Multiple IMSI numbers

Information

  • Patent Grant
  • 8326286
  • Patent Number
    8,326,286
  • Date Filed
    Monday, May 23, 2011
    13 years ago
  • Date Issued
    Tuesday, December 4, 2012
    11 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Patel; Ajit
    Agents
    • Toler Law Group, PC
Abstract
A method includes receiving communication data that is directed to a first Mobile Directory Number (MDN) that is associated with a mobile communication device of a mobile subscriber. The first MDN is a local telephone number in a first country. The method includes determining a location of the mobile communication device. A first International Mobile Subscriber Identity (IMSI) number is active when the mobile communication device is located in the first country, and a second IMSI number is active when the mobile communication device is located in a second country. The method includes routing the communication data to the mobile communication device based on the location of the mobile communication device.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to International Mobile Subscriber Identity (IMSI) numbers.


BACKGROUND

An International Mobile Subscriber Identity (IMSI) number enables international roaming of cellular phones. Each IMSI number includes a first set of digits associated with a mobile country code, a second set of digits associated with a mobile network code, and a third set of digits associated with a wireless carrier of a particular country. International roaming often involves a wireless carrier from a roaming country communicating data to a wireless carrier of a home country for authentication of mobile subscriber information. After authentication, a roaming device can receive incoming calls and make outgoing calls. However, calls to the roaming device are charged at international roaming rates, resulting in expensive calls.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a system used to route telephone calls from a first country to a second country via an Internet Protocol network;



FIG. 2 is a block diagram of a particular illustrative embodiment of a distributed mobile architecture server including an authentication, accounting and authorization (AAA) module with a multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module that may be used as a component of the system of FIG. 1;



FIG. 3 is a diagram of a particular illustrative embodiment of an AAA module with an MILR module;



FIG. 4 is a diagram of a particular illustrative embodiment of data stored in an MILR module;



FIG. 5 is a diagram illustrating multiple distributed mobile architecture servers located in multiple countries;



FIG. 6 is a diagram that illustrates a mobile subscriber device including multiple IMSI numbers;



FIG. 7 is a diagram illustrating a system and method of routing telephone calls from a first country to a second country via an Internet Protocol network; and



FIG. 8 is a block diagram illustrating multiple distributed mobile architecture servers and multiple service provider networks.





DETAILED DESCRIPTION

In a particular illustrative embodiment, a computer readable storage medium includes a multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module. The MILR module stores a first IMSI number and a first Mobile Directory Number (MDN) associated with a mobile communication device of a mobile subscriber. The first IMSI number and the first MDN are associated with a first country, and the first MDN is a local telephone number in the first country. The MILR module stores a second IMSI number and a second MDN associated with the mobile communication device. The second IMSI number and the second MDN number are associated with a second country, and the second MDN is a local telephone number in the second country. The MILR module further stores location information. The first IMSI number is active when the mobile communication device is located in the first country, and the second IMSI number is active when the mobile communication device is located in the second country.


In another illustrative embodiment, a system includes a distributed mobile architecture (DMA) server that is located in a first country. The DMA server includes a processor, an MILR module, and processor executable instructions. The MILR stores a first IMSI number, a first MDN number, a second IMSI number, and a second MDN number that are associated with a mobile communication device of a mobile subscriber. The first IMSI number and the first MDN are associated with a first country, and the first MDN is a local telephone number in the first country. The second IMSI number and the second MDN number are associated with a second country, and the second MDN is a local telephone number in the second country. The MILR further stores location information. The first IMSI number is active when the mobile communication device is located in the first country, and the second IMSI number is active when the mobile communication device is located in the second country. The DMA server includes instructions that, when executed by the processor, cause the processor to determine a location of the mobile communication device based on the location information and to route communication data to the mobile communication device based on the location of the mobile communication device.


In another illustrative embodiment, a method includes receiving communication data that is directed to a first MDN that is associated with a mobile communication device of a mobile subscriber. The first MDN is a local telephone number in a first country. The method includes determining a location of the mobile communication device. A first IMSI number is active when the mobile communication device is located in the first country, and a second IMSI number is active when the mobile communication device is located in a second country. The method includes routing the communication data to the mobile communication device based on the location of the mobile communication device.


In another illustrative embodiment, a method of routing telephone calls from a first country to a second country via an Internet Protocol (IP) network is disclosed. The method includes receiving a telephone call directed to a first Mobile Directory Number (MDN) in a first country. When the mobile subscriber associated with the first MDN is located in a second country, the method includes routing the telephone call to the second country via the IP network.


In another illustrative embodiment, a system includes a first home location register (HLR) module, a first visitor location register (VLR) module, and a first community location register (CLR) module. The system includes a first multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module. The first MILR module includes user information associated with a plurality of mobile subscribers. For each of the mobile subscribers, the user information includes a first IMSI number and a first Mobile Directory Number (MDN) associated with a first country. The user information includes a second IMSI number and a second MDN associated with a second country. The user information also includes active location information for each of the mobile subscribers.



