | A |
5720855 | Baird | Feb 1998 | A |
5752452 | Leger | May 1998 | A |
6832564 | Hutmacher et al. | Dec 2004 | B2 |
Number | Date | Country |
---|---|---|
393 387 | Jun 1933 | GB |
1272378 | Apr 1972 | GB |
2100701 | Dec 1997 | RU |
WO 9610718 | Apr 1996 | WO |
WO 03002925 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070209563 A1 | Sep 2007 | US |