FIG. 1 illustrates a system that may be used to route telephone calls from a first country to a second country via an Internet Protocol (IP) network 112. In the particular embodiment illustrated in FIG. 1, the IP network 112 includes a satellite link 128 (or microware) between the first country and the second country. In alternative embodiments, the IP network 112 includes a wired link (under ground fiber optical cable or under sea optical cable) between the first country and the second country. The system includes a first distributed mobile architecture server 108 located in the first country and a second distributed mobile architecture server 116 located in the second country. The first distributed mobile architecture server 108 located in the first country is linked to the second distributed mobile architecture server 116 in the second country via the IP network 112. In the particular embodiment illustrated in FIG. 1, both the first distributed mobile architecture server 108 located in the first country and the second distributed mobile architecture server 116 located in the second country may be connected to one or more distributed mobile architecture gateways (DMAGs) 120 and 122, providing an interface between the distributed mobile architecture servers and multiple networks.


The system may be used to receive a telephone call directed to a first Mobile Directory Number (MDN) from a first mobile subscriber 102 located in the first country. In a particular embodiment, the first MDN is a local telephone number in the first country. Thus, the first mobile subscriber 102 may make a local call 104 to a second mobile subscriber 118. The local call 104 from the first mobile subscriber 102 may be received via an existing Public Switched Telephone Network (PSTN) or via an existing cellular network 106.


When the mobile subscriber associated with the first MDN is located in the first country, a telephone call to the first MDN received from a caller in the second country is routed to the first MDN via the IP network 112. In the example shown in FIG. 1, the second mobile subscriber 118 is located in the second country.


The local call 104 is received at a first distributed mobile architecture server 108 located in the first country. The first distributed mobile architecture server 108 includes a first multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module 124. The first MILR module 124 includes user information associated with a plurality of mobile subscribers. For each of the mobile subscribers, the user information includes a first IMSI number and a first Mobile Directory Number (MDN) associated with the first country. The first MILR module 124 also includes user information associated with a second IMSI number and a second MDN associated with the second country. The first MILR module 124 may also include user information associated with other IMSI numbers and MDNs associated with other countries. The first MILR module also includes active location information related to each mobile subscriber. The active location information records information related to a current location of a particular mobile subscriber. In a particular embodiment, the first distributed mobile architecture server 108 also includes a first home location register (HLR) module, a first visitor location register (VLR) module, and a first community location register (CLR) module.


The local call 104 received at the first distributed mobile architecture server 108 may be routed to the second country via the IP network 112, which may include a satellite link 128 between the first country and the second country. In alternative embodiments, the IP network 112 may include another wireless link or a wired link between the first country and the second country. In the embodiment shown in FIG. 1, the first distributed mobile architecture server 108 transmits the local call 104 over the IP network 112 via a first transceiver 110. The local call 104 is transmitted to a satellite 128 which retransmits the local call 104 to a second transceiver 114 located in the second country. The second transceiver 114 is associated with a second distributed mobile architecture server 116 that includes a second MILR module 126. The second MILR module 126 includes user information associated with one or more IMSI numbers and one or more MDNs associated with multiple countries. The second MILR module 126 also includes active location information related to each mobile subscriber. In a particular embodiment, the second MILR module 126 also includes a second HLR module, a second VLR module, and a second CLR module.


Upon receiving the local call 104 via the IP network 112 at the second transceiver 114, the second distributed mobile architecture server 116 routes the local call 104 to the second mobile subscriber 118 located in the second country. Thus, a telephone call to the first MDN from the first mobile subscriber 102 located in the first country is routed to the second MDN via the IP network when the second mobile subscriber 118 is located in the second country.



FIG. 2 shows an exemplary, non-limiting, embodiment of a distributed mobile architecture server 200, e.g., one or more of the distributed mobile architecture servers described in conjunction with FIG. 1. In a particular embodiment, the distributed mobile architecture server 200 includes a processor, or computer, having a housing and a computer readable medium 202 that is disposed therein. A power supply 204 can also be disposed within the housing of the distributed mobile architecture server 200 in order to provide power to the distributed mobile architecture server 200. The power supply 204 can be a rechargeable battery disposed within the distributed mobile architecture server 200 or the power supply 204 can be external to the distributed mobile architecture server 200, i.e., a standard power outlet. Moreover, a cooling system 206, e.g., a fan with a thermostat, can be within the distributed mobile architecture server 200 in order to keep the distributed mobile architecture server 200 from overheating. In an alternative embodiment, the distributed mobile architecture server 200 can be a single board processor that does not require a fan.


As depicted in FIG. 2, the distributed mobile architecture server 200 includes a mobile switching center (MSC) module 208 and a base station controller (BSC) module 210 embedded within the computer readable medium 202. In an exemplary, non-limiting embodiment, the MSC module 208 can include a gatekeeper (GK) 212 that is connected to several gateways. For example, a circuit gateway (CGW) 214 can be connected to the GK 212 and can provide connectivity to an integrated services digital network/public switched telephone network (ISDN/PSTN) interface 216. The CGW 214 can provide a circuit switched to packet data conversion. In an exemplary, non-limiting embodiment, the PSTN portion of the ISDN/PSTN interface 216 can be an inter-office interface that uses the Bellcore industry standard ISDN user part (ISUP) signaling on a signaling system seven (SS7) link set. Moreover, the voice trunks on this interface can be timeslots on a T1 connection. Inbound and outbound voice calls can be supported on the ISDN portion of the ISDN/PSTN interface 216.


As further illustrated in FIG. 2, a packet data server node (PDSN) gateway 218 for CDMA, or a Gateway GPRS Support Node (GGSN) for Global System for Mobile Communication (GSM), and a Session Initiation Protocol (SIP) gateway 220 can also be connected to the GK 212. The PDSN gateway 218 and the SIP gateway 220 can provide connectivity to an Internet protocol (IP) interface 222. Further, the PDSN gateway 218 or a GGSN can establish a reverse tunnel with the PDSN or GGSN gateway 218 using generic routing encapsulation (GRE). Moreover, the PDSN gateway 218, or GGSN, can implement the Pseudo Random Function (PRF)/Foreign Agent (FA) functionality of the distributed mobile architecture 200 which supports mobile IP functions.



FIG. 2 further shows an SS7 gateway 224 that provides connectivity to an ANSI-41 and GSM Mobile Application Part (MAP) interface 226. In a particular embodiment, the ANSI-41 interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. The same SS7 point code can be used to identify the distributed mobile architecture 200 in the ANSI-41 network. The ANSI-41 interface can be used for roamer registration. Further, in an exemplary, non-limiting embodiment, the GSM MAP interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. It can be appreciated that there are different protocols of MAP from MAP/B to MAP/I, but in the illustrative embodiment, the different MAP/x protocols are not stacked—they are used independently.


As depicted in FIG. 2, a media gateway 228 can also be coupled to the GK 212. In an exemplary, non-limiting embodiment, the media gateway 228 can include cellular transcoders, one or more intranet gateways, conferencing bridges, and group calling functionality. Further, an authentication, authorization, and accounting (AAA) module 230 can be coupled to the GK 212. In an exemplary, non-limiting embodiment, there are three levels of authentication management. The highest level is for administration, the mid-level is for operations, and the lowest level is for normal users. The functions of the AAA module 230 can be included in the user level. The AAA module 230 includes a multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module 250. The MILR module 250 includes user information associated with one or more IMSI numbers and one or more MDNs associated with multiple countries. The MILR module 250 also includes active location information related to each mobile subscriber. In a particular embodiment, the MILR module 250 also includes an HLR module, a VLR module, and a CLR module.


In an exemplary, non-limiting embodiment, the GK 212 can act as an AAA server and a feather server to support advanced supplementary service, short message service, etc. Moreover, the GK 212 can act as a call manager and can support ISUP and PSTN function calls. Additionally, the GK 212 can act as a signal gateway, e.g., IP to SS7 inter-working, ISUP, GSM MAP or ANSI-41 to PSTN and ANSI-42/GSM. The GK 212 can also function as a data call server.


As illustrated in FIG. 2, the BSC module 210 includes a cellular radio network controller (CRNC) 232 and a cellular selection/distribution unit (CSDU) 234 that are connected to a call protocol controller (CPC) 236. In turn, the CPC 236 can be connected to a plurality of base transceiver stations (BTSs) 238, 240 and 242. Specifically, the distributed mobile architecture 200 includes a BTS interface 244 at the CPC 236 that can be physically and directly connected to the BTSs 238, 240 and 242. The CRNC 232 can provide cellular radio resource management and cellular call control. The CSDU 234 can provide Fundamental Channel (FCH) soft handoff and distribution, Link Access Control (LAC) processing for inband signaling, multiplexer (MUX) functions, and centralized power control. Further, the CPC 236 can convert a T1 or E1 message or ATM interface to a data packet message. In a particular embodiment, each BTS 238, 240 and 242 supports signals and traffic up to the front point of the CPC 236, e.g., up to the BTS interface 244. Further, in a particular embodiment, the CRNC 232, the CPC 236, the CSDU 234 and the OAMP 246 can perform one or more of the functions of legacy Base Station Controllers (BSC).


In an exemplary, non-limiting embodiment, the BTS interface 244 can be an IS-95A OR IS-2000 interface over E1 or ATM, or the BTS interface 244 can be a GSM BTS interface using MAP or customized application for mobile network enhanced logic (CAMEL). In an illustrative embodiment, the CPC 236 can be connected to one or more BTSs 238, 240 and 242. FIG. 2 further shows that the BSC module 210 includes an operations, administration, maintenance, and provisioning (OAMP) module 246. In an exemplary, non-limiting embodiment, the OAMP module 246 can use simple network management protocol (SNMP) for operations interfaces. Further, the OAMP module 246 can include a JAVA user interface. The OAMP module 246 can also include a software agent that is assigned to each component within the distributed mobile architecture 200. The agents independently monitor their respective components. Moreover, each agent can provision its respective component.


In a particular embodiment, a distributed mobile architecture can be implemented as a system or a device. For example, a distributed mobile architecture system or a distributed mobile architecture device can include a distributed mobile architecture server or a distributed mobile architecture on single processor board.


Referring to FIG. 3, a particular illustrative embodiment of an authentication authorization and accounting (AAA) module is illustrated at 300. In a particular embodiment, the AAA module is the AAA module 230 of FIG. 2. The AAA module 300 includes a first HLR module 352, a first VLR module 354, and a first CLR module 356. The AAA module 300 also includes a first MILR module 358. The first MILR module 358 includes user information 360 associated with a plurality of mobile subscribers. For each of the mobile subscribers, the user information 360 includes one or more IMSI numbers 362, one or more MDNs 364, and active location information 366 for each mobile subscriber.


In a particular embodiment, the active location information 366 records information related to a current location of a particular mobile subscriber. In a particular embodiment, the one or more IMSI numbers 362 include a first IMSI number and a second IMSI number, and the one or more MDNs 364 include a first representative MDN and a second representative MDN. The first IMSI number and the first MDN are associated with a first country, while the second IMSI number and the second MDN are associated with a second country.


In another particular embodiment, the one or more IMSI numbers 362 also include a third IMSI number and a third MDN, where the third IMSI number and the third MDN are associated with a third country. Thus, the user information 360 may include multiple IMSI numbers and multiple MDNs associated with multiple countries. The IMSI numbers 362 and the MDNs 364 may be stored on a Subscriber Identity Module (SIM) card of a wireless communication device, as described below.


In a particular embodiment, a first set of three digits of the first IMSI number represents a first mobile country code (MCC) associated with the first country. A second set of three digits of the IMSI number represents a first mobile network code (MNC) associated with a first wireless carrier located in the first country. Similarly, a first set of three digits of the second IMSI number represents a second MCC associated with the second country, and the second set of three digits of the second IMSI number represents a second MNC associated with a second wireless carrier located in the second country.


When the mobile subscriber associated with the first MDN is located in the second country, a telephone call to the first MDN received from a caller in the first country is routed to the second MDN via the IP network. In a particular embodiment, the first MDN is a local telephone number in the first country. Thus, the first MDN allows local telephone calls in the first country to be routed to the second country via the IP network without incurring international and similar long distance charges.



FIG. 4 illustrates a structure of a universal authentication, authorization and accounting (AAA) data store, including a multiple IMSI location register (MILR) 402. In a particular embodiment, the MILR 402 is the MILR 358 of FIG. 3. The MILR 402 includes information associated with a plurality of mobile subscribers, including IMSI numbers, MDNs, and active location information. For example, in the embodiment shown in FIG. 4, the MILR 402 includes information associated with a first mobile subscriber (MS1) 404, a second mobile subscriber (MS2) 406, and a third mobile subscriber (MS3) 408. As shown, the MILR 402 may include information related to additional mobile subscribers, as indicated by information associated with mobile subscriber MSk 410.


In the embodiment shown in FIG. 4, the information associated with the first mobile subscriber 404 includes a first IMSI number and a first MDN associated with a first country, at 412. The information associated with the first mobile subscriber 404 also includes a second IMSI number and a second MDN associated with a second country, at 414. Similarly, the information associated with the second mobile subscriber 406 includes a first IMSI number and a first MDN associated with a first country at 418, and a second IMSI number and a second MDN associated with a second country at 420. Further, the information associated with the third mobile subscriber 408 includes a first IMSI number and a first MDN associated with a first country at 424, and a second IMSI number and a second MDN associated with a second country at 426. The MILR 402 includes information associated with multiple (e.g., k) mobile subscribers, including a first IMSI number and a first MDN associated with a first country at 430, and a second IMSI number and a second MDN associated with a second country at 432.


As shown in FIG. 4, the information associated with the first mobile subscriber 402 may include multiple IMSI numbers and multiple MDNs associated with multiple (e.g., n) countries. For example, information associated with the first mobile subscriber 404 may include IMSI(n) and MDN(n) associated with a particular (n) country, at 416. As a further example, information associated with the second mobile subscriber 406 may include IMSI(n) and MDN(n) associated with a particular (n) country, at 422. Further, information associated with the third mobile subscriber 408 may include IMSI(n) and MDN(n) associated with a particular (n) country, at 428. As noted, the MILR 402 may include information associated with multiple (k) mobile subscribers. The information associated with mobile subscriber (k) 410 may also include IMSI(n) and MDN(n) associated with a particular (n) country, at 434.


Referring to FIG. 5, multiple distributed mobile architecture servers located in multiple countries are illustrated at 500. For example, a first distributed mobile architecture server 502 may be located in a first country, a second distributed mobile architecture server 504 may be located in a second country, and a third distributed mobile architecture server 506 may be located in a third country. Further, as shown at 508, there may be multiple (n) distributed mobile architecture servers in multiple countries. Each of the distributed mobile architecture servers 502, 504, 506 and 508 may be linked via an IP network 514.


For illustration purposes, a first mobile subscriber 510 may make a telephone call to a second mobile subscriber 512. When the second mobile subscriber 512 is located in the first country, the first distributed mobile architecture server 502 routes the telephone call to the second mobile subscriber 512 based on a first IMSI number associated with the first country. When the second mobile subscriber 512 is located in the second country, the second distributed mobile architecture server 504 routes the telephone call to the second mobile subscriber 512 using a second IMSI number associated with the second country. When the second mobile subscriber 512 is located in the third country, the third distributed mobile architecture server 506 routes the telephone call to the second mobile subscriber 512 using a third IMSI number associated with the third country. Further, when the second mobile subscriber 512 is located in another country (n), the distributed mobile architecture server 508 routes the telephone call to the second mobile subscriber 512 using IMSI(n) associated with that particular country. Thus, the multiple IMSI numbers allow the first mobile subscriber 510 to make a local telephone call to the second mobile subscriber 512 regardless of the location of the second mobile subscriber 512.


As another example, as shown in FIG. 5, both the first mobile subscriber 510 and the second mobile subscriber 512 may use wireless communication devices that include multiple IMSI numbers. Thus, both the first mobile subscriber 510 and the second mobile subscriber 512 may roam between multiple countries and make and receive local calls in the multiple countries. For example, the first mobile subscriber 510 may be located in the second country, and the second mobile subscriber 512 may be located in the third country. In this case, a call made from the first mobile subscriber 510 in the second country would be routed via the second distributed mobile architecture server 504 located in the second country to the second mobile subscriber 512 located in the third country. The second mobile subscriber 512 would receive the call via the third distributed mobile architecture server 506 located in the third country. The telephone call is routed from the second distributed mobile architecture server 504 located in the second country to the third distributed mobile architecture server 506 located in the third country via the IP network 514. For example, the IP network 514 may include a wireless or a wired network.



FIG. 6 illustrates a mobile subscriber device 602 that includes multiple IMSI numbers. The mobile subscriber device 602 includes a processor 604 and a memory card 606, such as a Subscriber Identity Module (SIM) card. In the embodiment shown in FIG. 6, the memory card 606 includes a first IMSI number 608 associated with a first country, a second IMSI number 610 associated with a second country, and a third IMSI number 612 associated with a third country. Further, as shown at 614, the memory card 606 may include multiple IMSI numbers associated with multiple (n) countries. When the mobile subscriber device 602 is located in the first country, the first IMSI number 608 is active. Similarly, when the mobile subscriber device 602 is located in the second country, the second IMSI number 610 is active, and when the mobile subscriber device 602 is located in the third country, the third IMSI number 612 is active. Thus, the memory card 606 may enable flat roaming over countries (FroC).


In a particular embodiment, the first IMSI number 608 stored at the memory card 606 includes a first mobile country code (MCC) associated with the first country. In addition, the first IMSI number 608 includes a first mobile network code (MNC) associated with a first wireless carrier located in the first country. The first MCC associated with the first country may be included in a first set of three digits of the first IMSI number 608. The first MNC associated with the first wireless carrier may be included in a second set of three digits of the first IMSI number 608. In another particular embodiment, the second IMSI number 610 includes a second MCC associated with the second country. In addition, the second IMSI number 610 includes a second MNC associated with a second wireless carrier located in the second country. For example, the second MCC may be included in a first set of three digits of the second IMSI number 610. Further, the second MNC associated with the second wireless carrier may be included in a second set of three digits of the second IMSI number 610. Thus, each of the IMSI numbers 608, 610, 612 and 614 may include both a MCC and a MNC associated with a particular country.


When the mobile subscriber device 602 is located in the first country, the first IMSI number 608 is communicated to a first distributed mobile architecture server located in the first country. Thus, when the mobile subscriber device 602 is located in the first country, the first distributed architecture server located in the first country receives active location information via the first IMSI number 608. Similarly, when the mobile subscriber device 602 is located in the second country, the second IMSI number 610 is communicated to a second distributed mobile architecture server located in the second country. Thus, when the mobile subscriber device 602 is located in the second country, the second distributed architecture server located in the second country receives active location information via the second IMSI number 610. Similarly, when the mobile subscriber device 602 is located in the third country, active location information is communicated via the third IMSI number 612, and when the mobile subscriber device 602 is located in country (n), active location information is communicated via IMSI(n) 614.



FIG. 7 illustrates a call flow from a first mobile subscriber 706 to a second mobile subscriber 708. The first mobile subscriber 706 is located in a first country 702. The second mobile subscriber 708 is located in a second country 704. The first mobile subscriber 706 places a telephone call to a first Mobile Directory Number (MDN) 712 (e.g., 158-000-0002). The telephone call is routed to a first distributed mobile architecture server 714 located in the first country 702. The first distributed mobile architecture server 714 communicates with a multiple IMSI location register (MILR) 716 to determine an active location of the second mobile subscriber 708.


The MILR 716 includes several IMSI numbers and several MDNs for multiple mobile subscribers. Each IMSI number and MDN are associated with a particular country. For example, the MILR 716 may include a first IMSI number 724 and a first MDN 728 associated with the first country 702. In addition, the MILR 716 may include a second IMSI number 726 and a second MDN 732 associated with the second country 704. In a particular embodiment, the first three digits of the first IMSI number 724 includes a first multiple country code (MCC) 736, and the second three digits of the first IMSI number 724 includes a first mobile network code (MNC) 740. Similarly, the second IMSI number 726 includes a second MCC 738 in the first three digits and a second MNC 742 in the second three digits.


In the embodiment shown in FIG. 7, the MILR 716 includes information 744 for a first mobile subscriber and information 746 for a second mobile subscriber (e.g., the second mobile subscriber 708). When the second mobile subscriber 708 is located in the second country 704 (as in FIG. 7), this active location information is stored in the MILR 716, at 734. For illustration purposes, when the second mobile subscriber 708 is located in the first country 702, this active location information is stored in the MILR 716, at 730.


When the first distributed mobile architecture server 714 communicates with the MILR 716, the active location information determines whether to transmit the call to another distributed mobile architecture server in another country. For example, in the embodiment shown in FIG. 7, the information 746 for the second mobile subscriber 708 indicates that the second mobile subscriber 708 is currently located in the second country (e.g, active location information stored at 734). Thus, based on information retrieved from the MILR 716, the first distributed mobile architecture server 714 determines that the telephone call is to be transmitted to a second distributed mobile architecture server 720 located in the second country 704. The second MDN 732 associated with the second country 704 (e.g., 920-0000-0002) is transmitted to the second distributed mobile architecture server 720 located in the second country 704. The first distributed mobile architecture server 714 communicates with the second distributed mobile architecture server 720 via an IP network 718.


In a particular embodiment, the first MDN 728 associated with the first country 702 (e.g., 158-000-0002) is a local telephone number in the first country 702. Thus, the first mobile subscriber 706 is able to make a local telephone call to the second mobile subscriber 708 even when the second mobile subscriber 708 is located in the second country 704. In another particular embodiment, a third mobile subscriber 710 located in the second country 704 may also make local telephone calls to the second mobile subscriber 708. For example, the third mobile subscriber 710 may make a local telephone call to the second mobile subscriber 708 using the second MDN 732 associated with the second country 704 (e.g., 920-0000-0002). Thus, the second mobile subscriber 708 is able to receive local telephone calls from mobile subscribers in multiple countries while roaming between multiple countries.



FIG. 8 illustrates that multiple distributed mobile architecture servers may be located in multiple countries, and the multiple distributed mobile architecture servers are linked via an IP network. For example, a distributed mobile architecture server in China 802 may communicate via an IP network 814 with one or more other distributed mobile architecture servers located in other countries. For example, the other distributed mobile architecture servers may be located in India 804, in the United Kingdom 806, in France 808, in the United States 810, in Canada 812, or in other countries 816. It should be understood that the countries listed in FIG. 8 are merely for illustrative purposes only, and any number of countries may be included.


A call from a first mobile subscriber in China may be received at the distributed mobile architecture server 802 located in China. In a particular embodiment, the calls may be local telephone calls to a second mobile subscriber. The local telephone calls are received at the distributed mobile architecture server 802 located in China. The local telephone calls may be routed to one of several countries depending on a location of the second mobile subscriber. For example, the second mobile subscriber may be located in the United States, and a local call made in China may be routed to the distributed mobile architecture server 810 located in the United States via the IP network 814. When the second mobile subscriber is located in the United States, an IMSI number associated with the United States is active. The second IMSI number associated with the United States is communicated to the other distributed mobile architecture servers via the IP network 814. Active location information enables the other distributed mobile architecture servers to track the location of the second mobile subscriber. At any time, the second mobile subscriber may be located in any number of countries. Thus, the active location information is dynamic in nature.


For example, when the second mobile subscriber is located in Canada, an IMSI number associated with Canada is communicated as the active location to the other distributed mobile architecture servers via the IP network 814. For example, the active location information may be communicated to the distributed mobile architecture server 802 located in China. Thus, when the second mobile subscriber is roaming in Canada, the active location information is maintained in the distributed mobile architecture server 802 in China.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A non-transitory computer readable storage medium, comprising: a multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module to store: a first IMSI number and a first Mobile Directory Number (MDN) associated with a mobile communication device of a mobile subscriber, wherein the first IMSI number and the first MDN are associated with a first country, and wherein the first MDN is a local telephone number in the first country;a second IMSI number and a second MDN associated with the mobile communication device, wherein the second IMSI number and the second MDN number are associated with a second country, and wherein the second MDN is a local telephone number in the second country; andlocation information, wherein the first IMSI number is active when the mobile communication device is located in the first country, and wherein the second IMSI number is active when the mobile communication device is located in the second country.
  • 2. The non-transitory computer readable storage medium of claim 1, further comprising instructions that, when executed by a processor, cause the processor to: determine, based on the location information, a location of the mobile communication device; androute communication data to the mobile communication device based on the location of the mobile communication device.
  • 3. The non-transitory computer readable storage medium of claim 2, further comprising instructions that, when executed by the processor, cause the processor to route the communication data to the mobile communication device via an Internet Protocol (IP) network when the mobile communication device is located in the second country.
  • 4. The non-transitory computer readable storage medium of claim 2, further comprising instructions that, when executed by the processor, cause the processor to route the communication data to the mobile communication device when the mobile communication device is located in the first country.
  • 5. The non-transitory computer readable storage medium of claim 1, wherein the MILR module further stores: a third IMSI number and a third MDN associated with the mobile communication device, wherein the third IMSI number and the third MDN are associated with a third country, and wherein the third MDN is a local telephone number in the third country,wherein the third IMSI number is active when the mobile communication device is located in the third country.
  • 6. The non-transitory computer readable storage medium of claim 5, further comprising instructions that, when executed by the processor, cause the processor to: determine, based on the location information, a location of the mobile communication device; androute communication data to the mobile communication device via an Internet Protocol (IP) network when the mobile communication device is located in the third country.
  • 7. A system comprising: a distributed mobile architecture (DMA) server that is located in a first country, the DMA server comprising: a processor;a multiple International Mobile Subscriber Identity (IMSI) location register (MILR) module to store: a first International Mobile Subscriber Identity (IMSI) number and a first Mobile Directory Number (MDN) associated with a mobile communication device of a mobile subscriber, wherein the first IMSI number and the first MDN are associated with a first country, and wherein the first MDN is a local telephone number in the first country;a second IMSI number and a second MDN associated with the mobile communication device, wherein the second IMSI number and the second MDN number are associated with a second country, and wherein the second MDN is a local telephone number in the second country; andlocation information, wherein the first IMSI number is active when the mobile communication device is located in the first country, and wherein the second IMSI number is active when the mobile communication device is located in the second country; andinstructions that, when executed by the processor, cause the processor to: determine, based on the location information, a location of the mobile communication device; androute communication data to the mobile communication device based on the location of the mobile communication device.
  • 8. The system of claim 7, wherein the communication data is routed to the mobile communication device via an Internet Protocol (IP) network when the mobile communication device is located in the second country.
  • 9. The system of claim 8, wherein the communication data is routed to a second DMA server that is located in the second country.
  • 10. The system of claim 8, wherein no international or long distance charges are associated with routing the communication data to the second country via the IP network.
  • 11. The system of claim 8, wherein the communication data is associated with a telephone call to the first MDN of the mobile subscriber.
  • 12. The system of claim 8, wherein the communication data is associated with a short message service (SMS) message to the first MDN of the mobile subscriber.
  • 13. The system of claim 8, wherein the IP network includes a wireless link between the first country and the second country.
  • 14. The system of claim 8, wherein the wireless link includes a satellite link.
  • 15. The system of claim 8, wherein the IP network includes a wired link between the first country and the second country.
  • 16. The system of claim 8, wherein the first DMA server further comprises a base transceiver station (BTS) interface and wherein the communication data is routed to the mobile communication device via the BTS interface when the mobile communication device is located in the first country.
  • 17. A method comprising: receiving communication data that is directed to a first Mobile Directory Number (MDN) that is associated with a mobile communication device of a mobile subscriber, wherein the first MDN is a local telephone number in a first country, wherein the mobile communication device is associated with a second MDN, and wherein the second MDN is a local telephone number in a second country;determining a location of the mobile communication device, wherein a first International Mobile Subscriber Identity (IMSI) number associated with the first MDN is active when the mobile communication device is located in the first country, and wherein a second IMSI number associated with the second MDN is active when the mobile communication device is located in the second country; androuting the communication data to the mobile communication device based on the location of the mobile communication device.
  • 18. The method of claim 17, wherein the communication data is routed to the mobile communication device via an Internet Protocol (IP) network when the second IMSI number is active.
  • 19. The method of claim 18, wherein the mobile communication device is associated with a third MDN, wherein the third MDN is a local telephone number in a third country, and wherein a third IMSI number associated with the third MDN is active when the mobile communication device is located in the third country.
  • 20. The method of claim 19, wherein the communication data is routed to the mobile communication device via an Internet Protocol (IP) network when the third IMSI number is active.
CLAIM OF PRIORITY

The present application claims priority from and is a continuation of patent application Ser. No. 12/238,269 filed on Sep. 25, 2008 and entitled “MULTIPLE IMSI CONNECTIONS,” the contents of which are expressly incorporated herein by reference in their entirety.

US Referenced Citations (164)
Number Name Date Kind
4284848 Frost Aug 1981 A
5590175 Gallant et al. Dec 1996 A
5623495 Eng et al. Apr 1997 A
5734979 Lu et al. Mar 1998 A
5933784 Gallagher et al. Aug 1999 A
5991639 Rautiola et al. Nov 1999 A
6122499 Magnusson Sep 2000 A
6131038 Sekine et al. Oct 2000 A
6141564 Bruner et al. Oct 2000 A
6160804 Ahmed et al. Dec 2000 A
6411825 Csapo et al. Jun 2002 B1
6418308 Heinonen et al. Jul 2002 B1
6421325 Kikinis Jul 2002 B1
6515985 Shmulevich et al. Feb 2003 B2
6539237 Sayers et al. Mar 2003 B1
6542497 Curry et al. Apr 2003 B1
6584098 Dutnall Jun 2003 B1
6611533 Liao et al. Aug 2003 B1
6614784 Glitho et al. Sep 2003 B1
6647426 Mohammed Nov 2003 B2
6678155 Bresniker Jan 2004 B1
6694134 Lu et al. Feb 2004 B1
6697355 Lim Feb 2004 B1
6704409 Dilip et al. Mar 2004 B1
6731932 Rune et al. May 2004 B1
6735184 Davidson et al. May 2004 B1
6751207 Lee et al. Jun 2004 B1
6760325 Hameleers et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6763233 Bharatia Jul 2004 B2
6791988 Hameleers Sep 2004 B1
6795444 Vo et al. Sep 2004 B1
6807431 Sayers Oct 2004 B2
6807432 Hwang Oct 2004 B2
6816706 Hohnstein et al. Nov 2004 B1
6819652 Akhtar et al. Nov 2004 B1
6831903 Kang Dec 2004 B2
6839356 Barany et al. Jan 2005 B2
6859652 Karabinis et al. Feb 2005 B2
6871072 Meche Mar 2005 B1
6879582 Dhara et al. Apr 2005 B1
6879677 Trandal et al. Apr 2005 B2
6917813 Elizondo Jul 2005 B2
6937708 Hirose Aug 2005 B2
6958983 Musikka et al. Oct 2005 B2
6985454 Wiedeman et al. Jan 2006 B1
7003286 Brown et al. Feb 2006 B2
7050414 Lin May 2006 B2
7054307 Papadimitriou et al. May 2006 B2
7054322 D'Annunzio et al. May 2006 B2
7120435 Usher et al. Oct 2006 B2
7120436 Kim Oct 2006 B2
7133670 Moll et al. Nov 2006 B1
7136651 Kalavade Nov 2006 B2
7158621 Bayne Jan 2007 B2
7171216 Choksi Jan 2007 B1
7299039 Lee et al. Nov 2007 B2
7313399 Rhee et al. Dec 2007 B2
7324478 Park et al. Jan 2008 B2
7328268 Foltak et al. Feb 2008 B1
7346334 Gaeta et al. Mar 2008 B2
7349412 Jones et al. Mar 2008 B1
7359700 Swensen et al. Apr 2008 B2
7385947 Wu et al. Jun 2008 B2
7406069 Yashar et al. Jul 2008 B2
7424313 Ham et al. Sep 2008 B2
7486967 Pan et al. Feb 2009 B2
7536170 Goldman et al. May 2009 B2
7539158 Pan May 2009 B2
7548763 Pan Jun 2009 B2
7552670 Goldman et al. Jun 2009 B2
7653414 Pan Jan 2010 B2
7738488 Marsico et al. Jun 2010 B2
7760695 Gopalakrishnan et al. Jul 2010 B2
7787879 Philips et al. Aug 2010 B1
7840230 Pan Nov 2010 B2
7855988 Pan Dec 2010 B2
7979066 Pan Jul 2011 B2
8036158 Pan et al. Oct 2011 B2
8046420 Pan Oct 2011 B2
8089920 Pan Jan 2012 B2
8107409 Pan Jan 2012 B2
20010046859 Kil Nov 2001 A1
20010055298 Baker et al. Dec 2001 A1
20020009060 Gross Jan 2002 A1
20020015392 Musikka et al. Feb 2002 A1
20020016180 Derosier et al. Feb 2002 A1
20020045444 Usher et al. Apr 2002 A1
20020051518 Bondy et al. May 2002 A1
20020058502 Stanforth May 2002 A1
20020061746 Jo et al. May 2002 A1
20020160772 Gailey et al. Oct 2002 A1
20020169887 MeLampy et al. Nov 2002 A1
20030048766 D'Annunzio et al. Mar 2003 A1
20030088698 Singh et al. May 2003 A1
20030092441 Taha et al. May 2003 A1
20030096628 Bar-On et al. May 2003 A1
20030100302 Armbruster et al. May 2003 A1
20030153343 Crockett et al. Aug 2003 A1
20040014466 Jesse et al. Jan 2004 A1
20040018829 Raman et al. Jan 2004 A1
20040019539 Raman et al. Jan 2004 A1
20040156495 Chava et al. Aug 2004 A1
20040203621 Brown et al. Oct 2004 A1
20040203677 Brown et al. Oct 2004 A1
20040204097 Scheinert et al. Oct 2004 A1
20040253984 Csapo et al. Dec 2004 A1
20040259556 Czys Dec 2004 A1
20050064922 Owens et al. Mar 2005 A1
20050070278 Jiang Mar 2005 A1
20050075106 Jiang Apr 2005 A1
20050091392 Gesswein et al. Apr 2005 A1
20050250491 Roy et al. Nov 2005 A1
20060046714 Kalavade Mar 2006 A1
20060046760 Bertino et al. Mar 2006 A1
20060052113 Ophir et al. Mar 2006 A1
20060063544 Zhao et al. Mar 2006 A1
20060114934 Shin et al. Jun 2006 A1
20060141984 Taglienti et al. Jun 2006 A1
20060142011 Kallio Jun 2006 A1
20060148465 Perdomo et al. Jul 2006 A1
20060159039 Jung et al. Jul 2006 A1
20060203746 Maggenti et al. Sep 2006 A1
20060217121 Soliman et al. Sep 2006 A1
20060221912 Olivier et al. Oct 2006 A1
20060258358 Kallio Nov 2006 A1
20070008968 Baker et al. Jan 2007 A1
20070010245 Levitan Jan 2007 A1
20070021097 Gaeta et al. Jan 2007 A1
20070021118 Ophir Jan 2007 A1
20070060124 Kalavade Mar 2007 A1
20070076697 Huotari et al. Apr 2007 A1
20070087738 Melkesetian Apr 2007 A1
20070147598 Somes et al. Jun 2007 A1
20070213075 Jiang Sep 2007 A1
20070230352 Kokku et al. Oct 2007 A1
20070232267 Pan Oct 2007 A1
20070232304 Goldman et al. Oct 2007 A1
20070234892 Goldman et al. Oct 2007 A1
20070243891 Civanlar et al. Oct 2007 A1
20070271606 Amann et al. Nov 2007 A1
20070287452 Pan Dec 2007 A1
20070291910 Bucchieri et al. Dec 2007 A1
20080101314 Bachmutsky May 2008 A1
20080101410 Barkley et al. May 2008 A1
20080146158 Pan et al. Jun 2008 A1
20080168523 Ansari et al. Jul 2008 A1
20090003269 Kumazawa et al. Jan 2009 A1
20090022155 Rosenberg et al. Jan 2009 A1
20090067441 Ansari et al. Mar 2009 A1
20090186626 Raghothaman Jul 2009 A1
20090215449 Avner Aug 2009 A1
20090227230 Camilleri et al. Sep 2009 A1
20090325584 Pan Dec 2009 A1
20090327819 Pan Dec 2009 A1
20100048197 Jiang Feb 2010 A1
20100048208 Gunaratnam et al. Feb 2010 A9
20100057485 Luft Mar 2010 A1
20100080214 Li et al. Apr 2010 A1
20100094878 Soroca et al. Apr 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20110059740 Pan Mar 2011 A1
20110060853 Pan Mar 2011 A1
20120002607 Pan Jan 2012 A1
Foreign Referenced Citations (2)
Number Date Country
0365885 May 1990 EP
2007102003 Sep 2007 WO
Related Publications (1)
Number Date Country
20110223921 A1 Sep 2011 US
Continuations (1)
Number Date Country
Parent 12238269 Sep 2008 US
Child 13113819 US